1
|
Huang J, Bao C, Chen Y, Zhu W, Zhang K, Liu C, Tang C. Comparative efficacy and acceptability of non-invasive neuromodulation technologies and botulinum toxin injections for post-stroke spasticity and motor function: a network meta-analysis of randomised controlled trials. EClinicalMedicine 2025; 80:103034. [PMID: 39831129 PMCID: PMC11741030 DOI: 10.1016/j.eclinm.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Non-invasive neuromodulation is a promising approach for improving spasticity and motor function after stroke. However, it is still unclear which type of non-invasive neuromodulation is effective and evidence of important differences between them and botulinum toxin (BoNT) injection is limited. We aimed to assess the comparative efficacy and acceptability of non-invasive neuromodulation technologies and BoNT for post-stroke spasticity and motor function. Methods In this network meta-analysis, Cochrane Library, EMBASE, MEDLINE, Web of Science, Scopus, CNKI, and Wan Fang Data were searched from the earliest records to 8 October 2024. Randomised controlled trials that compared any type of non-invasive neuromodulation therapies, BoNT, and control treatments (including sham or no stimulation/injection) for post-stroke spasticity measured by modified Ashworth scale (MAS) were included. MAS, motor function, and acceptability were pooled using random-effects model with summary weighted mean difference (WMD) or risk ratios (RR) alongside 95% confidence interval (CI). Ranking probabilities of the treatments were estimated. Clinical importance was categorized as definite, probable, possible, or definitely not, considering the relationship between effect measures (95% CI) and minimal clinically important difference (1, 6, and 1.5 points for MAS, motor function, and acceptability, respectively). The quality of evidence was assessed using CINeMA online web. PROSPERO registration CRD42024543494. Findings 6260 studies were identified and 185 trials (11,185 participants; 12 interventions) were included. Compared with control treatments, BoNT, high- and low-frequency repetitive transcranial magnetic stimulation (HFrTMS and LFrTMS), and anodal, cathodal, and dual transcranial direct current stimulation (atDCS, ctDCS, and dtDCS) significantly improved spasticity at short-term follow-up (WMD range -0.81 to -0.31), but did not achieve clinical importance. At mid-term, ctDCS (WMD = -2.00; 95% CI: -3.03, -0.97) and dtDCS (WMD = -1.62; 95% CI: -3.22, -0.02) were more efficacious than control treatments in reducing post-stroke spasticity with probable clinical importance. For motor function, atDCS, ctDCS, and dtDCS were more efficacious than control treatments (WMD range 6.29-13.00), with probable clinical importance, while BoNT, HFrTMS, and LFrTMS with possible clinical importance (WMD range 3.42-5.28). Various modalities have comparable acceptability to control treatments (RR range 0.48-1.46). Confidence in accordance with CINeMA ranged from high to low. Sensitivity and meta-regression analyses on limb measured, cointervention, and stroke stage confirmed the main findings of this study. Interpretation Taken together with clinical importance, evidence available supports three forms of tDCS as effective treatments for post-stroke spasticity and/or motor impairments, whereas BoNT, HFrTMS, and LFrTMS for motor impairments. These modalities could be considered alongside rehabilitation interventions as core treatments for post-stroke spasticity and motor impairments. Funding China Postdoctoral Science Foundation (2024M752230).
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenyi Zhu
- China Institute of Sport Science, Beijing, China
| | - Kexin Zhang
- China Institute of Sport Science, Beijing, China
| | - Chunlong Liu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Eapen BC, Tran J, Ballard-Hernandez J, Buelt A, Hoppes CW, Matthews C, Pundik S, Reston J, Tchopev Z, Wayman LM, Koehn T. Stroke Rehabilitation: Synopsis of the 2024 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines. Ann Intern Med 2025. [PMID: 39832369 DOI: 10.7326/annals-24-02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
DESCRIPTION In July 2024, the U.S. Department of Veterans Affairs (VA) and U.S. Department of Defense (DOD) released a joint update of their 2019 clinical practice guideline (CPG) for the management of stroke rehabilitation. This synopsis is a condensed version of the 2024 CPG, highlighting the key aspects of the guideline development process and describing the major recommendations. METHODS The VA/DOD Evidence-Based Practice Work Group convened a joint VA/DOD guideline development work group (WG) that included clinical stakeholders and conformed to the Institute of Medicine's tenets for trustworthy CPGs. The guideline WG conducted a patient focus group, developed key questions, and systematically searched and evaluated the literature (English-language publications from 1 July 2018 to 2 May 2023). The GRADE (Grading of Recommendations Assessment, Development and Evaluation) system was used to evaluate the evidence. The WG developed 47 recommendations along with algorithms for stroke rehabilitation in the inpatient and outpatient settings. Stakeholders outside the WG reviewed the CPG before approval by the VA/DOD Evidence-Based Practice Work Group. RECOMMENDATIONS This synopsis summarizes where evidence is strongest to support guidelines in crucial areas relevant to primary care physicians: transition to community (case management, psychosocial or behavioral interventions); motor therapy (task-specific practice, mirror therapy, rhythmic auditory stimulation, electrical stimulation, botulinum toxin for spasticity); dysphagia, aphasia, and cognition (chin tuck against resistance, respiratory muscle strength training); and mental health (selective serotonin reuptake inhibitor use, psychotherapy, mindfulness-based therapies for treatment but not prevention of depression).
Collapse
Affiliation(s)
- Blessen C Eapen
- Physical Medicine and Rehabilitation Services, Veterans Affairs Greater Los Angeles Health Care, and Division of Physical Medicine and Rehabilitation, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California (B.C.E.)
| | - Johanna Tran
- Comprehensive Integrated Inpatient Rehabilitation Program, James A. Haley Veterans' Hospital, Tampa, Florida (J.T.)
| | - Jennifer Ballard-Hernandez
- Evidence-Based Practice, Office of Quality and Patient Safety, Veterans Affairs Central Office, Washington, DC (J.B.-H., L.M.W.)
| | - Andrew Buelt
- Bay Pines Veterans Affairs Healthcare System, Bay Pines, Florida (A.B.)
| | - Carrie W Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, San Antonio, Texas (C.W.H.)
| | - Christine Matthews
- Audiology and Speech Pathology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania (C.M.)
| | - Svetlana Pundik
- Case Western Reserve University School of Medicine and Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio (S.P.)
| | | | - Zahari Tchopev
- 59th Medical Wing, U.S. Air Force, Wilford Hall Ambulatory Surgical Center, San Antonio, Texas (Z.T.)
| | - Lisa M Wayman
- Evidence-Based Practice, Office of Quality and Patient Safety, Veterans Affairs Central Office, Washington, DC (J.B.-H., L.M.W.)
| | - Tyler Koehn
- 959 Medical Operations Squadron, U.S. Air Force, Department of Neurology, Brooke Army Medical Center, San Antonio, Texas (T.K.)
| |
Collapse
|
3
|
Pan H, Liu TW, Ng SSM, Chen PM, Chung RCK, Lam SSL, Li CSK, Chan CCC, Lai CWK, Ng WWL, Tang MWS, Hui E, Woo J. Effects of mirror therapy with electrical stimulation for upper limb recovery in people with stroke: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:5660-5675. [PMID: 38334111 DOI: 10.1080/09638288.2024.2310757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To provide updated evidence about the effects of MT with ES for recovering upper extremities motor function in people with stroke. METHODS Systematic review and meta-analysis were completed. Methodological quality was assessed using the version 2 of the Cochrane risk-of-bias tool. The GRADE approach was employed to assess the certainty of evidence. RESULTS A total of 16 trials with 773 participants were included in this review. The results demonstrated that MT with ES was more effective than sham (standardized mean difference [SMD], 1.89 [1.52-2.26]) and ES alone (SMD, 0.42 [0.11-0.73]) with low quality of evidence, or MT alone (SMD, 0.47[0.04-0.89]) with low quality of evidence for improving upper extremity motor control assessed using Fugl-Meyer Assessment. MT with ES had significant improvement of (MD, 6.47 [1.92-11.01]) the upper extremity gross gripping function assessed using the Action Research Arm Test compared with MT alone with low quality of evidence. MT combined with ES was more effective than sham group (SMD, 1.17 [0.42-1.93) for improving the ability to perform activities of daily living with low quality of evidence assessed using Motor Activity Log. CONCLUSION MT with ES may be effective in improving upper limb motor recovery in people with stroke.
Collapse
Affiliation(s)
- Hong Pan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Tai Wa Liu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China (SAR)
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Pei Ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Stefanie S L Lam
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Carol S K Li
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles C C Chan
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles W K Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Winnie W L Ng
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China (SAR)
| | - Maria W S Tang
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Elsie Hui
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Jean Woo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (SAR)
| |
Collapse
|
4
|
Tashiro S, Takemi M, Yamada S, Tsuji T. Synchronized application of closed-loop NMES and precision tACS in post-stroke hand rehabilitation: a protocol of neurorehabilitation trial. Ther Adv Chronic Dis 2024; 15:20406223241297397. [PMID: 39575381 PMCID: PMC11580065 DOI: 10.1177/20406223241297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/26/2024] [Indexed: 11/24/2024] Open
Abstract
Background Severe upper extremity paresis due to stroke is a significant clinical sequela. Neuromuscular electrical stimulation (NMES)-based rehabilitation has demonstrated promising results along with cortical plasticity. Transcranial alternating current stimulation (tACS) has gained attention due to its unique ability to entrain endogenous oscillatory brain rhythms with injected AC frequency, offering the potential for modifying brain conditions to enhance rehabilitative interventions. Because repetitive motor execution in rehabilitation training requires a smooth transition of the brain state despite often being impaired secondary to stroke, combining NMES and tACS may offer better treatment efficacy. Aim This study proposes a phase I/II trial of an outpatient comprehensive rehabilitative treatment combining the integrated volitional-control electrical stimulation (IVES), a closed-loop NMES, and the timing-specified focal tACS in individualized beta frequency (dynamic-precision tACS) targeting severe hand paresis in patients with chronic stroke, aiming to demonstrate the feasibility of combination treatment. Design Double-blind randomized cross-over trial. Methods The repetitive facilitative finger extension training utilizing closed-loop NMES is combined with dynamic-precision tACS on the primary motor cortex to assist post-movement beta-rebound. Together with regular occupational therapy, we propose a comprehensive outpatient neurorehabilitative regimen. Here, a total of 10 sessions will be conducted using a cross-over design using real and sham tACS. Analysis The perception and fatigue from stimulation will be investigated as the primary outcomes. The efficacy of improving sensorimotor function and their background physiological mechanisms will be evaluated as the secondary outcomes. Discussion This phase I/II trial will be the first to combine tACS and neurorehabilitation using functional electrical stimulation. A weekly outpatient protocol with cheap devices may offer a new treatment paradigm toward functional recovery for chronic stroke patients with severe upper extremity paresis. Ethics and trial registration This study was approved by the Ethics Committee of Kyorin University Faculty of Medicine (814-01). The trial was registered in a public database: UMIN000048274.
