1
|
Tedesco Triccas L, Van Hoornweder S, Camilleri T, Boccuni L, Peeters A, Van Pesch V, Meesen R, Mantini D, Camilleri K, Verheyden G. EEG Responses to Upper Limb Pinprick Stimulation in Acute and Early Subacute Motor and Sensorimotor Stroke: A Proof of Concept. Transl Stroke Res 2025:10.1007/s12975-025-01327-3. [PMID: 39856394 DOI: 10.1007/s12975-025-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Electroencephalogram (EEG) during pinprick stimulation has the potential to unveil neural mechanisms underlying sensorimotor impairments post-stroke. A proof-of-concept study explored event-related peak pinprick amplitude and oscillatory responses in healthy controls and in people with acute and subuacute motor and sensorimotor stroke, their relationship, and to what extent EEG somatosensory responses can predict sensorimotor impairment. In this study, 26 individuals participated, 10 people with an acute and early subacute sensorimotor stroke, 6 people with an acute and early subacute motor stroke, and 10 age-matched controls. Pinpricks were applied to the dorsa of the impaired hand to collect somatosensory evoked potentials. Time(-frequency) analyses of somatosensory evoked potential (SEP) data at electrodes C3 and C4 explored peak pinprick amplitude and oscillatory responses across the three groups. Also, in stroke, (sensori-)motor impairments were assessed with the Fugl Meyer Assessment Upper Extremity (FMA) and Erasmus modified Nottingham Sensory Assessment (EmNSA) at baseline and 7 to 14 days later. Mixed model analyses were used to address objectives. It was demonstrated that increased beta desynchronization magnitude correlated with milder motor impairments (R2adjusted = 0.213), whereas increased beta resynchronization and delta power were associated to milder somatosensory impairment (R2adjusted = 0.550). At the second session, larger peak-to-peak SEP amplitude and beta band resynchronization at baseline were related to greater improvements in EMNSA and FMA scores, respectively, in the sensorimotor stroke group. These findings highlight the potential of EEG combined with somatosensory stimuli to differentiate between sensorimotor and motor impairments in stroke, offering preliminary insights into both diagnostic and prognostic aspects of upper limb recovery.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- Department of Rehabilitation Sciences, KU Leuven, B-3001, Leuven, Belgium.
- Department of Systems and Control Engineering, University of Malta, Msida, MSD 2080, Malta.
- REVAL, Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
- Department of Movement and Clinical Neurosciences, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Sybren Van Hoornweder
- REVAL, Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Tracy Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, MSD 2080, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, MSD 2080, Malta
| | | | - Andre Peeters
- Department of Neurology, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Vincent Van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Raf Meesen
- REVAL, Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Box 1501, B-3001, Leuven, Belgium
| | - Kenneth Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, MSD 2080, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, MSD 2080, Malta
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, B-3001, Leuven, Belgium
| |
Collapse
|
2
|
Sood I, Injety RJ, Farheen A, Kamali S, Jacob A, Mathewson K, Buck BH, Kate MP. Quantitative electroencephalography to assess post-stroke functional disability: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2024; 33:108032. [PMID: 39357611 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE Quantitative electroencephalography (QEEG) is a non-invasive, reliable and easily accessible modality to assess neuronal activity. QEEG in acute stroke may predict short and long-term functional outcomes. The role of individual indices has not been studied in a meta-analysis. We aim to assess individual QEEG-derived indices to predict post-stroke disability. METHODS We included studies (sample size ≥ 10) with stroke patients who underwent EEG and a follow-up outcome assessment was available either in the form of modified Rankin scale (mRS) or National Institute of Stroke scale (NIHSS) or Fugl-Meyer scale (FMA). QEEG indices analysed were delta-alpha ratio (DAR), delta-theta-alpha-beta ratio (DTABR), brain symmetry index (BSI) and pairwise derived brain symmetry (pdBSI). RESULTS Nine studies (8 had only ischemic stroke, and one had both ischemic and haemorrhagic stroke), including 482 participants were included for meta-analysis. Higher DAR was associated with worse mRS (n=300, Pearson's r 0.26, 95 % CI 0.21-0.31). Higher DTABR was associated with worse mRS (n=337, r=0.32, 95 % CI 0.26-0.39). Higher DAR was associated with higher NIHSS (n=161, r=0.42, 95 % CI0.24-0.6). Higher DTABR was associated with higher NIHSS (n=158, r=0.49, 95 % CI 0.31-0.67). CONCLUSIONS QEEG-derived indices DAR and DTABR have the potential to assess post-stroke disability. Adding QEEG to the clinical and imaging biomarkers in the acute phase may help in better prediction of post-stroke recovery. REGISTRY PROSPERO 2022 CRD42022292281.
Collapse
Affiliation(s)
- Idha Sood
- Department of Neurology, Christian Medical College & Hospital, Ludhiana, PB, India
| | - Ranjit J Injety
- Department of Neurology, Christian Medical College & Hospital, Ludhiana, PB, India; Department of Community Medicine, Christian Medical College & Hospital, Ludhiana, PB, India
| | - Amtul Farheen
- Department of Neurology, University of Mississippi, Jackson, Mississippi, USA
| | - Setareh Kamali
- Western University of Health Sciences, Los Angeles, CA, USA
| | - Ann Jacob
- Department of Neurology, Christian Medical College & Hospital, Ludhiana, PB, India
| | - Kyle Mathewson
- Department of Psychology, Faculty of Science, Edmonton, Alberta, Canada
| | - Brian H Buck
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mahesh P Kate
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Lebely C, Lepron E, Bigarre I, Hamery C, De Boissezon X, Scannella S. EEG Spectral Power Changes in Patients With Dysexecutive Syndrome Following Cognitive Intervention. Brain Behav 2024; 14:e70148. [PMID: 39576230 PMCID: PMC11583479 DOI: 10.1002/brb3.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Acquired brain injury (ABI) leads to cognitive deficiencies, alteration of brain activity associated with an increase in slow-wave (delta and theta bands) power, and reduced fast-wave (alpha, beta, and gamma bands) power. To compensate for the cognitive deficits that impact autonomy and quality of life, patients in a chronic phase can benefit from cognitive intervention. OBJECTIVE This study explores the effects of cognitive intervention on brain activity, measured by electroencephalography (EEG), and on executive functioning, assessed by the Test of Attentional Performance (TAP) battery. METHOD We provided an ecological rehabilitation intervention, simulating real-life tasks adapted for patients with chronic cognitive disorders. A single-case experimental design (SCED) assessed patients' performance in terms of correct responses percentage (CRs) and reaction times (RTs), and EEG spectral powers before and 1 month after the intervention. The TAP tasks included working memory (WM), divided attention (DA), inhibition (GO), and flexibility (FL). EEG frequency powers were also measured during resting states. RESULTS One month after the intervention, significant improvements were observed in CRs and RTs for the FL task. Increases in all frequency band powers occurred during FL, WM, and DA tasks, except for alpha bands in DA. In the GO task, delta and gamma power also increased after the intervention. No significant changes were found during resting-state EEG. The results of this open study, without a control group, are preliminary. CONCLUSION The effects of the therapy are mostly reflected by changes in mental FL performance and altered EEG patterns during cognitive tasks, particularly in slow and fast-frequency bands. We argue that cognitive intervention could amplify the compensatory mechanisms following brain damage and/or ease restoration mechanisms in the fast-frequency activity bands. Further SCEDs or studies with control groups are needed to confirm these findings and the role of EEG biomarkers in rehabilitation.
Collapse
Affiliation(s)
- Claire Lebely
- Department of Physical Medicine and RehabilitationUniversity Hospital of ToulouseToulouseFrance
- ToNIC, NeuroImaging CenterUniversity of Toulouse, Inserm, UPSToulouseFrance
| | - Evelyne Lepron
- Fédération ENAC ISAE‐SUPAERO ONERAUniversité de ToulouseToulouseFrance
| | - Ines Bigarre
- Department of Physical Medicine and RehabilitationUniversity Hospital of ToulouseToulouseFrance
- Fédération ENAC ISAE‐SUPAERO ONERAUniversité de ToulouseToulouseFrance
| | - Caroline Hamery
- Fédération ENAC ISAE‐SUPAERO ONERAUniversité de ToulouseToulouseFrance
| | - Xavier De Boissezon
- Department of Physical Medicine and RehabilitationUniversity Hospital of ToulouseToulouseFrance
- ToNIC, NeuroImaging CenterUniversity of Toulouse, Inserm, UPSToulouseFrance
| | | |
Collapse
|
4
|
Wang F, Zhang X, Zhang P, Hu F. RSBagging: An ensemble classifier detecting the after-effects of ischemic stroke through EEG connectivity and microstates. PLoS One 2024; 19:e0311558. [PMID: 39436882 PMCID: PMC11495553 DOI: 10.1371/journal.pone.0311558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Stroke can lead to significant after-effects, including motor function impairments, language impairments (aphasia), disorders of consciousness (DoC), and cognitive deficits. Computer-aided analysis of EEG connectivity matrices and microstates from bedside EEG monitoring can replace traditional clinical observation methods, offering an automatic approach to monitoring the progression of these after-effects. This EEG-based method also enables quicker and more efficient assessments for medical practitioners. METHODS In this study, we employed Functional Connectivity features that extract spatial representation and Microstate features that focus on the time domain representation to monitor the after-effects of ischemic stroke patients. As the dataset from stroke patients is heavily imbalanced across various clinical after-effects conditions, we designed an ensemble classifier, RSBagging, to address the issue of classifiers often favoring the majority classes in the classification of imbalanced datasets. RESULTS The experimental results demonstrate that different connectivity matrices are effective for three classification tasks: consciousness level, motor disturbance, and stroke location. Using our RSBagging model, all three tasks achieve over 98% accuracy, sensitivity, specificity, and F1-score, significantly outperforming the existing classifiers SVM, XGBoost, and Random Forest. CONCLUSION Therefore, the RSBagging classifier based on connectivity matrices offers an effective method for monitoring the after-effects in stroke patients.