Collapse
Affiliation(s)
- Syoichi Tashiro
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 35 Shinano-machi, Mitaka, Shinjuku, Tokyo 1608582, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Mitsuaki Takemi
- Department of Biosciences and Informatics, Keio University School of Fundamental Science and Technology, Yokohama, Kanagawa, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
5
|
Chiu YT, Liang CC, Yu Cheng H, Lin CH, Chen JC. Alternating Hot-Cold Water Immersion Facilitates Motor Function Recovery in the Paretic Upper Limb After Stroke: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil 2024; 105:1642-1648. [PMID: 38734047 DOI: 10.1016/j.apmr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To assess the effectiveness of alternating hot-cold water immersion (AHCWI) in patients with acute stroke. DESIGN A single-blind pilot randomized controlled trial. SETTING Department of Rehabilitation Medicine of a medical center. PARTICIPANTS Early stroke survivors (N=24) with moderate-to-severe arm paresis. INTERVENTIONS In addition to conventional rehabilitation, eligible patients were randomly assigned to an AHCWI group (n=12, for AHCWI) or a control group (n=12, for upper limb [UL] cycling exercises) 5 times per week for 6 weeks. MAIN OUTCOME MEASURES The Fugl-Meyer Assessment motor-UL (FMA-UL) score, Motricity Index-UL (MI-UL) score, modified Motor Assessment Scale (MMAS; including its UL sections, MMAS-UL) score, Berg Balance Scale score, Barthel Index (BI), and modified Ashworth Scale score were assessed by the same uninvolved physical therapist at baseline and after 4 and 6 weeks of intervention. RESULTS Compared with the control group, the AHCWI group performed better, with significant group effects (P<.05), and exhibited significant improvements in FMA-UL, MI-UL, and MMAS-UL scores at 4 and 6 weeks (P<.05). Although the remaining outcomes were not significantly different, they favored the AHCWI group. Notably, a significant difference was observed in the BI at 4 weeks (P=.032). Significant changes in the muscle tone or adverse effects were not observed in either group after the intervention. CONCLUSIONS AHCWI with stroke rehabilitation is feasible and may facilitate motor function recovery of the paretic UL after a stroke.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung- Yu Cheng
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsiang Lin
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ching Chen
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Tacca N, Dunlap C, Donegan SP, Hardin JO, Meyers E, Darrow MJ, Colachis Iv S, Gillman A, Friedenberg DA. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation. Sci Rep 2024; 14:18564. [PMID: 39122791 PMCID: PMC11316006 DOI: 10.1038/s41598-024-64458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/12/2024] Open
Abstract
High-density electromyography (HD-EMG) can provide a natural interface to enhance human-computer interaction (HCI). This study aims to demonstrate the capability of a novel HD-EMG forearm sleeve equipped with up to 150 electrodes to capture high-resolution muscle activity, decode complex hand gestures, and estimate continuous hand position via joint angle predictions. Ten able-bodied participants performed 37 hand movements and grasps while EMG was recorded using the HD-EMG sleeve. Simultaneously, an 18-sensor motion capture glove calculated 23 joint angles from the hand and fingers across all movements for training regression models. For classifying across the 37 gestures, our decoding algorithm was able to differentiate between sequential movements with 97.3 ± 0.3 % accuracy calculated on a 100 ms bin-by-bin basis. In a separate mixed dataset consisting of 19 movements randomly interspersed, decoding performance achieved an average bin-wise accuracy of 92.8 ± 0.8 % . When evaluating decoders for use in real-time scenarios, we found that decoders can reliably decode both movements and movement transitions, achieving an average accuracy of 93.3 ± 0.9 % on the sequential set and 88.5 ± 0.9 % on the mixed set. Furthermore, we estimated continuous joint angles from the EMG sleeve data, achieving a R 2 of 0.884 ± 0.003 in the sequential set and 0.750 ± 0.008 in the mixed set. Median absolute error (MAE) was kept below 10° across all joints, with a grand average MAE of 1.8 ± 0 . 04 ∘ and 3.4 ± 0 . 07 ∘ for the sequential and mixed datasets, respectively. We also assessed two algorithm modifications to address specific challenges for EMG-driven HCI applications. To minimize decoder latency, we used a method that accounts for reaction time by dynamically shifting cue labels in time. To reduce training requirements, we show that pretraining models with historical data provided an increase in decoding performance compared with models that were not pretrained when reducing the in-session training data to only one attempt of each movement. The HD-EMG sleeve, combined with sophisticated machine learning algorithms, can be a powerful tool for hand gesture recognition and joint angle estimation. This technology holds significant promise for applications in HCI, such as prosthetics, assistive technology, rehabilitation, and human-robot collaboration.
Collapse
Affiliation(s)
- Nicholas Tacca
- Battelle Memorial Institute, Neurotechnology, Columbus, OH, USA.
| | - Collin Dunlap
- Battelle Memorial Institute, Neurotechnology, Columbus, OH, USA
| | - Sean P Donegan
- Air Force Research Laboratory, Materials And Manufacturing Directorate, Wright-Patterson AFB, OH, USA
| | - James O Hardin
- Air Force Research Laboratory, Materials And Manufacturing Directorate, Wright-Patterson AFB, OH, USA
| | - Eric Meyers
- Battelle Memorial Institute, Neurotechnology, Columbus, OH, USA
| | | | | | - Andrew Gillman
- Air Force Research Laboratory, Materials And Manufacturing Directorate, Wright-Patterson AFB, OH, USA
| | | |
Collapse
|
7
|
Bateman EA, Pripotnev S, Larocerie-Salgado J, Ross DC, Miller TA. Assessment, management, and rehabilitation of traumatic peripheral nerve injuries for non-surgeons. Muscle Nerve 2024. [PMID: 39030747 DOI: 10.1002/mus.28185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Electrodiagnostic evaluation is often requested for persons with peripheral nerve injuries and plays an important role in their diagnosis, prognosis, and management. Peripheral nerve injuries are common and can have devastating effects on patients' physical, psychological, and socioeconomic well-being; alongside surgeons, electrodiagnostic medicine specialists serve a central function in ensuring patients receive optimal treatment for these injuries. Surgical intervention-nerve grafting, nerve transfers, and tendon transfers-often plays a critical role in the management of these injuries and the restoration of patients' function. Increasingly, nerve transfers are becoming the standard of care for some types of peripheral nerve injury due to two significant advantages: first, they shorten the time to reinnervation of denervated muscles; and second, they confer greater specificity in directing motor and sensory axons toward their respective targets. As the indications for, and use of, nerve transfers expand, so too does the role of the electrodiagnostic medicine specialist in establishing or confirming the diagnosis, determining the injury's prognosis, recommending treatment, aiding in surgical planning, and supporting rehabilitation. Having a working knowledge of nerve and/or tendon transfer options allows the electrodiagnostic medicine specialist to not only arrive at the diagnosis and prognosticate, but also to clarify which nerves and/or muscles might be suitable donors, such as confirming whether the branch to supinator could be a nerve transfer donor to restore distal posterior interosseous nerve function. Moreover, post-operative testing can determine if nerve transfer reinnervation is occurring and progress patients' rehabilitation and/or direct surgeons to consider tendon transfers.
Collapse
Affiliation(s)
- Emma A Bateman
- Parkwood Institute, St Joseph's Health Care London, London, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Stahs Pripotnev
- Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care London, London, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | | | - Douglas C Ross
- Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care London, London, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Thomas A Miller
- Parkwood Institute, St Joseph's Health Care London, London, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
8
|
Matys-Popielska K, Popielski K, Sibilska-Mroziewicz A. Study of the Possibility of Using Virtual Reality Application in Rehabilitation among Elderly Post-Stroke Patients. SENSORS (BASEL, SWITZERLAND) 2024; 24:2745. [PMID: 38732851 PMCID: PMC11086137 DOI: 10.3390/s24092745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Thanks to medical advances, life expectancy is increasing. With it comes an increased incidence of diseases, of which age is a risk factor. Stroke is among these diseases, and is one of the causes of long-term disability. The opportunity to treat these patients is via rehabilitation. A promising new technology that can enhance rehabilitation is virtual reality (VR). However, this technology is not widely used by elderly patients, and, moreover, the elderly often do not use modern technology at all. It therefore becomes a legitimate question whether elderly people will be able to use virtual reality in rehabilitation. This article presents a rehabilitation application dedicated to patients with upper limb paresis and unilateral spatial neglect (USN). The application was tested on a group of 60 individuals including 30 post-stroke patients with an average age of 72.83 years. The results of the conducted study include a self-assessment by the patients, the physiotherapist's evaluation, as well as the patients' performance of the exercise in VR. The study showed that elderly post-stroke patients are able to use virtual reality applications, but the ability to correctly and fully perform an exercise in VR depends on several factors. One of them is the ability to make logical contact (p = 0.0001 < 0.05). However, the study presented here shows that the ability to use VR applications does not depend on age but on mental and physical condition, which gives hope that virtual reality applications can be used in post-stroke rehabilitation among patients of all ages.
Collapse
Affiliation(s)
- Katarzyna Matys-Popielska
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 02-525 Warsaw, Poland;
| | - Krzysztof Popielski
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 02-525 Warsaw, Poland;
| | - Anna Sibilska-Mroziewicz
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 02-525 Warsaw, Poland;
| |
Collapse
|
9
|
Maeda H, Hishikawa N, Sawada K, Sakurai M, Ohashi S, Mikami Y. Wearable Integrated Volitional Control Electrical Stimulation Device as Treatment for Paresis of the Upper Extremity in Early Subacute Stroke Patients: A Randomized Controlled Non-inferiority Trial. Arch Phys Med Rehabil 2024; 105:227-234. [PMID: 37714508 DOI: 10.1016/j.apmr.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To investigate the effect of a wearable integrated volitional control electrical stimulation (WIVES) device that has been developed as more compact and simpler to use in daily life compared with conventional integrated volitional control electrical stimulation (IVES) devices. DESIGN Randomized controlled non-inferiority trial. SETTING Convalescent rehabilitation ward. PARTICIPANTS Patients with paresis of the upper extremity (UE) after early subacute stroke (N=20). INTERVENTIONS Eligible patients were randomized to receive IVES treatment or WIVES treatment for 8 hours per day for 28 days in daily living, in addition to standard rehabilitation treatment. In both groups, the extensor digitorum communis on the affected side was the target muscle for stimulation. MAIN OUTCOME MEASURE Primary outcomes were assessed with Fugl-Meyer Assessment of the UE (FMA-UE) before and after treatment. Non-inferiority was determined with a specified margin of non-inferiority. RESULTS Twenty patients completed the trial (IVES group: n=10, WIVES group: n=10). FMA-UE improved in both groups. The mean change in FMA-UE was 4.7 for the IVES group and 6.0 for the WIVES group (P>.05, 95% confidence interval: -6.73 to 4.13). The mean difference between the groups was 1.3, and the upper 95% confidence interval did not exceed the non-inferiority margin. CONCLUSION The effectiveness of WIVES treatment is non-inferior to that of IVES treatment. As a portable device, IVES may facilitate the use of affected upper extremities in daily living and may help improve paresis of the UE.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Rehabilitation, Gakusai Hospital, Kyoto Interdisciplinary Institute of Community Medicine, Kyoto, Japan
| | - Norikazu Hishikawa
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Koshiro Sawada
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Development of Multidisciplinary Promote for Physical Activity, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Momoko Sakurai
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Rehabilitation, Gakusai Hospital, Kyoto Interdisciplinary Institute of Community Medicine, Kyoto, Japan
| | - Suzuyo Ohashi
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, Lansberg M, Poon A, Meador KJ. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol 2023; 14:1272992. [PMID: 38145118 PMCID: PMC10739305 DOI: 10.3389/fneur.2023.1272992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Stroke is one of the most common neurological conditions that often leads to upper limb motor impairments, significantly affecting individuals' quality of life. Rehabilitation strategies are crucial in facilitating post-stroke recovery and improving functional independence. Functional Electrical Stimulation (FES) systems have emerged as promising upper limb rehabilitation tools, offering innovative neuromuscular reeducation approaches. Objective The main objective of this paper is to provide a comprehensive systematic review of the start-of-the-art functional electrical stimulation (FES) systems for upper limb neurorehabilitation in post-stroke therapy. More specifically, this paper aims to review different types of FES systems, their feasibility testing, or randomized control trials (RCT) studies. Methods The FES systems classification is based on the involvement of patient feedback within the FES control, which mainly includes "Open-Loop FES Systems" (manually controlled) and "Closed-Loop FES Systems" (brain-computer interface-BCI and electromyography-EMG controlled). Thus, valuable insights are presented into the technological advantages and effectiveness of Manual FES, EEG-FES, and EMG-FES systems. Results and discussion The review analyzed 25 studies and found that the use of FES-based rehabilitation systems resulted in favorable outcomes for the stroke recovery of upper limb functional movements, as measured by the FMA (Fugl-Meyer Assessment) (Manually controlled FES: mean difference = 5.6, 95% CI (3.77, 7.5), P < 0.001; BCI-controlled FES: mean difference = 5.37, 95% CI (4.2, 6.6), P < 0.001; EMG-controlled FES: mean difference = 14.14, 95% CI (11.72, 16.6), P < 0.001) and ARAT (Action Research Arm Test) (EMG-controlled FES: mean difference = 11.9, 95% CI (8.8, 14.9), P < 0.001) scores. Furthermore, the shortcomings, clinical considerations, comparison to non-FES systems, design improvements, and possible future implications are also discussed for improving stroke rehabilitation systems and advancing post-stroke recovery. Thus, summarizing the existing literature, this review paper can help researchers identify areas for further investigation. This can lead to formulating research questions and developing new studies aimed at improving FES systems and their outcomes in upper limb rehabilitation.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hoda Fares
- Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Hemant Ghayvat
- Department of Computer Science, Linnaeus University, Växjö, Sweden
| | | | | | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| | - Kimford Jay Meador
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
11
|
Bateman EA, Larocerie-Salgado J, Ross DC, Miller TA, Pripotnev S. Assessment, patient selection, and rehabilitation of nerve transfers. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1267433. [PMID: 38058570 PMCID: PMC10696649 DOI: 10.3389/fresc.2023.1267433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Peripheral nerve injuries are common and can have a devastating effect on physical, psychological, and socioeconomic wellbeing. Peripheral nerve transfers have become the standard of care for many types of peripheral nerve injury due to their superior outcomes relative to conventional techniques. As the indications for, and use of, nerve transfers expand, the importance of pre-operative assessment and post-operative optimization increases. There are two principal advantages of nerve transfers: (1) their ability to shorten the time to reinnervation of muscles undergoing denervation because of peripheral nerve injury; and (2) their specificity in ensuring proximal motor and sensory axons are directed towards appropriate motor and sensory targets. Compared to conventional nerve grafting, nerve transfers offer opportunities to reinnervate muscles affected by cervical spinal cord injury and to augment natural reinnervation potential for very proximal injuries. This article provides a narrative review of the current scientific knowledge and clinical understanding of nerve transfers including peripheral nerve injury assessment and pre- and post-operative electrodiagnostic testing, adjuvant therapies, and post-operative rehabilitation for optimizing nerve transfer outcomes.
Collapse
Affiliation(s)
- Emma A. Bateman
- Department of Physical Medicine & Rehabilitation, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Parkwood Institute, St Joseph’s Health Care London, London, ON, Canada
| | | | - Douglas C. Ross
- Roth McFarlane Hand & Upper Limb Centre, St Joseph’s Health Care London, London, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Thomas A. Miller
- Department of Physical Medicine & Rehabilitation, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Parkwood Institute, St Joseph’s Health Care London, London, ON, Canada
| | - Stahs Pripotnev
- Roth McFarlane Hand & Upper Limb Centre, St Joseph’s Health Care London, London, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
12
|
Heredia-Callejón A, García-Pérez P, Armenta-Peinado JA, Infantes-Rosales MÁ, Rodríguez-Martínez MC. Influence of the Therapeutic Alliance on the Rehabilitation of Stroke: A Systematic Review of Qualitative Studies. J Clin Med 2023; 12:4266. [PMID: 37445301 DOI: 10.3390/jcm12134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The therapeutic alliance is a fundamental component of rehabilitation in order to achieve effective outcomes. However, what develops, maintains or hinders this relationship has not been sufficiently explored. The aim of this systematic review is to recognize the role of the therapeutic alliance in the neurological rehabilitation process. A search for articles was carried out in the databases PubMed, Web of Science, SCOPUS, CINAHL, APA PsycInfo, OTseeker and Dialnet. They were selected according to the eligibility criteria. Internal quality assessment of the articles was measured with the Consolidated Criteria for Reporting Qualitative Research (COREQ). The systematic review was registered in PROSPERO (ID 346523). The search in the databases identified 1596 articles, from which 9 different studies were finally included in the systematic review, reflecting the limitations of studies in this field. All studies are qualitative, from the point of view of the patients themselves, their relatives and healthcare professionals. The total sample of the included studies is 182 participants (96 health professionals, 76 users and 10 relatives). Semi-structured interviews, focus group discussions and written reflections were mainly used to collect the data. In conclusion, the therapeutic alliance can be an active component in the post-stroke rehabilitation process. Being recognized as a person, collaboration with the therapeutic team, empathy, empowerment, confidence, professional skills, maintenance of hope and the role of the family have been identified as aspects that can have an influence on the therapeutic alliance.
Collapse
Affiliation(s)
| | - Patricia García-Pérez
- Occupational Therapy Department, Hospital Marítimo, Servicio Andaluz de Salud (SAS), 29620 Malaga, Spain
| | - Juan Antonio Armenta-Peinado
- Department of Physiotherapy, Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
- Biomedical Research Institute (IBIMA), 29590 Malaga, Spain
| | - Miguel Ángel Infantes-Rosales
- Department of Physiotherapy, Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
- Biomedical Research Institute (IBIMA), 29590 Malaga, Spain
| | - María Carmen Rodríguez-Martínez
- Department of Physiotherapy, Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
- Biomedical Research Institute (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
13
|
Höhler C, Wild L, de Crignis A, Jahn K, Krewer C. Contralaterally EMG-triggered functional electrical stimulation during serious gaming for upper limb stroke rehabilitation: a feasibility study. Front Neurorobot 2023; 17:1168322. [PMID: 37304665 PMCID: PMC10248145 DOI: 10.3389/fnbot.2023.1168322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Virtual Reality/serious games (SG) and functional electrical stimulation (FES) therapies are used in upper limb stroke rehabilitation. A combination of both approaches seems to be beneficial for therapy success. The feasibility of a combination of SG and contralaterally EMG-triggered FES (SG+FES) was investigated as well as the characteristics of responders to such a therapy. Materials and methods In a randomized crossover trial, patients performed two gaming conditions: SG alone and SG+FES. Feasibility of the therapy system was assessed using the Intrinsic Motivation Inventory (IMI), the Nasa Task Load Index, and the System Usability Scale (SUS). Gaming parameters, fatigue level and a technical documentation was implemented for further information. Results In total, 18 patients after stroke (62.1 ± 14.1 years) with a unilateral paresis of the upper limb (MRC ≤4) were analyzed in this study. Both conditions were perceived as feasible. Comparing the IMI scores between conditions, perceived competence was significantly increased (z = -2.88, p = 0.004) and pressure/tension during training (z = -2.13, p = 0.034) was decreased during SG+FES. Furthermore, the task load was rated significantly lower for the SG+FES condition (z = -3.14, p = 0.002), especially the physical demand (z = -3.08, p = 0.002), while the performance was rated better (z = -2.59, p = 0.010). Responses to the SUS and the perceived level of fatigue did not differ between conditions (SUS: z = -0.79, p = 0.431; fatigue: z = 1.57, p = 0.115). For patients with mild to moderate impairments (MRC 3-4) the combined therapy provided no or little gaming benefit. The additional use of contralaterally controlled FES (ccFES), however, enabled severely impaired patients (MRC 0-1) to play the SG. Discussion The combination of SG with ccFES is feasible and well-accepted among patients after stroke. It seems that the additional use of ccFES may be more beneficial for severely impaired patients as it enables the execution of the serious game. These findings provide valuable implications for the development of rehabilitation systems by combining different therapeutic interventions to increase patients' benefit and proposes system modifications for home use. Clinical trial registration https://drks.de/search/en, DRKS00025761.
Collapse
Affiliation(s)
- Chiara Höhler
- Faculty of Sport and Health Science, Chair of Human Movement Science, Technical University Munich, Munich, Germany
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Laura Wild
- Faculty of Sport and Health Science, Chair of Human Movement Science, Technical University Munich, Munich, Germany
| | - Alexandra de Crignis
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Klaus Jahn
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Ludwig-Maximilians University of Munich (LMU), German Center for Vertigo and Balance Disorders (DSGZ), Munich, Germany
| | - Carmen Krewer
- Faculty of Sport and Health Science, Chair of Human Movement Science, Technical University Munich, Munich, Germany
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| |
Collapse
|
14
|
Tang J, Luk P, Zhou Y. Wearable and Invisible Sensor Design for Eye-Motion Monitoring Based on Ferrofluid and Electromagnetic Sensing Technologies. Bioengineering (Basel) 2023; 10:bioengineering10050514. [PMID: 37237584 DOI: 10.3390/bioengineering10050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
For many human body diseases, treatments in the early stages are more efficient and safer than those in the later stages; therefore, detecting the early symptoms of a disease is crucial. One of the most significant early indicators for diseases is bio-mechanical motion. This paper provides a unique way of monitoring bio-mechanical eye motion based on electromagnetic sensing technology and a ferro-magnetic material, ferrofluid. The proposed monitoring method has the advantages of being inexpensive, non-invasive, sensor-invisible and extremely effective. Most of the medical devices are cumbersome and bulky, which makes them hard to apply for daily monitoring. However, the proposed eye-motion monitoring method is designed based on ferrofluid eye make-up and invisible sensors embedded inside the frame of glasses such that the system is wearable for daily monitoring. In addition, it has no influence on the appearance of the patient, which is beneficial for the mental health of some patients who do not want to attract public attention during treatment. The sensor responses are modelled using finite element simulation models, and wearable sensor systems are created. The designed frame of the glasses is manufactured based on 3-D printing technology. Experiments are conducted to monitor eye bio-mechanical motions, such as the frequency of eye blinking. Both the quick blinking behaviour with an overall frequency of around 1.1 Hz and the slow blinking behaviour with an overall frequency of around 0.4 Hz can be observed through experimentation. Simulations and measurements results show that the proposed sensor design can be employed for bio-mechanical eye-motion monitoring. In addition, the proposed system has the advantages of invisible sensor set-up and will not affect the appearance of the patient, which is not only convenient for the daily life of the patient but also beneficial for mental health.