Collapse
Affiliation(s)
- Fang Wang
- School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu, China
| | - Xueying Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Peng Zhang
- Department of Neurology, Shanxi Provincial People’s Hospital affiliated with Shanxi Medical University, Taiyuan, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People’s Hospital affiliated with Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Piai V, Oostenveld R, Schoffelen JM, Piastra MC. The impact of CSF-filled cavities on scalp EEG and its implications. Psychophysiology 2024; 61:e14624. [PMID: 38873838 DOI: 10.1111/psyp.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a "cognitive event-related potential effect"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.
Collapse
Affiliation(s)
- Vitória Piai
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- NatMEG, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mathijs Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Maria Carla Piastra
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
6
|
Gopalakrishnan R, Cunningham DA, Hogue O, Schroedel M, Campbell BA, Baker KB, Machado AG. Electrophysiological Correlates of Dentate Nucleus Deep Brain Stimulation for Poststroke Motor Recovery. J Neurosci 2024; 44:e2149232024. [PMID: 38724284 PMCID: PMC11223455 DOI: 10.1523/jneurosci.2149-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/05/2024] Open
Abstract
While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.
Collapse
Affiliation(s)
- Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Cleveland FES Center, Cleveland, Ohio 44106
| | - David A Cunningham
- Cleveland FES Center, Cleveland, Ohio 44106
- Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- Center for Rehabilitation Research, MetroHealth Systems, Cleveland, Ohio 44109
| | - Olivia Hogue
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Madeleine Schroedel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Brett A Campbell
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kenneth B Baker
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
7
|
Ackerley S, Smith MC, Jordan H, Stinear CM. Biomarkers of Motor Outcomes After Stroke. Phys Med Rehabil Clin N Am 2024; 35:259-276. [PMID: 38514217 DOI: 10.1016/j.pmr.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Predicting motor outcomes after stroke based on clinical judgment alone is often inaccurate and can lead to inefficient and inequitable allocation of rehabilitation resources. Prediction tools are being developed so that clinicians can make evidence-based, accurate, and reproducible prognoses for individual patients. Biomarkers of corticospinal tract structure and function can improve prediction tool performance, particularly for patients with initially moderate to severe motor impairment. Being able to make accurate predictions for individual patients supports rehabilitation planning and communication with patients and families.
Collapse
Affiliation(s)
- Suzanne Ackerley
- School of Sport and Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Marie-Claire Smith
- Department of Exercise Sciences, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Harry Jordan
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Cathy M Stinear
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand.
| |
Collapse
|
8
|
Liuzzi P, Grippo A, Sodero A, Castagnoli C, Pellegrini I, Burali R, Toci T, Barretta T, Mannini A, Hakiki B, Macchi C, Lolli F, Cecchi F. Quantitative EEG and prognosis for recovery in post-stroke patients: The effect of lesion laterality. Neurophysiol Clin 2024; 54:102952. [PMID: 38422721 DOI: 10.1016/j.neucli.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE There is emerging confidence that quantitative EEG (qEEG) has the potential to inform clinical decision-making and guide individualized rehabilitation after stroke, but consensus on the best EEG biomarkers is needed for translation to clinical practice. This study investigates the spatial qEEG spectral and symmetry distribution in patients with a left/right hemispheric stroke, to evaluate their side-specific prognostic power in post-acute rehabilitation outcome. METHODS Resting-state 19-channel EEG recordings were collected with clinical information on admission to intensive inpatient rehabilitation (within 30 days post stroke), and six months post stroke. After preprocessing, spectral (Delta-to-Alpha Ratio, DAR) and symmetry (pairwise and hemispheric Brain Symmetry Index) features were extracted. Patients were divided into Affected Right and Left (AR/AL) groups, according to the location of their lesion. Within each group, DAR was compared between homologous electrode pairs and the pairwise difference between pairs was compared across pairs in the scalp. Then, the prognostic power of qEEG admission metrics was evaluated by performing correlations between admission metrics and discharge mBI values. RESULTS Fifty-two patients with hemorrhagic or ischemic stroke (20 females, 38.5 %, median age 76 years [IQR = 22]) were included in the study. DAR was significantly higher in the affected hemisphere for both AR and AL groups, and, a higher frontal (to posterior) asymmetry was found independent of the side of the lesion. DAR was found to be a prognostic marker of 6-months modified Barthel Index (mBI) only for the AL group, while hemispheric asymmetry did not correlate with follow-up outcomes in either group. DISCUSSION While the presence of EEG abnormalities in the affected hemisphere of a stroke is well recognized, we have shown that the extent of DAR abnormalities seen correlates with disability at 6 months post stroke, but only for left hemispheric lesions. Routine prognostic evaluation, in addition to motor and functional scales, can add information concerning neuro-prognostication and reveal neurophysiological abnormalities to be assessed during rehabilitation.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy; Scuola Superiore Sant'Anna, Istituto di BioRobotica, Viale Rinaldo Piaggio 34, Pontedera, Italy.
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Alessandro Sodero
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Chiara Castagnoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Ilaria Pellegrini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Rachele Burali
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Tanita Toci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Teresa Barretta
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy; Università di Firenze, Dipartimento di Medicina Sperimentale e Clinica, Largo Brambilla 3, Firenze, Italy
| | - Francesco Lolli
- Università degli Studi di Firenze, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Viale Morgagni 50, Firenze, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, Firenze, Italy; Università degli Studi di Firenze, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Viale Morgagni 50, Firenze, Italy
| |
Collapse
|
9
|
Tilton-Bolowsky V, Stockbridge MD, Hillis AE. Remapping and Reconnecting the Language Network after Stroke. Brain Sci 2024; 14:419. [PMID: 38790398 PMCID: PMC11117613 DOI: 10.3390/brainsci14050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Here, we review the literature on neurotypical individuals and individuals with post-stroke aphasia showing that right-hemisphere regions homologous to language network and other regions, like the right cerebellum, are activated in language tasks and support language even in healthy people. We propose that language recovery in post-stroke aphasia occurs largely by potentiating the right hemisphere network homologous to the language network and other networks that previously supported language to a lesser degree and by modulating connection strength between nodes of the right-hemisphere language network and undamaged nodes of the left-hemisphere language network. Based on this premise (supported by evidence we review), we propose that interventions should be aimed at potentiating the right-hemisphere language network through Hebbian learning or by augmenting connections between network nodes through neuroplasticity, such as non-invasive brain stimulation and perhaps modulation of neurotransmitters involved in neuroplasticity. We review aphasia treatment studies that have taken this approach. We conclude that further aphasia rehabilitation with this aim is justified.
Collapse
Affiliation(s)
| | | | - Argye E. Hillis
- Departments of Neurology, Physical Medicine & Rehabilitation, and Cognitive Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.T.-B.); (M.D.S.)
| |
Collapse
|
10
|
Li M, Zou F, Zheng T, Zou W, Li H, Lin Y, Peng L, Zheng S. Electroacupuncture alters brain network functional connectivity in subacute stroke: A randomised crossover trial. Medicine (Baltimore) 2024; 103:e37686. [PMID: 38579054 PMCID: PMC10994512 DOI: 10.1097/md.0000000000037686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) is a promising rehabilitation treatment for upper-limb motor recovery in stroke patients. However, the neurophysiological mechanisms underlying its clinical efficacy remain unclear. This study aimed to explore the immediate modulatory effects of EA on brain network functional connectivity and topological properties. METHODS The randomized, single-blinded, self-controlled two-period crossover trial was conducted among 52 patients with subacute subcortical stroke. These patients were randomly allocated to receive either EA as the initial intervention or sham electroacupuncture (SEA) as the initial intervention. After a washout period of 24 hours, participants underwent the alternate intervention (SEA or EA). Resting state electroencephalography signals were recorded synchronously throughout both phases of the intervention. The functional connectivity (FC) of the parietofrontal network and small-world (SW) property indices of the whole-brain network were compared across the entire course of the two interventions. RESULTS The results demonstrated that EA significantly altered ipsilesional parietofrontal network connectivity in the alpha and beta bands (alpha: F = 5.05, P = .011; beta: F = 3.295, P = .047), whereas no significant changes were observed in the SEA group. When comparing between groups, EA significantly downregulated ipsilesional parietofrontal network connectivity in both the alpha and beta bands during stimulation (alpha: t = -1.998, P = .049; beta: t = -2.342, P = .022). Significant differences were also observed in the main effects of time and the group × time interaction for the SW index (time: F = 5.516, P = .026; group × time: F = 6.892, P = .01). In terms of between-group comparisons, the EA group exhibited a significantly higher SW index than the SEA group at the post-stimulation stage (t = 2.379, P = .018). CONCLUSION These findings suggest that EA downregulates ipsilesional parietofrontal network connectivity and enhances SW properties, providing a potential neurophysiological mechanism for facilitating motor performance in stroke patients.