Collapse
Affiliation(s)
- Jiawei Tang
- Electric Power and Devices Group, Cranfield University, Cranfield MK43 0AL, UK
| | - Patrick Luk
- Electric Power and Devices Group, Cranfield University, Cranfield MK43 0AL, UK
| | - Yuyang Zhou
- School of Computing Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| |
Collapse
|
15
|
Mitsopoulos K, Fiska V, Tagaras K, Papias A, Antoniou P, Nizamis K, Kasimis K, Sarra PD, Mylopoulou D, Savvidis T, Praftsiotis A, Arvanitidis A, Lyssas G, Chasapis K, Moraitopoulos A, Astaras A, Bamidis PD, Athanasiou A. NeuroSuitUp: System Architecture and Validation of a Motor Rehabilitation Wearable Robotics and Serious Game Platform. SENSORS (BASEL, SWITZERLAND) 2023; 23:3281. [PMID: 36991992 PMCID: PMC10053382 DOI: 10.3390/s23063281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND This article presents the system architecture and validation of the NeuroSuitUp body-machine interface (BMI). The platform consists of wearable robotics jacket and gloves in combination with a serious game application for self-paced neurorehabilitation in spinal cord injury and chronic stroke. METHODS The wearable robotics implement a sensor layer, to approximate kinematic chain segment orientation, and an actuation layer. Sensors consist of commercial magnetic, angular rate and gravity (MARG), surface electromyography (sEMG), and flex sensors, while actuation is achieved through electrical muscle stimulation (EMS) and pneumatic actuators. On-board electronics connect to a Robot Operating System environment-based parser/controller and to a Unity-based live avatar representation game. BMI subsystems validation was performed using exercises through a Stereoscopic camera Computer Vision approach for the jacket and through multiple grip activities for the glove. Ten healthy subjects participated in system validation trials, performing three arm and three hand exercises (each 10 motor task trials) and completing user experience questionnaires. RESULTS Acceptable correlation was observed in 23/30 arm exercises performed with the jacket. No significant differences in glove sensor data during actuation state were observed. No difficulty to use, discomfort, or negative robotics perception were reported. CONCLUSIONS Subsequent design improvements will implement additional absolute orientation sensors, MARG/EMG based biofeedback to the game, improved immersion through Augmented Reality and improvements towards system robustness.
Collapse
Affiliation(s)
- Konstantinos Mitsopoulos
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Fiska
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tagaras
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Papias
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Antoniou
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Nizamis
- Department of Design, Production and Management, University of Twente, 7522 NB Enschede, The Netherlands
| | - Konstantinos Kasimis
- Department of Physiotherapy, International Hellenic University, 57400 Thessaloniki, Greece
| | - Paschalina-Danai Sarra
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Diamanto Mylopoulou
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodore Savvidis
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Apostolos Praftsiotis
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Arvanitidis
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Lyssas
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Chasapis
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Moraitopoulos
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexander Astaras
- Department of Computer Science, American College of Thessaloniki, 55535 Thessaloniki, Greece
| | - Panagiotis D. Bamidis
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alkinoos Athanasiou
- Medical Physics & Digital Innovation Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Nishida D, Mizuno K, Takahashi O, Liu M, Tsuji T. Electrically Induced Sensory Trick in a Patient with Musician's Dystonia: A Case Report. Brain Sci 2023; 13:brainsci13020223. [PMID: 36831766 PMCID: PMC9954457 DOI: 10.3390/brainsci13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A sensory trick is a specific maneuver that temporarily improves focal dystonia. We describe a case of musician's dystonia in the right-hand fingers of a patient, who showed good and immediate improvement after using an electrical stimulation-mimicking sensory trick. A 49-year-old professional guitarist presented with chronic involuntary flexion of the right-hand third and fourth fingers that occurred during guitar performances. Electrical stimulation with a frequency of 40 Hz and an intensity of 1.5 times the sensory threshold was administered on the third and fourth fingernails of the right hand, which facilitated fluent guitar playing. While he played guitar with and without electrical stimulation, we measured the surface electromyograms (sEMG) of the right extensor digitorum and flexor digitorum superficialis muscles to evaluate the sensory-trick-like effects of electrical stimulation. This phenomenon can offer clues for developing electrical stimulation-based treatment devices for focal dystonia. Electrical stimulation has the advantage that it can be turned off to avoid habituation. Moreover, the device is easy to use and portable. These findings warrant further investigation into the use of sensory stimulation for treating focal dystonia.
Collapse
Affiliation(s)
- Daisuke Nishida
- Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-463-95-1121
| | - Osamu Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
Zanona ADF, Piscitelli D, Seixas VM, Scipioni KRDDS, Bastos MSC, de Sá LCK, Monte-Silva K, Bolivar M, Solnik S, De Souza RF. Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke. Front Neurol 2023; 13:1041978. [PMID: 36698872 PMCID: PMC9869053 DOI: 10.3389/fneur.2022.1041978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background We investigated the effects of brain-computer interface (BCI) combined with mental practice (MP) and occupational therapy (OT) on performance in activities of daily living (ADL) in stroke survivors. Methods Participants were randomized into two groups: experimental (n = 23, BCI controlling a hand exoskeleton combined with MP and OT) and control (n = 21, OT). Subjects were assessed with the functional independence measure (FIM), motor activity log (MAL), amount of use (MAL-AOM), and quality of movement (MAL-QOM). The box and blocks test (BBT) and the Jebsen hand functional test (JHFT) were used for the primary outcome of performance in ADL, while the Fugl-Meyer Assessment was used for the secondary outcome. Exoskeleton activation and the degree of motor imagery (measured as event-related desynchronization) were assessed in the experimental group. For the BCI, the EEG electrodes were placed on the regions of FC3, C3, CP3, FC4, C4, and CP4, according to the international 10-20 EEG system. The exoskeleton was placed on the affected hand. MP was based on functional tasks. OT consisted of ADL training, muscle mobilization, reaching tasks, manipulation and prehension, mirror therapy, and high-frequency therapeutic vibration. The protocol lasted 1 h, five times a week, for 2 weeks. Results There was a difference between baseline and post-intervention analysis for the experimental group in all evaluations: FIM (p = 0.001, d = 0.56), MAL-AOM (p = 0.001, d = 0.83), MAL-QOM (p = 0.006, d = 0.84), BBT (p = 0.004, d = 0.40), and JHFT (p = 0.001, d = 0.45). Within the experimental group, post-intervention improvements were detected in the degree of motor imagery (p < 0.001) and the amount of exoskeleton activations (p < 0.001). For the control group, differences were detected for MAL-AOM (p = 0.001, d = 0.72), MAL-QOM (p = 0.013, d = 0.50), and BBT (p = 0.005, d = 0.23). Notably, the effect sizes were larger for the experimental group. No differences were detected between groups at post-intervention. Conclusion BCI combined with MP and OT is a promising tool for promoting sensorimotor recovery of the upper limb and functional independence in subacute post-stroke survivors.
Collapse
Affiliation(s)
- Aristela de Freitas Zanona
- Department of Occupational Therapy and Graduate Program in Applied Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,*Correspondence: Aristela de Freitas Zanona ✉
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Valquiria Martins Seixas
- Department of Occupational Therapy and Graduate Program in Applied Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - Kátia Monte-Silva
- Department of Physical Therapy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Miburge Bolivar
- Department of Occupational Therapy and Graduate Program in Applied Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Stanislaw Solnik
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, United States,Department of Physical Education, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Raphael Fabricio De Souza
- Department of Occupational Therapy and Graduate Program in Applied Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
18
|
Sethi A, Pascual-Leone A, Santarnecchi E, Almalki G, Krishnan C. Transcranial random noise stimulation to augment hand function in individuals with moderate-to-severe stroke: A pilot randomized clinical trial. Restor Neurol Neurosci 2023; 41:193-202. [PMID: 38306067 DOI: 10.3233/rnn-231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Interventions to recover upper extremity (UE) function after moderate-to-severe stroke are limited. Transcranial random noise stimulation (tRNS) is an emerging non-invasive technique to improve neuronal plasticity and may potentially augment functional outcomes when combined with existing interventions, such as functional electrical stimulation (FES). Objective The objective of this study was to investigate the feasibility and preliminary efficacy of combined tRNS and FES-facilitated task practice to improve UE impairment and function after moderate-to-severe stroke. Methods Fourteen individuals with UE weakness were randomized into one of two groups: 1) tRNS with FES-facilitated task practice, or 2) sham-tRNS with FES-facilitated task practice. Both groups involved 18 intervention sessions (3 per week for 6 weeks). tRNS was delivered at 2 mA current between 100-500 Hz for the first 30 minutes of FES-facilitated task practice. We evaluated the number of sessions completed, adverse effects, participant satisfaction, and intervention fidelity between the two therapists. UE impairment (Fugl-Meyer Upper Extremity, FMUE), function (Wolf Motor Function Test, WMFT), participation (Stroke Impact Scale hand score, SIS-H), and grip strength were assessed at baseline, within 1 week and 3 months after completing the intervention. Results All participants completed the 18 intervention sessions. Participants reported minimal adverse effects (mild tingling in head). The two trained therapists demonstrated 93% adherence and 96% competency with the intervention protocol. FMUE and SIS-H improved significantly more in the tRNS group than in the sham-tRNS group at both timepoints (p≤0.05), and the differences observed exceeded the clinically meaningful differences for these scores. The WMFT and paretic hand grip strength improved in both groups after the intervention (p≤0.05), with no significant between group differences. Conclusion Our findings show for the first time that combining tRNS and FES-facilitated task practice is a feasible and promising approach to improve UE impairment and function after moderate-to-severe stroke.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School Boston, MA, USA
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghaleb Almalki
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Director of NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Department of Physical Therapy, University of Michigan, Flint, MI, USA
| |
Collapse
|
19
|
Barbosa WS, Gioia MM, Temporão GP, Meggiolaro MA, Gouvea FC. Impact of multi-lattice inner structures on FDM PLA 3D printed orthosis using Industry 4.0 concepts. INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING (IJIDEM) 2023; 17:371-383. [PMCID: PMC9884601 DOI: 10.1007/s12008-022-00962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/12/2022] [Indexed: 12/21/2024]
Abstract
The use of digital manufacturing for the construction of orthosis and prostheses has become common since the popularization of 3D printers and the advent of Industry 4.0. Furthermore, due to the fact that the manufacture of orthosis is interactive and for personal use, generic production is difficult. In this sense, the large-scale production of these products lacks of improvements, standardization of processes and production optimization. An aggravation of this is the recent social distance due to the COVID-19 pandemic, which makes the use of temporary orthosis made in 3D printers to have a recent growth. Parallel to this, the use of multi-lattice inner structures for internal structuring of prints has also been increasing and taking on a more consolidated form. This article aims to present the multi-lattice optimization as a solution to this problem, in order to reduce material waste while maintaining the mechanical behavior of printed parts.
Collapse
Affiliation(s)
| | - Mariana M. Gioia
- Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
20
|
Barelli RG, Avelino VF, Castro MCF. STIMGRASP: A Home-Based Functional Electrical Stimulator for Grasp Restoration in Daily Activities. SENSORS (BASEL, SWITZERLAND) 2022; 23:10. [PMID: 36616607 PMCID: PMC9824213 DOI: 10.3390/s23010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Thousands of people currently suffer from motor limitations caused by SCI and strokes, which impose personal and social challenges. These individuals may have a satisfactory recovery by applying functional electrical stimulation that enables the artificial restoration of grasping after a muscular conditioning period. This paper presents the STIMGRASP, a home-based functional electrical stimulator to be used as an assistive technology for users with tetraplegia or hemiplegia. The STIMGRASP is a microcontrolled stimulator with eight multiplexed and independent symmetric biphasic constant current output channels with USB and Bluetooth communication. The system generates pulses with frequency, width, and maximum amplitude set at 20 Hz, 300 µs/phase, and 40 mA (load of 1 kΩ), respectively. It is powered by a rechargeable lithium-ion battery of 3100 mAh, allowing more than 10 h of continuous use. The development of this system focused on portability, usability, and wearability, resulting in portable hardware with user-friendly mobile app control and an orthosis with electrodes, allowing the user to carry out muscle activation sequences for four grasp modes to use for achieving daily activities.
Collapse
|
21
|
Seo NJ, Barry A, Ghassemi M, Triandafilou KM, Stoykov ME, Vidakovic L, Roth E, Kamper DG. Use of an EMG-Controlled Game as a Therapeutic Tool to Retrain Hand Muscle Activation Patterns Following Stroke: A Pilot Study. J Neurol Phys Ther 2022; 46:198-205. [PMID: 35320135 PMCID: PMC9232857 DOI: 10.1097/npt.0000000000000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND/PURPOSE To determine the feasibility of training with electromyographically (EMG) controlled games to improve control of muscle activation patterns in stroke survivors. METHODS Twenty chronic stroke survivors (>6 months) with moderate hand impairment were randomized to train either unilaterally (paretic only) or bilaterally over 9 one-hour training sessions. EMG signals from the unilateral or bilateral limbs controlled a cursor location on a computer screen for gameplay. The EMG muscle activation vector was projected onto the plane defined by the first 2 principal components of the activation workspace for the nonparetic hand. These principal components formed the x- and y-axes of the computer screen. RESULTS The recruitment goal (n = 20) was met over 9 months, with no screen failure, no attrition, and 97.8% adherence rate. After training, both groups significantly decreased the time to move the cursor to a novel sequence of targets (P = 0.006) by reducing normalized path length of the cursor movement (P = 0.005), and improved the Wolf Motor Function Test (WMFT) quality score (P = 0.01). No significant group difference was observed. No significant change was seen in the WMFT time or Box and Block Test. DISCUSSION/CONCLUSIONS Stroke survivors could successfully use the EMG-controlled games to train control of muscle activation patterns. While the nonparetic limb EMG was used in this study to create target EMG patterns, the system supports various means for creating target patterns per user desires. Future studies will employ training with the EMG-controlled games in conjunction with functional task practice for a longer intervention duration to improve overall hand function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A379).
Collapse
Affiliation(s)
- Na Jin Seo
- Departments of Rehabilitation Sciences and Health Science and Research, Medical University of South Carolina, Charleston, and Ralph H. Johnson VA Medical Center, Charleston, South Carolina (N.J.S.); Shirley Ryan AbilityLab, Chicago, Illinois (A.B., K.M.T., M.E.S., L.V. E.R.); Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina at Chapel Hill, Raleigh, Chapel Hill (M.G., D.G.K); and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois (M.E.S., L.V., E.R.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Q, Jia G, Jia L, Wang Y, Jiang W, Feng Y, Jiang H, Yu L, Yu J, Tan B. Effects of Electromyography Bridge on Upper Limb Motor Functions in Stroke Participants: An Exploratory Randomized Controlled Trial. Brain Sci 2022; 12:brainsci12070870. [PMID: 35884677 PMCID: PMC9312916 DOI: 10.3390/brainsci12070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The electromyography bridge (EMGB) plays an important role in promoting the recovery of wrist joint function in stroke patients. We investigated the effects of the EMGB on promoting the recovery of upper limb function in hemiplegia. Twenty-four stroke patients with wrist dorsal extension dysfunction were recruited. Participants were randomized to undergo EMGB treatment or neuromuscular electrical stimulation (NMES). Treatments to wrist extensors were conducted for 25 min, twice a day, 5 days per week, for 1 month. Outcome measures: active range of motion (AROM) of wrist dorsal extension; Fugl-Meyer assessment for upper extremity (FMA-UE); Barthel index (BI); and muscle strength of wrist extensors. After interventions, patients in the NMES group had significantly greater improvement in the AROM of wrist dorsal extension at the 4th week and 1st month follow-up (p < 0.05). However, patients in the EMGB group had a statistically significant increase in AROM only at the follow-up assessment. No significant differences were observed in the AROM between the EMGB group and the NMES group (p > 0.05). For secondary outcomes in the EMGB group, compared to baseline measurements, FMA-UE, BI, extensor carpi radialis and extensor carpi ulnaris muscle strength were significantly different as early as the 4th week (p < 0.05). The muscle strength of the extensor digitorum communis muscle showed significant differences at the follow-up (p < 0.05). There were no statistically significant differences between patients in the two groups in any of the parameters evaluated (p > 0.05). The combination of EMGB or NMES with conventional treatment had similar effects on the improvement of the hemiplegic upper limb as assessed by wrist dorsal extension, FMA-UE, and activities of daily living. The improvement in both groups was maintained until 1 month after the intervention.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Gongwei Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Lang Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Yule Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Wei Jiang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Yali Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Hang Jiang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
| | - Jing Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Correspondence: (J.Y.); (B.T.)
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (Q.Z.); (G.J.); (L.J.); (Y.W.); (W.J.); (Y.F.); (H.J.); (L.Y.)
- Correspondence: (J.Y.); (B.T.)
| |
Collapse
|
23
|
Tosatto D, Bonacina D, Signori A, Pellicciari L, Cecchi F, Cornaggia CM, Piscitelli D. Spin of information and inconsistency between abstract and full text in RCTs investigating upper limb rehabilitation after stroke: An overview study. Restor Neurol Neurosci 2022; 40:195-207. [PMID: 35723125 DOI: 10.3233/rnn-211247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Researchers may be tempted to favorably distort the interpretation of their findings when reporting the abstract (i.e., spin). Spin bias overemphasizes the beneficial effects of the intervention compared with the results shown in the full text. OBJECTIVE To assess the occurrence of spin bias and incompleteness in reporting abstracts in post-stroke upper limb (UL) rehabilitation randomized clinical trials (RCTs). METHODS A sample of 120 post-stroke UL rehabilitation RCTs (indexed in PEDro database), published in English between 2012 and 2020, was included. The completeness of reporting and spin were assessed using the Consolidated Standards of Reporting Trials for Abstracts (CONSORT-A) and the spin checklist. The relationship between CONSORT-A and spin checklist scores with RCT and journal characteristics was assessed. RESULTS CONSORT-A and spin checklist scored 5.3±2.4 (max 15-points, higher scores indicating better reporting) and 5.5±2.0 (max 7-points, higher scores indicating presence of spin), respectively; Significant differences were detected between abstract and full-text scores in the CONSORT-A checklist (p < 0.01) and the spin checklist (p < 0.01). Items of the CONSORT-A checklist in the abstracts and full text showed a fair agreement (k = 0.31), while a moderate agreement (k = 0.59) for the spin checklist was detected. Completeness of abstract was associated (R2 = 0.46) with journal Impact Factor (p < 0.01), CONSORT Guideline endorsement (p = 0.04), and abstract word number (p = 0.02). A lower spin was associated with a higher journal Impact Factor (p = 0.01) and CONSORT Guideline endorsement (p = 0.01). CONCLUSIONS Post-stroke UL rehabilitation RCTs abstracts were largely incomplete showing spin. Authors, reviewers, publishers, and stakeholders should be aware of this phenomenon. Publishers should consider allowing more words in abstracts to improve the completeness of reporting abstracts. Although we have investigated only stroke rehabilitation, our results suggest that health care professionals of all disciplines should avoid clinical decision-making based solely upon abstracts.
Collapse
Affiliation(s)
- Diego Tosatto
- Istituti Clinici Zucchi - Gruppo San Donato, Carate Brianza (MB), Italy
| | - Daniele Bonacina
- Istituti Clinici Zucchi - Gruppo San Donato, Carate Brianza (MB), Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy.,School of Physical and Occupational Therapy, McGill University, Montreal, Canada.,Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
24
|
Munoz-Novoa M, Kristoffersen MB, Sunnerhagen KS, Naber A, Alt Murphy M, Ortiz-Catalan M. Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2022; 16:897870. [PMID: 35669202 PMCID: PMC9163806 DOI: 10.3389/fnhum.2022.897870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Upper limb impairment is common after stroke, and many will not regain full upper limb function. Different technologies based on surface electromyography (sEMG) have been used in stroke rehabilitation, but there is no collated evidence on the different sEMG-driven interventions and their effect on upper limb function in people with stroke. Aim Synthesize existing evidence and perform a meta-analysis on the effect of different types of sEMG-driven interventions on upper limb function in people with stroke. Methods PubMed, SCOPUS, and PEDro databases were systematically searched for eligible randomized clinical trials that utilize sEMG-driven interventions to improve upper limb function assessed by Fugl-Meyer Assessment (FMA-UE) in stroke. The PEDro scale was used to evaluate the methodological quality and the risk of bias of the included studies. In addition, a meta-analysis utilizing a random effect model was performed for studies comparing sEMG interventions to non-sEMG interventions and for studies comparing different sEMG interventions protocols. Results Twenty-four studies comprising 808 participants were included in this review. The methodological quality was good to fair. The meta-analysis showed no differences in the total effect, assessed by total FMA-UE score, comparing sEMG interventions to non-sEMG interventions (14 studies, 509 participants, SMD 0.14, P 0.37, 95% CI –0.18 to 0.46, I2 55%). Similarly, no difference in the overall effect was found for the meta-analysis comparing different types of sEMG interventions (7 studies, 213 participants, SMD 0.42, P 0.23, 95% CI –0.34 to 1.18, I2 73%). Twenty out of the twenty-four studies, including participants with varying impairment levels at all stages of stroke recovery, reported statistically significant improvements in upper limb function at post-sEMG intervention compared to baseline. Conclusion This review and meta-analysis could not discern the effect of sEMG in comparison to a non-sEMG intervention or the most effective type of sEMG intervention for improving upper limb function in stroke populations. Current evidence suggests that sEMG is a promising tool to further improve functional recovery, but randomized clinical trials with larger sample sizes are needed to verify whether the effect on upper extremity function of a specific sEMG intervention is superior compared to other non-sEMG or other type of sEMG interventions.