Collapse
Affiliation(s)
- Mingfen Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Fei Zou
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Weigeng Zou
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haifeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yifang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Peng
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Su Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Erdoğan MŞ, Arpak ES, Keles CSK, Villagra F, Işık EÖ, Afşar N, Yucesoy CA, Mur LAJ, Akanyeti O, Saybaşılı H. Biochemical, biomechanical and imaging biomarkers of ischemic stroke: Time for integrative thinking. Eur J Neurosci 2024; 59:1789-1818. [PMID: 38221768 DOI: 10.1111/ejn.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.
Collapse
Affiliation(s)
| | - Esra Sümer Arpak
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Cemre Su Kaya Keles
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Federico Villagra
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Esin Öztürk Işık
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Nazire Afşar
- Neurology, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Otar Akanyeti
- Department of Computer Science, Llandinam Building, Aberystwyth University, Aberystwyth, UK
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
12
|
Palmer JA, Whitaker AA, Payne AM, Bartsch BL, Reisman DS, Boyne PE, Billinger SA. Aerobic Exercise Improves Cortical Inhibitory Function After Stroke: A Preliminary Investigation. J Neurol Phys Ther 2024; 48:83-93. [PMID: 37436187 PMCID: PMC10776819 DOI: 10.1097/npt.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND PURPOSE Aerobic exercise can elicit positive effects on neuroplasticity and cognitive executive function but is poorly understood after stroke. We tested the effect of 4 weeks of aerobic exercise training on inhibitory and facilitatory elements of cognitive executive function and electroencephalography markers of cortical inhibition and facilitation. We investigated relationships between stimulus-evoked cortical responses, blood lactate levels during training, and aerobic fitness postintervention. METHODS Twelve individuals with chronic (>6 months) stroke completed an aerobic exercise intervention (40 minutes, 3×/wk). Electroencephalography and motor response times were assessed during congruent (response facilitation) and incongruent (response inhibition) stimuli of a Flanker task. Aerobic fitness capacity was assessed as o2peak during a treadmill test pre- and postintervention. Blood lactate was assessed acutely (<1 minute) after exercise each week. Cortical inhibition (N2) and facilitation (frontal P3) were quantified as peak amplitudes and latencies of stimulus-evoked electroencephalographic activity over the frontal cortical region. RESULTS Following exercise training, the response inhibition speed increased while response facilitation remained unchanged. A relationship between earlier cortical N2 response and faster response inhibition emerged postintervention. Individuals who produced higher lactate during exercise training achieved faster response inhibition and tended to show earlier cortical N2 responses postintervention. There were no associations between o2peak and metrics of behavioral or neurophysiologic function. DISCUSSION AND CONCLUSIONS These preliminary findings provide novel evidence for selective benefits of aerobic exercise on inhibitory control during the initial 4-week period after initiation of exercise training and implicate a potential therapeutic effect of lactate on poststroke inhibitory control.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology (J.A.P., S.A.B.), School of Medicine, University of Kansas Medical Center, Kansas City; University of Kansas Alzheimer's Disease Research Center (J.A.P., S.A.B.), Fairway; Department of Physical Therapy, Rehabilitation Science, and Athletic Training (A.A.W., B.L.B.), University of Kansas Medical Center, Kansas City; Department of Psychology (A.M.P.), College of Arts and Sciences, Florida State University, Tallahassee; Department of Physical Therapy (D.S.R.), College of Health Sciences, University of Delaware, Newark; and Department of Rehabilitation, Exercise and Nutrition Sciences (P.E.B.), College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
13
|
Rodríguez-Serrano LM, Wöbbeking-Sánchez M, De La Torre L, Pérez-Elvira R, Chávez-Hernández ME. Changes in EEG Activity and Cognition Related to Physical Activity in Older Adults: A Systematic Review. Life (Basel) 2024; 14:440. [PMID: 38672711 PMCID: PMC11051307 DOI: 10.3390/life14040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is generally associated with a decline in important cognitive functions that can be observed in EEG. Physical activity in older adults should be considered one of the main strategies to promote health and prevent disease in the elderly. The present study aimed to systematically review studies of EEG activity and cognitive function changes associated with physical activity in older adults. Records from PubMed, Scopus, and EBSCO databases were searched and, following the PRISMA guidelines, nine studies were included in the present systematic review. A risk of bias assessment was performed using the National Institute of Health Quality Assessment Tool for Case-control Studies instrument. The studies analyzed used two main strategies to determine the effects of physical activity on cognition and EEG: (1) multiscale entropy and power frequencies; and (2) event-related potentials. In terms of EEG activity, it can be concluded that exercise-induced neuroplasticity underlies improvements in cognitive function in healthy older adults.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Serrano
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue 46, Lomas Anáhuac, Huixquilucan 52786, Mexico; (L.M.R.-S.); (M.E.C.-H.)