Collapse
Affiliation(s)
- Maria Munoz-Novoa
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bionics and Pain Research, Mölndal, Sweden
| | - Morten B Kristoffersen
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Katharina S Sunnerhagen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Section of Neurocare, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Autumn Naber
- Center for Bionics and Pain Research, Mölndal, Sweden
| | - Margit Alt Murphy
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Operational Area 3, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
25
|
Larocerie-Salgado J, Chinchalkar S, Ross DC, Gillis J, Doherty CD, Miller TA. Rehabilitation Following Nerve Transfer Surgery. Tech Hand Up Extrem Surg 2022; 26:71-77. [PMID: 34619740 DOI: 10.1097/bth.0000000000000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nerve transfer surgery is an important new addition to the treatment paradigm following nerve trauma. The following rehabilitation plan has been developed over the past 15 years, in an interdisciplinary, tertiary peripheral nerve program at the "Roth|McFarlane Hand and Upper Limb Centre." This center evaluates more than 400 patients with complex nerve injuries annually and has been routinely using nerve transfers since 2005. The described rehabilitation program includes input from patients, therapists, physiatrists, and surgeons and has evolved based on experience and updated science. The plan is comprised of phases which are practical, reproducible and will serve as a framework to allow other peripheral nerve programs to adapt and improve the "Roth|McFarlane Hand and Upper Limb Centre" paradigm to enhance patient outcomes.
Collapse
Affiliation(s)
- Juliana Larocerie-Salgado
- Roth| McFarlane Hand and Upper Limb Centre and the Peripheral Nerve Clinic, Western University, London, ON
| | - Shrikant Chinchalkar
- Roth| McFarlane Hand and Upper Limb Centre and the Peripheral Nerve Clinic, Western University, London, ON
| | - Douglas C Ross
- Roth| McFarlane Hand and Upper Limb Centre and the Peripheral Nerve Clinic, Western University, London, ON
| | - Joshua Gillis
- Roth| McFarlane Hand and Upper Limb Centre and the Peripheral Nerve Clinic, Western University, London, ON
| | - Christopher D Doherty
- Department of Surgery, Division of Plastic Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas A Miller
- Roth| McFarlane Hand and Upper Limb Centre and the Peripheral Nerve Clinic, Western University, London, ON
| |
Collapse
|
26
|
Efficacy of Four-Channel Functional Electrical Stimulation on Moderate Arm Paresis in Subacute Stroke Patients—Results from a Randomized Controlled Trial. Healthcare (Basel) 2022; 10:healthcare10040704. [PMID: 35455881 PMCID: PMC9028466 DOI: 10.3390/healthcare10040704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
This preliminary randomized clinical trial explores the efficacy of task-oriented electromyography (EMG)-triggered multichannel functional electrical stimulation (EMG-MES) compared to single-channel cyclic neuromuscular electrical stimulation (cNMES) on regaining control of voluntary movements (CVM) and the ability to execute arm-hand-activities in subacute stroke patients with moderate arm paresis. Twelve ischemic stroke patients (Fugl-Meyer Assessment Arm Section (FMA-AS) score: 19–47) with comparable demographics were block-randomized to receive 15 sessions of cNMES or EMG-MES over three weeks additionally to a conventional neurorehabilitation program including task-oriented arm training. FMA-AS, Box-and-Block Test (BBT), and Stroke-Impact-Scale (SIS) were recorded at baseline and follow-up. All participants demonstrated significant improvement in FMA-AS and BBT. Participants treated with EMG-MES had a higher mean gain in FMA-AS than those treated with cNMES. In the SIS daily activities domain, both groups improved non-significantly; participants in the EMG-MES group had higher improvement in arm-hand use and stroke recovery. EMG-MES treatment demonstrated a higher gain of CVM and self-reported daily activities, arm-hand use, and stroke recovery compared to cNMES treatment of the wrist only. The protocol of this proof-of-concept study seems robust enough to be used in a larger trial to confirm these preliminary findings.
Collapse
|
27
|
Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020964. [PMID: 35055785 PMCID: PMC8775942 DOI: 10.3390/ijerph19020964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study was to determine the sustained influence of personalized neuromuscular functional electrical stimulation (NMFES) combined with kinesiotherapy (mainly, proprioceptive neuromuscular facilitation (PNF)) on the activity of muscle motor units acting antagonistically at the wrist and the ankle in a large population of post-stroke patients. Clinical evaluations of spasticity (Ashworth scale), manual muscle testing (Lovett scale), and surface electromyography recordings at rest (rEMG) and during attempts of maximal muscle contraction (mcEMG) were performed three times in 120 post-stroke patients (T0: up to 7 days after the incidence; T1: after 21 days of treatment; T2: after 60 days of treatment). Patients (N = 120) were divided into two subgroups-60 patients received personalized NMFES and PNF treatment (NMFES+K), and the other 60 received only PNF (K). The NMFES+K therapy resulted in a decrease in spasticity and an increase in muscle strength of mainly flexor muscles, in comparison with the K group. A positive correlation between the increase of rEMG amplitudes and high Ashworth scale scores and a positive correlation between low amplitudes of mcEMG and low Lovett scale scores were found in the wrist flexors and calf muscles on the paretic side. Negative correlations were found between the rEMG and mcEMG amplitudes in the recordings. The five-grade alternate activity score of the antagonists' actions improved in the NMFES+K group. These improvements in the results of controlled NMFES treatment combined with PNF in patients having experienced an ischemic stroke, in comparison to the use of kinesiotherapy alone, might justify the application of conjoined rehabilitation procedures based on neurophysiological approaches. Considering the results of clinical and neurophysiological studies, we suppose that NMFES of the antagonistic muscle groups acting at the wrist and the ankle may evoke its positive effects in post-stroke patients by the modulation of the activity more in the spinal motor centers, including the level of Ia inhibitory neurons, than only at the muscular level.
Collapse
|
28
|
Du J, Wang S, Cheng Y, Xu J, Li X, Gan Y, Zhang L, Zhang S, Cui X. Effects of Neuromuscular Electrical Stimulation Combined with Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function Rehabilitation in Stroke Patients with Hemiplegia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9455428. [PMID: 35027944 PMCID: PMC8752218 DOI: 10.1155/2022/9455428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the effect of neuromuscular electrical stimulation (NMES) combined with repetitive transcranial magnetic stimulation (rTMS) on upper limb motor dysfunction in stroke patients with hemiplegia. METHODS A total of 240 stroke patients with hemiplegia who met the inclusion criteria were selected and randomly divided into 4 groups (60 cases in each group): control group, NMES group, rTMS group, and NMES + rTMS group. Before treatment and 4 weeks after treatment, we evaluated and compared the results including Fugl-Meyer assessment of upper extremity (FMA-UE) motor function, modified Barthel index (MBI), modified Ashworth scale (MAS), and motor nerve electrophysiological results among the 4 groups. RESULTS Before treatment, there was no significant difference in the scores of FMA-UE, MBI, MAS, and motor nerve electrophysiological indexes among the four groups, with comparability. Compared with those before treatment, the scores of the four groups were significantly increased and improved after treatment. And the score of the NMES + rTMS group was notably higher than those in the other three groups. CONCLUSION NMES combined with rTMS can conspicuously improve the upper extremity motor function and activities of daily life of stroke patients with hemiplegia, which is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Junqiu Du
- Department of Rehabilitation Medicine, Huai'an Second People's Hospital (The Affiliated Huai'an Hospital of Xuzhou Medical University), Huai'an, Jiangsu 223002, China
| | - Shouyong Wang
- Department of Neurology, Huai'an NO.3 People's Hospital, Huai'an, Jiangsu 223002, China
| | - Yun Cheng
- Department of Rehabilitation Medicine, Huai'an NO.3 People's Hospital, Huai'an, Jiangsu 223002, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Huai'an Second People's Hospital (The Affiliated Huai'an Hospital of Xuzhou Medical University), Huai'an, Jiangsu 223002, China
| | - Xuejing Li
- Department of Rehabilitation Medicine, Huai'an Second People's Hospital (The Affiliated Huai'an Hospital of Xuzhou Medical University), Huai'an, Jiangsu 223002, China
| | - Yimin Gan
- Department of Rehabilitation Medicine, Huai'an Second People's Hospital (The Affiliated Huai'an Hospital of Xuzhou Medical University), Huai'an, Jiangsu 223002, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, Lianshui County People's Hospital (Affiliated Hospital of Kangda College, Nanjing Medical University), Huai'an, Jiangsu 223400, China
| | - Song Zhang
- Department of Rehabilitation Medicine, Lianshui County People's Hospital (Affiliated Hospital of Kangda College, Nanjing Medical University), Huai'an, Jiangsu 223400, China
| | - Xiaorui Cui
- Department of Rehabilitation Medicine, Lianshui County People's Hospital (Affiliated Hospital of Kangda College, Nanjing Medical University), Huai'an, Jiangsu 223400, China
| |
Collapse
|
29
|
Dobkin BH. Rehabilitation and Recovery of the Patient With Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Khan MA, Saibene M, Das R, Brunner IC, Puthusserypady S. Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. J Neural Eng 2021; 18. [PMID: 34736239 DOI: 10.1088/1741-2552/ac36aa] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Stroke is one of the most common neural disorders, which causes physical disabilities and motor impairments among its survivors. Several technologies have been developed for providing stroke rehabilitation and to assist the survivors in performing their daily life activities. Currently, the use of flexible technology (FT) for stroke rehabilitation systems is on a rise that allows the development of more compact and lightweight wearable systems, which stroke survivors can easily use for long-term activities. APPROACH For stroke applications, FT mainly includes the "flexible/stretchable electronics", "e-textile (electronic textile)" and "soft robotics". Thus, a thorough literature review has been performed to report the practical implementation of FT for post-stroke application. MAIN RESULTS In this review, the highlights of the advancement of FT in stroke rehabilitation systems are dealt with. Such systems mainly involve the "biosignal acquisition unit", "rehabilitation devices" and "assistive systems". In terms of biosignals acquisition, electroencephalography (EEG) and electromyography (EMG) are comprehensively described. For rehabilitation/assistive systems, the application of functional electrical stimulation (FES) and robotics units (exoskeleton, orthosis, etc.) have been explained. SIGNIFICANCE This is the first review article that compiles the different studies regarding flexible technology based post-stroke systems. Furthermore, the technological advantages, limitations, and possible future implications are also discussed to help improve and advance the flexible systems for the betterment of the stroke community.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 215, Lyngby, 2800, DENMARK
| | - Matteo Saibene
- Technical University of Denmark, Ørsteds Plads, Building 345C, Lyngby, 2800, DENMARK
| | - Rig Das
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 214, Lyngby, 2800, DENMARK
| | | | | |
Collapse
|
31
|
Palumbo A, Vizza P, Calabrese B, Ielpo N. Biopotential Signal Monitoring Systems in Rehabilitation: A Review. SENSORS 2021; 21:s21217172. [PMID: 34770477 PMCID: PMC8587479 DOI: 10.3390/s21217172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Monitoring physical activity in medical and clinical rehabilitation, in sports environments or as a wellness indicator is helpful to measure, analyze and evaluate physiological parameters involving the correct subject’s movements. Thanks to integrated circuit (IC) technologies, wearable sensors and portable devices have expanded rapidly in monitoring physical activities in sports and tele-rehabilitation. Therefore, sensors and signal acquisition devices became essential in the tele-rehabilitation path to obtain accurate and reliable information by analyzing the acquired physiological signals. In this context, this paper provides a state-of-the-art review of the recent advances in electroencephalogram (EEG), electrocardiogram (ECG) and electromyogram (EMG) signal monitoring systems and sensors that are relevant to the field of tele-rehabilitation and health monitoring. Mostly, we focused our contribution in EMG signals to highlight its importance in rehabilitation context applications. This review focuses on analyzing the implementation of sensors and biomedical applications both in literature than in commerce. Moreover, a final review discussion about the analyzed solutions is also reported at the end of this paper to highlight the advantages of physiological monitoring systems in rehabilitation and individuate future advancements in this direction. The main contributions of this paper are (i) the presentation of interesting works in the biomedical area, mainly focusing on sensors and systems for physical rehabilitation and health monitoring between 2016 and up-to-date, and (ii) the indication of the main types of commercial sensors currently being used for biomedical applications.