| | - Marina Wöbbeking-Sánchez
- Facultad de Psicología, Universidad de Salamanca, Avenida de la Merced 109, 37005 Salamanca, Spain
| | - Lizbeth De La Torre
- Facultad de Psicología, Universidad Pontificia de Salamanca, Calle de la Compañía 5, 37002 Salamanca, Spain;
| | - Ruben Pérez-Elvira
- Laboratorio de Neuropsicofisiología, NEPSA Rehabilitación Neurológica, Facultad de Psicología, Universidad Pontificia de Salamanca, Calle de la Compañía 5, 37002 Salamanca, Spain
| | - María Elena Chávez-Hernández
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue 46, Lomas Anáhuac, Huixquilucan 52786, Mexico; (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
14
|
Močilnik V, Rutar Gorišek V, Sajovic J, Pretnar Oblak J, Drevenšek G, Rogelj P. Integrating EEG and Machine Learning to Analyze Brain Changes during the Rehabilitation of Broca's Aphasia. SENSORS (BASEL, SWITZERLAND) 2024; 24:329. [PMID: 38257423 PMCID: PMC10818958 DOI: 10.3390/s24020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The fusion of electroencephalography (EEG) with machine learning is transforming rehabilitation. Our study introduces a neural network model proficient in distinguishing pre- and post-rehabilitation states in patients with Broca's aphasia, based on brain connectivity metrics derived from EEG recordings during verbal and spatial working memory tasks. The Granger causality (GC), phase-locking value (PLV), weighted phase-lag index (wPLI), mutual information (MI), and complex Pearson correlation coefficient (CPCC) across the delta, theta, and low- and high-gamma bands were used (excluding GC, which spanned the entire frequency spectrum). Across eight participants, employing leave-one-out validation for each, we evaluated the intersubject prediction accuracy across all connectivity methods and frequency bands. GC, MI theta, and PLV low-gamma emerged as the top performers, achieving 89.4%, 85.8%, and 82.7% accuracy in classifying verbal working memory task data. Intriguingly, measures designed to eliminate volume conduction exhibited the poorest performance in predicting rehabilitation-induced brain changes. This observation, coupled with variations in model performance across frequency bands, implies that different connectivity measures capture distinct brain processes involved in rehabilitation. The results of this paper contribute to current knowledge by presenting a clear strategy of utilizing limited data to achieve valid and meaningful results of machine learning on post-stroke rehabilitation EEG data, and they show that the differences in classification accuracy likely reflect distinct brain processes underlying rehabilitation after stroke.
Collapse
Affiliation(s)
- Vanesa Močilnik
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
| | | | - Jakob Sajovic
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Pretnar Oblak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Gorazd Drevenšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia;
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia;
| |
Collapse
|
15
|
Miryutova NF, Minchenko NN, Dostovalova OV, Kaisinova AS. [Dynamics of motor and functional disorders in the early recovery period after ischemic stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:13-22. [PMID: 39487615 DOI: 10.17116/kurort202410105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Currently, strokes are on the 2nd place on prevalence and mortality of the population, and an increase in the proportion of disabled people after cerebral stroke is noted. Disability is caused by motor deficiency of the paretic extremities, which impairs the patient's mobility, limits his participation in daily living, reduces the chances of returning to professional activity in 1/2 of patients after stroke. Due to this, the elimination of motor disorders and recovery of functional activity of the paretic extremities are the important aspects of post-stroke patients' medical rehabilitation. OBJECTIVE To study the dynamics and degrees of motor and functional disorders in patients with hemiparesis during the first 6 months after ischemic stroke under the impact of medical rehabilitation, including kinesiotherapy, physiotherapy and transcranial magnetic stimulation. MATERIAL AND METHODS Motor disorders and functional limitations were assessed using validated scales (Fugl-Meyer, Medical Research Committee Scale, Modified Ashworth Scale of muscle spasticity, Modified Frenchay scale, Wolf Motor Function Test, Action Research Arm Test, Rivermead mobility index, Hauser ambulation index, Functional Independence Measurement). Diagnostic and therapeutic transcranial magnetic stimulation was performed using the «Neuro-MS/D» magnetic stimulator. RESULTS The dynamics of types and degrees of motor and functional disorders were evaluated in 113 patients with hemiparesis in the first 6 months after ischemic stroke. Severe disorders of the tone and strength characteristics of paretic muscles and limitation of movement in the joints of paretic extremities have been found in 2/3 of patients. The balance function (it is difficult to maintain a vertical position of the body) was impaired in 1/2 of patients. The correlations of electrophysiological indicators (diagnostic transcranial magnetic stimulation and surface electromyography) with clinical ones (degree of paresis, tone of paretic muscles, motor abilities and motor skills of the paretic hand, independence in daily living) have been determined. Positive impact of medical rehabilitation, including kinesiotherapy, physiotherapy and transcranial magnetic stimulation, on the strength of paretic muscles of the hand and leg, mobility of patients, walking function, activity of the paretic hand (transfer by the hands, manipulation of extremities' segments and objects) has been revealed. Electrophysiological investigation has shown that the functional activity of the paretic muscles increased. CONCLUSION Severe motor and functional disorders, most pronounced in distal segments of the extremities (lack of movements in 14-26% of cases), are prevalent in the first six months after ischemic stroke in the carotid system. The regression of motor disorders leads to an enhancement of functional abilities (use of the paretic extremities for the realization of various motor actions) under the impact of rehabilitation.
Collapse
Affiliation(s)
- N F Miryutova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - N N Minchenko
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - O V Dostovalova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - A S Kaisinova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|
16
|
Rosanne O, Alves de Oliveira A, Falk TH. EEG Amplitude Modulation Analysis across Mental Tasks: Towards Improved Active BCIs. SENSORS (BASEL, SWITZERLAND) 2023; 23:9352. [PMID: 38067725 PMCID: PMC10708818 DOI: 10.3390/s23239352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Brain-computer interface (BCI) technology has emerged as an influential communication tool with extensive applications across numerous fields, including entertainment, marketing, mental state monitoring, and particularly medical neurorehabilitation. Despite its immense potential, the reliability of BCI systems is challenged by the intricacies of data collection, environmental factors, and noisy interferences, making the interpretation of high-dimensional electroencephalogram (EEG) data a pressing issue. While the current trends in research have leant towards improving classification using deep learning-based models, our study proposes the use of new features based on EEG amplitude modulation (AM) dynamics. Experiments on an active BCI dataset comprised seven mental tasks to show the importance of the proposed features, as well as their complementarity to conventional power spectral features. Through combining the seven mental tasks, 21 binary classification tests were explored. In 17 of these 21 tests, the addition of the proposed features significantly improved classifier performance relative to using power spectral density (PSD) features only. Specifically, the average kappa score for these classifications increased from 0.57 to 0.62 using the combined feature set. An examination of the top-selected features showed the predominance of the AM-based measures, comprising over 77% of the top-ranked features. We conclude this paper with an in-depth analysis of these top-ranked features and discuss their potential for use in neurophysiology.
Collapse
Affiliation(s)
- Olivier Rosanne
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil;
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| |
Collapse
|
17
|
Baker A, Schranz C, Seo NJ. Associating Functional Neural Connectivity and Specific Aspects of Sensorimotor Control in Chronic Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:5398. [PMID: 37420566 DOI: 10.3390/s23125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Hand sensorimotor deficits often result from stroke, limiting the ability to perform daily living activities. Sensorimotor deficits are heterogeneous among stroke survivors. Previous work suggests a cause of hand deficits is altered neural connectivity. However, the relationships between neural connectivity and specific aspects of sensorimotor control have seldom been explored. Understanding these relationships is important for developing personalized rehabilitation strategies to improve individual patients' specific sensorimotor deficits and, thus, rehabilitation outcomes. Here, we investigated the hypothesis that specific aspects of sensorimotor control will be associated with distinct neural connectivity in chronic stroke survivors. Twelve chronic stroke survivors performed a paretic hand grip-and-relax task while EEG was collected. Four aspects of hand sensorimotor grip control were extracted, including reaction time, relaxation time, force magnitude control, and force direction control. EEG source connectivity in the bilateral sensorimotor regions was calculated in α and β frequency bands during grip preparation and execution. Each of the four hand grip measures was significantly associated with a distinct connectivity measure. These results support further investigations into functional neural connectivity signatures that explain various aspects of sensorimotor control, to assist the development of personalized rehabilitation that targets the specific brain networks responsible for the individuals' distinct sensorimotor deficits.