Collapse
Affiliation(s)
- Arrigo Palumbo
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| | - Patrizia Vizza
- Mater Domini University Hospital, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Magna Græcia University, 88100 Catanzaro, Italy
- Correspondence:
| | - Barbara Calabrese
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| | - Nicola Ielpo
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| |
Collapse
|
32
|
Blazevich AJ, Collins DF, Millet GY, Vaz MA, Maffiuletti NA. Enhancing Adaptations to Neuromuscular Electrical Stimulation Training Interventions. Exerc Sport Sci Rev 2021; 49:244-252. [PMID: 34107505 PMCID: PMC8460078 DOI: 10.1249/jes.0000000000000264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neuromuscular electrical stimulation (NMES) applied to skeletal muscles is an effective rehabilitation and exercise training modality. However, the relatively low muscle force and rapid muscle fatigue induced by NMES limit the stimulus provided to the neuromuscular system and subsequent adaptations. We hypothesize that adaptations to NMES will be enhanced by the use of specific stimulation protocols and adjuvant interventions.
Collapse
Affiliation(s)
- Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Guillaume Y. Millet
- Université de Lyon, UJM, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne
- Institut Universitaire de France (IUF), Paris, France
| | - Marco A. Vaz
- Laboratório de Pesquisa do Exercício (LAPEX), Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
33
|
Choe YW, Kim MK. Could Self-Control and Emotion Influence Physical Ability and Functional Recovery after Stroke? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1042. [PMID: 34684079 PMCID: PMC8540988 DOI: 10.3390/medicina57101042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: This study was conducted to determine whether self-control and emotions could influence patients' physical ability and functional recovery after stroke. Materials and Methods: Twenty-four patients within eight weeks after a stroke were included in this study (age: 54.04 ± 10.31; days after stroke: 42.66 ± 8.84). The subjects participated in tests at the baseline, four weeks later, and eight weeks later. Subjects were asked to complete the following: (1) self-control level test, (2) positive and negative emotion test, (3) knee muscle strength testing, (4) static balance test, (5) gait measurement, and (6) activities of daily living evaluation. Results: The muscle strength of the knee, static balance, gait ability, and the Functional Independence Measure score increased significantly in the stroke patients over time. A significant correlation was noted between the emotion and physical variables in stroke patients. The self-control level was significantly associated with the change in the physical variables in stroke patients over time. Conclusions: The self-control level was positively related to the increases in functional recovery of stroke patients with time, while the emotions were related more to the physical abilities.
Collapse
Affiliation(s)
- Yu-Won Choe
- Department of Rehabilitation Sciences, Graduate School, Daegu University, Jillyang, Gyeongsan 712-714, Korea;
| | - Myoung-Kwon Kim
- Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University, Jillyang, Gyeongsan 712-714, Korea
| |
Collapse
|
34
|
A randomised clinical trial comparing 35 Hz versus 50 Hz frequency stimulation effects on hand motor recovery in older adults after stroke. Sci Rep 2021; 11:9131. [PMID: 33911100 PMCID: PMC8080700 DOI: 10.1038/s41598-021-88607-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/13/2021] [Indexed: 11/08/2022] Open
Abstract
More solid data are needed regarding the application of neuromuscular electrical stimulation (NMES) in the paretic hand following a stroke. A randomised clinical trial was conducted to compare the effects of two NMES protocols with different stimulation frequencies on upper limb motor impairment and function in older adults with spastic hemiparesis after stroke. Sixty nine outpatients were randomly assigned to the control group or the experimental groups (NMES with 50 Hz or 35 Hz). Outcome measures included motor impairment tests and functional assessment. They were collected at baseline, after 4 and 8 weeks of treatment, and after a follow-up period. NMES groups showed significant changes (p < 0.05) with different effect sizes in range of motion, grip and pinch strength, the Modified Ashworth Scale, and the muscle electrical activity in the extensors of the wrist. The 35 Hz NMES intervention showed a significant effect on Barthel Index. Additionally, there were no significant differences between the groups in the Box and Block Test. Both NMES protocols proved evidence of improvements in measurements related to hand motor recovery in older adults following a stroke, nevertheless, these findings showed that the specific stimulation frequency had different effects depending on the clinical measures under study.
Collapse
|
35
|
Norouzi-Gheidari N, Archambault PS, Monte-Silva K, Kairy D, Sveistrup H, Trivino M, Levin MF, Milot MH. Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation. J Neuroeng Rehabil 2021; 18:61. [PMID: 33853614 PMCID: PMC8045249 DOI: 10.1186/s12984-021-00851-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background Approximately 80% of individuals with chronic stroke present with long lasting upper extremity (UE) impairments. We designed the perSonalized UPper Extremity Rehabilitation (SUPER) intervention, which combines robotics, virtual reality activities, and neuromuscular electrical stimulation (NMES). The objectives of our study were to determine the feasibility and the preliminary efficacy of the SUPER intervention in individuals with moderate/severe stroke. Methods Stroke participants (n = 28) received a 4-week intervention (3 × per week), tailored to their functional level. The functional integrity of the corticospinal tract was assessed using the Predict Recovery Potential algorithm, involving measurements of motor evoked potentials and manual muscle testing. Those with low potential for hand recovery (shoulder group; n = 18) received a robotic-rehabilitation intervention focusing on elbow and shoulder movements only. Those with a good potential for hand recovery (hand group; n = 10) received EMG-triggered NMES, in addition to robot therapy. The primary outcomes were the Fugl-Meyer UE assessment and the ABILHAND assessment. Secondary outcomes included the Motor Activity Log and the Stroke Impact Scale. Results Eighteen participants (64%), in either the hand or the shoulder group, showed changes in the Fugl-Meyer UE or in the ABILHAND assessment superior to the minimal clinically important difference. Conclusions This indicates that our personalized approach is feasible and may be beneficial in improving UE function in individuals with moderate to severe impairments due to stroke. Trial registration ClinicalTrials.gov NCT03903770. Registered 4 April 2019. Registered retrospectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00851-1.
Collapse
Affiliation(s)
- Nahid Norouzi-Gheidari
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Philippe S Archambault
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada. .,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.
| | - Katia Monte-Silva
- Physical Therapy Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Dahlia Kairy
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Heidi Sveistrup
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Michael Trivino
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,Centre Intégré de santé et services sociaux de Laval, Laval, Canada
| | - Mindy F Levin
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Marie-Hélène Milot
- School of Rehabilitation, University of Sherbrooke, Sherbrooke, Canada.,Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
| |
Collapse
|
36
|
Ambrosini E, Gasperini G, Zajc J, Immick N, Augsten A, Rossini M, Ballarati R, Russold M, Ferrante S, Ferrigno G, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Gfoehler M, Puchinger M, Weber M, Weber S, Pedrocchi A, Molteni F, Krakow K. A Robotic System with EMG-Triggered Functional Eletrical Stimulation for Restoring Arm Functions in Stroke Survivors. Neurorehabil Neural Repair 2021; 35:334-345. [PMID: 33655789 DOI: 10.1177/1545968321997769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. OBJECTIVE To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. METHODS A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. RESULTS All outcomes but SSQoL significantly improved over time in both groups (P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points (P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). CONCLUSIONS Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
Collapse
Affiliation(s)
| | | | | | - Nancy Immick
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Andreas Augsten
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | - Karsten Krakow
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| |
Collapse
|
37
|
Perini G, Bertoni R, Thorsen R, Carpinella I, Lencioni T, Ferrarin M, Jonsdottir J. Sequentially applied myoelectrically controlled FES in a task-oriented approach and robotic therapy for the recovery of upper limb in post-stroke patients: A randomized controlled pilot study. Technol Health Care 2021; 29:419-429. [PMID: 33386831 DOI: 10.3233/thc-202371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Functional recovery of the plegic upper limb in post-stroke patients may be enhanced by sequentially applying a myoelectrically controlled FES (MeCFES), which allows the patient to voluntarily control the muscle contraction during a functional movement, and robotic therapy which allows many repetitions of movements. OBJECTIVE Evaluate the efficacy of MeCFES followed by robotic therapy compared to standard care arm rehabilitation for post-stroke patients. METHODS Eighteen stroke subjects (onset ⩾ 3 months, age 60.1 ± 15.5) were recruited and randomized to receive an experimental combination of MeCFES during task-oriented reaching followed by robot therapy (MRG) or same intensity conventional rehabilitation care (CG) aimed at the recovery of the upper limb (20 sessions/45 minutes). Change was evaluated through Fugl-Meyer upper extremity (FMA-UE), Reaching Performance Scale and Box and Block Test. RESULTS The experimental treatment resulted in higher improvement on the FMA-UE compared with CG (P= 0.04), with a 10-point increase following intervention. Effect sizes were moderate in favor of the MRG group on FMA-UE, FMA-UE proximal and RPS (0.37-0.56). CONCLUSIONS Preliminary findings indicate that a combination of MeCFES and robotic treatment may be more effective than standard care for recovery of the plegic arm in persons > 3 months after stroke. The mix of motor learning techniques may be important for successful rehabilitation of arm function.