Collapse
Affiliation(s)
- Adam Baker
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Christian Schranz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
- Division of Occupational Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC 29425, USA
- Ralph H. Johnson VA Health Care System, 109 Bee St., Charleston, SC 29425, USA
| |
Collapse
|
18
|
Motolese F, Lanzone J, Todisco A, Rossi M, Santoro F, Cruciani A, Capone F, Di Lazzaro V, Pilato F. The role of neurophysiological tools in the evaluation of ischemic stroke evolution: a narrative review. Front Neurol 2023; 14:1178408. [PMID: 37181549 PMCID: PMC10172480 DOI: 10.3389/fneur.2023.1178408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Ischemic stroke is characterized by a complex cascade of events starting from vessel occlusion. The term "penumbra" denotes the area of severely hypo-perfused brain tissue surrounding the ischemic core that can be potentially recovered if blood flow is reestablished. From the neurophysiological perspective, there are local alterations-reflecting the loss of function of the core and the penumbra-and widespread changes in neural networks functioning, since structural and functional connectivity is disrupted. These dynamic changes are closely related to blood flow in the affected area. However, the pathological process of stroke does not end after the acute phase, but it determines a long-term cascade of events, including changes of cortical excitability, that are quite precocious and might precede clinical evolution. Neurophysiological tools-such as Transcranial Magnetic Stimulation (TMS) or Electroencephalography (EEG)-have enough time resolution to efficiently reflect the pathological changes occurring after stroke. Even if they do not have a role in acute stroke management, EEG and TMS might be helpful for monitoring ischemia evolution-also in the sub-acute and chronic stages. The present review aims to describe the changes occurring in the infarcted area after stroke from the neurophysiological perspective, starting from the acute to the chronic phase.
Collapse
Affiliation(s)
- Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- *Correspondence: Francesco Motolese,
| | - Jacopo Lanzone
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, Milan, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mariagrazia Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
19
|
Sun P, Zhang S, Jiang L, Ma Z, Yao C, Zhu Q, Fang M. Yijinjing Qigong intervention shows strong evidence on clinical effectiveness and electroencephalography signal features for early poststroke depression: A randomized, controlled trial. Front Aging Neurosci 2022; 14:956316. [PMID: 36034130 PMCID: PMC9400391 DOI: 10.3389/fnagi.2022.956316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Although Traditional Chinese Yijinjing Qigong Exercise (YJJQE) as mind-body intervention is popularly used among adults to ameliorate depressive symptoms in China, no randomized controlled trials (RCTs) are available to evaluate the effects of YJJQE in patients with poststroke depression (PSD). This study aims to explore the clinical efficacy and the neurological and psychiatric mechanism in brain network functional connectivity underlying electroencephalography (EEG). Materials and methods A total of 60 patients, diagnosed with mild PSD, were randomly (1:1) assigned to YJJQE group (n = 30) and control group of routine segmental rehabilitation training group (n = 30) for a 60-min exercise session once a day for 3 weeks. All outcome measures were collected at baseline and 3-weeks ending intervention. The primary outcome was the 24-item Hamilton Depression Scale (HAMD-24) score, evaluation at more time points for 1 month of follow-up. The secondary outcomes were EEG data in four frequency domains (δ, θ, α, and β), global efficiency (GE), local efficiency (LE), GE/LE curve [areas under the curve (AUC)], Phase Lag Index (PLI), (HAMD-24) Score and EEG correlation analysis. Results All patients showed no significant differences in baseline data. After 3 weeks and 1 month of follow-up, the YJJQE group demonstrated significant decreasing changes compared to the control group on the HAMD-24 scores (p < 0.001). Furthermore, the YJJQE group also showed a significant reduction in θ wave, and an increase in both GE and LE. Compared to the control group, the YJJQE Qigong group showed significantly greater functional connectivity in the δ, θ, and β frequency bands in the brain network of the degree of phase synchronization (p < 0.001). HAMD-24 Score and EEG correlation analysis negative correlation in the Qigong group θ wave (p < 0.001). Conclusion Our findings demonstrated that YJJQE is estimated to effectively alleviate the depressed mood of patients with PSD by promoting the efficiency in information transmission of network functional connectivity and its integration ability in different brain regions. Therefore, the YJJQE would be useful as a non-pharmacological treatment to prevent PSD. Clinical trial registration [http://www.chictr.org.cn/showproj.aspx?proj=55789], identifier [ChiCTR2000035588].
Collapse
Affiliation(s)
- Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuaipan Zhang
- Tuina Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenzhen Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- Tuina Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingguang Zhu
- Tuina Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Tuina Research, Research Institute of Traditional Chinese Medicine in Shanghai, Shanghai, China
| | - Min Fang
- Tuina Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Tuina Research, Research Institute of Traditional Chinese Medicine in Shanghai, Shanghai, China
| |
Collapse
|