Collapse
|
38
|
Jochumsen M, Niazi IK, Zia ur Rehman M, Amjad I, Shafique M, Gilani SO, Waris A. Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography. SENSORS 2020; 20:s20236763. [PMID: 33256073 PMCID: PMC7730601 DOI: 10.3390/s20236763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Brain- and muscle-triggered exoskeletons have been proposed as a means for motor training after a stroke. With the possibility of performing different movement types with an exoskeleton, it is possible to introduce task variability in training. It is difficult to decode different movement types simultaneously from brain activity, but it may be possible from residual muscle activity that many patients have or quickly regain. This study investigates whether nine different motion classes of the hand and forearm could be decoded from forearm EMG in 15 stroke patients. This study also evaluates the test-retest reliability of a classical, but simple, classifier (linear discriminant analysis) and advanced, but more computationally intensive, classifiers (autoencoders and convolutional neural networks). Moreover, the association between the level of motor impairment and classification accuracy was tested. Three channels of surface EMG were recorded during the following motion classes: Hand Close, Hand Open, Wrist Extension, Wrist Flexion, Supination, Pronation, Lateral Grasp, Pinch Grasp, and Rest. Six repetitions of each motion class were performed on two different days. Hudgins time-domain features were extracted and classified using linear discriminant analysis and autoencoders, and raw EMG was classified with convolutional neural networks. On average, 79 ± 12% and 80 ± 12% (autoencoders) of the movements were correctly classified for days 1 and 2, respectively, with an intraclass correlation coefficient of 0.88. No association was found between the level of motor impairment and classification accuracy (Spearman correlation: 0.24). It was shown that nine motion classes could be decoded from residual EMG, with autoencoders being the best classification approach, and that the results were reliable across days; this may have implications for the development of EMG-controlled exoskeletons for training in the patient’s home.
Collapse
Affiliation(s)
- Mads Jochumsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark;
- Correspondence:
| | - Imran Khan Niazi
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark;
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand;
- Health and Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Muhammad Zia ur Rehman
- Faculty of Rehabilitation and Allied Sciences & Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 44000, Pakistan; (M.Z.u.R.); (M.S.)
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand;
- Faculty of Rehabilitation and Allied Sciences & Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 44000, Pakistan; (M.Z.u.R.); (M.S.)
| | - Muhammad Shafique
- Faculty of Rehabilitation and Allied Sciences & Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 44000, Pakistan; (M.Z.u.R.); (M.S.)
| | - Syed Omer Gilani
- Department of Biomedical Engineering & Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (S.O.G.); (A.W.)
| | - Asim Waris
- Department of Biomedical Engineering & Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (S.O.G.); (A.W.)
| |
Collapse
|
39
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
40
|
Perin C, Bolis M, Limonta M, Meroni R, Ostasiewicz K, Cornaggia CM, Alouche SR, da Silva Matuti G, Cerri CG, Piscitelli D. Differences in Rehabilitation Needs after Stroke: A Similarity Analysis on the ICF Core Set for Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124291. [PMID: 32560129 PMCID: PMC7345505 DOI: 10.3390/ijerph17124291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
Background: Successful rehabilitation is associated with physical, psychological, environmental, social, and personal factors based on the International Classification of Functioning, Disability and Health (ICF) framework. The influence of age has been suggested as crucial personal factors that may affect rehabilitation needs in post-stroke survivors. The aim of this study was to investigate the qualifiers of the ICF core set for stroke to detect differences in rehabilitation needs and goals between older (O, >65 years old) and younger (Y, ≤65 years old,) post-stroke individuals. Materials and methods: In this observational study, the comprehensive core set for stroke was filled during the rehabilitation period. Patient information was obtained using disability scales was translated into certain ICF categories using linking rules. Frequency, similarity, and linear regression analyses were performed for ICF qualifier profiles among Y and O patients. Results: Forty-eight ICF variables were significantly different between Y (n = 35, 46.17 ± 11.27 years old) and O (n = 35, 76.43 ± 6.77 years old) patients. Frequency analysis showed that activity of daily living and basic needs were more prevalent in O patients, whereas regaining of social role and social life were more prevalent in Y patients. The average Jaccard Index result (similarity analysis) was more homogeneous in O than in Y patients. Conclusions: ICF qualifiers are useful to design patient-centered care. Y patients have more heterogeneous needs and require more personalized program than O patients.
Collapse
Affiliation(s)
- Cecilia Perin
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (C.M.C.); (C.G.C.); (D.P.)
- Correspondence: ; Tel.: +39-03-6298-6446; Fax: +39-03-6298-6439
| | - Marta Bolis
- Casa di cura Beato Palazzolo, 24122 Bergamo, Italy;
| | - Marco Limonta
- Istituti Clinici Zucchi, 20841 Carate Brianza, Italy;
| | - Roberto Meroni
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, Differdange, 4671 Differdange, Luxembourg;
| | | | - Cesare Maria Cornaggia
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (C.M.C.); (C.G.C.); (D.P.)
| | - Sandra Regina Alouche
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo 03071-000, Brazil;
| | - Gabriela da Silva Matuti
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo 03071-000, Brazil;
- Associação de Assistência à Criança Deficiente (AACD), 04027-000 São Paulo, Brazil;
| | - Cesare Giuseppe Cerri
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (C.M.C.); (C.G.C.); (D.P.)
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (C.M.C.); (C.G.C.); (D.P.)
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada
| |
Collapse
|
41
|
Micera S, Caleo M, Chisari C, Hummel FC, Pedrocchi A. Advanced Neurotechnologies for the Restoration of Motor Function. Neuron 2020; 105:604-620. [PMID: 32078796 DOI: 10.1016/j.neuron.2020.01.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
Stroke is one of the leading causes of long-term disability. Advanced technological solutions ("neurotechnologies") exploiting robotic systems and electrodes that stimulate the nervous system can increase the efficacy of stroke rehabilitation. Recent studies on these approaches have shown promising results. However, a paradigm shift in the development of new approaches must be made to significantly improve the clinical outcomes of neurotechnologies compared with those of traditional therapies. An "evolutionary" change can occur only by understanding in great detail the basic mechanisms of natural stroke recovery and technology-assisted neurorehabilitation. In this review, we first describe the results achieved by existing neurotechnologies and highlight their current limitations. In parallel, we summarize the data available on the mechanisms of recovery from electrophysiological, behavioral, and anatomical studies in humans and rodent models. Finally, we propose new approaches for the effective use of neurotechnologies in stroke survivors, as well as in people with other neurological disorders.
Collapse
Affiliation(s)
- Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
42
|
Bao SC, Khan A, Song R, Kai-yu Tong R. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration. J Stroke 2020; 22:47-63. [PMID: 32027791 PMCID: PMC7005350 DOI: 10.5853/jos.2019.03027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.
Collapse
Affiliation(s)
- Shi-chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Song
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Lv X, Tang R, Gao Z, Hu D, Li G, Lang Y, He J. Activation of the primary motor cortex using fully-implanted electrical sciatic nerve stimulation. Exp Ther Med 2019; 18:3357-3364. [PMID: 31602209 PMCID: PMC6777333 DOI: 10.3892/etm.2019.7993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Functional degradation of the motor cortex usually results from brain injury, stroke, limb amputation, aging or other diseases. Currently, there are no ideal means of treatment, other than medication and sports rehabilitation. The present study investigated whether electrical stimulation of the sciatic nerve can activate the motor-related area of the brain. The study is based on a self-developed fully implantable nerve electrical stimulator and a self-developed multi-channel electroencephalogram (EEG) electrode array. The sciatic nerves of Sprague-Dawley rats (sorted into old and young groups) were stimulated by the electrical stimulator under anesthesia, and the EEG signal was recorded simultaneously. The relationship between sciatic nerve stimulation and brain activity was analyzed. The results showed that when the sciatic nerve was stimulated by the implanted electrical stimulator, motor-related channels were activated, causing contraction of the left leg. It was found that at the frequency band of 8-16 Hz, the EEG signal in the right motor area was higher than at other frequency bands. This phenomenon was identical in both young and old rats. The results indicated that electrical stimulation of the sciatic nerve can activate the motor region of the rat brain, and provided evidence that stimulation of the sciatic nerve could be a method of preventing motor cortex degeneration.
Collapse
Affiliation(s)
- Xiaodong Lv
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Rongyu Tang
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhaolong Gao
- Neural Interface and Rehabilitation Technology Research Center, School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Dingyin Hu
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Guanghui Li
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiping He
- Beijing Advanced Innovation Center for Intelligent Robot and System, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
44
|
Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol 2019; 599:2375-2399. [PMID: 31495924 DOI: 10.1113/jp278298] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
The application of neuromuscular electrical stimulation (NMES) to paretic limbs has demonstrated utility for motor rehabilitation following brain injury. When NMES is delivered to a mixed peripheral nerve, typically both efferent and afferent fibres are recruited. Muscle contractions brought about by the excitation of motor neurons are often used to compensate for disability by assisting actions such as the formation of hand aperture, or by preventing others including foot drop. In this context, exogenous stimulation provides a direct substitute for endogenous neural drive. The goal of the present narrative review is to describe the means through which NMES may also promote sustained adaptations within central motor pathways, leading ultimately to increases in (intrinsic) functional capacity. There is an obvious practical motivation, in that detailed knowledge concerning the mechanisms of adaptation has the potential to inform neurorehabilitation practice. In addition, responses to NMES provide a means of studying CNS plasticity at a systems level in humans. We summarize the fundamental aspects of NMES, focusing on the forms that are employed most commonly in clinical and experimental practice. Specific attention is devoted to adjuvant techniques that further promote adaptive responses to NMES thereby offering the prospect of increased therapeutic potential. The emergent theme is that an association with centrally initiated neural activity, whether this is generated in the context of NMES triggered by efferent drive or via indirect methods such as mental imagery, may in some circumstances promote the physiological changes that can be induced through peripheral electrical stimulation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.,School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison R Buick
- School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|
45
|
Piscitelli D. Neurorehabilitation: bridging neurophysiology and clinical practice. Neurol Sci 2019; 40:2209-2211. [PMID: 31190252 DOI: 10.1007/s10072-019-03969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Daniele Piscitelli
- School of Physical & Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y5, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, QC, Canada.
| |
Collapse
|