1
|
Rojas Bernal LA, Santamaría García H, Castaño Pérez GA. Electrophysiological biomarkers in dual pathology. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2024; 53:93-102. [PMID: 38677941 DOI: 10.1016/j.rcpeng.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/12/2022] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The co-occurrence of substance use disorder with at least one other mental disorder is called dual pathology, which in turn is characterised by heterogeneous symptoms that are difficult to diagnose and have a poor response to treatment. For this reason, the identification and validation of biomarkers is necessary. Within this group, possible electroencephalographic biomarkers have been reported to be useful in diagnosis, treatment and follow-up, both in neuropsychiatric conditions and in substance use disorders. This article aims to review the existing literature on electroencephalographic biomarkers in dual pathology. METHODS A narrative review of the literature. A bibliographic search was performed on the PubMed, Science Direct, OVID, BIREME and Scielo databases, with the keywords: electrophysiological biomarker and substance use disorder, electrophysiological biomarker and mental disorders, biomarker and dual pathology, biomarker and substance use disorder, electroencephalography, and substance use disorder or comorbid mental disorder. RESULTS Given the greater amount of literature found in relation to electroencephalography as a biomarker of mental illness and substance use disorders, and the few articles found on dual pathology, the evidence is organised as a biomarker in psychiatry for the diagnosis and prediction of risk and as a biomarker for dual pathology. CONCLUSIONS Although the evidence is not conclusive, it suggests the existence of a subset of sites and mechanisms where the effects of psychoactive substances and the neurobiology of some mental disorders could overlap or interact.
Collapse
Affiliation(s)
| | - Hernando Santamaría García
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Departamento de Psiquiatría y Fisiología, Universidad Pontificia Javeriana, Bogotá, Colombia
| | | |
Collapse
|
2
|
Oh H, Rajkumar R, Banawa R, Zhou S, Koyanagi A. Illicit and prescription drug use and psychotic experiences among university students in the United States. JOURNAL OF SUBSTANCE USE 2022. [DOI: 10.1080/14659891.2022.2098842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hans Oh
- Suzanne Dworak Peck School of Social Work, University of Southern California, Los Angeles, California, USA
| | - Ravi Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Rachel Banawa
- The Milken Institute School of Public Health, The George Washington University, Washington, George, USA
| | - Sasha Zhou
- Department of Public Health, Wayne State University, Detroit, Michigan, USA
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sant Boi de Llobregat, Spain
| |
Collapse
|
3
|
Zeng T, Li S, Wu L, Feng Z, Fan X, Yuan J, Wang X, Meng J, Ma H, Zeng G, Kang C, Yang J. A Comparison Study of Impulsiveness, Cognitive Function, and P300 Components Between Gamma-Hydroxybutyrate and Heroin-Addicted Patients: Preliminary Findings. Front Hum Neurosci 2022; 16:835922. [PMID: 35529779 PMCID: PMC9067320 DOI: 10.3389/fnhum.2022.835922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to investigate and compare impulsiveness, negative emotion, cognitive function, and P300 components among gamma-hydroxybutyrate (GHB)-addicted patients, heroin-dependent patients, and methadone maintenance treatment (MMT) subjects. Methods A total of 48 men including 17 GHB addicts, 16 heroin addicts, 15 MMT subjects, and 15 male mentally healthy controls (HC) were recruited. All subjects were evaluated for symptoms of depression, anxiety, impulsiveness, and cognitive function through the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder 7-item (GAD-7), the Barratt Impulsiveness Scale version II (BIS-II), the Beijing version of the Montreal Cognitive Assessment (BJ-MoCA), the behavioral test (response time), and event-related potential P300 detection. Results (1) The mean scores of BIS-II in the GHB addiction group, heroin dependence group, and MMT group were significantly higher than those of the HC group (F = 30.339, P = 0.000). (2) The total scores of BJ-MOCA in GHB addiction group was the worst among the four groups, followed by heroin addiction, MMT group and HC group (F = 27.880, P = 0.000). (3) The response time in the GHB addiction group was the longest among the four groups, followed by the heroin addiction, MMT, and HC groups (F = 150.499, P = 0.000). (4) The amplitude and latency of P300 in GHB addiction subjects were significantly lower and longer than those of the MMT group and the HC group. (5) For the three types of addiction, the P300 amplitudes at Fz, Cz, Pz, T5, and T6 were negatively correlated with the scores of GAD-7, PHQ-9, and BIS-II; the P300 latencies were positively correlated with the response time and negatively correlated with the scores of the BJ-MoCA. Conclusion People with an addiction were likely to have increased impulsiveness. The cognitive function of the GHB and heroin-addicted subjects, including the heroin detoxification and the MMT groups, was severely impaired, especially for the GHB-addicted patients. The impairment manifested as abnormalities of BJ-MoCA, response time, and P300 components.
Collapse
Affiliation(s)
- Tingting Zeng
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shida Li
- The Guangzhou Baiyun Psychological Hospital, Guangzhou, China
| | - Li Wu
- Department of Substance Use Disorders, The Psychiatry Hospital of Yunnan, Kunming, China
| | - Zuxing Feng
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinxin Fan
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Yuan
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Wang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junyu Meng
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huan Ma
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guanyong Zeng
- The Guangzhou Baiyun Psychological Hospital, Guangzhou, China
- *Correspondence: Guanyong Zeng
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Chuanyuan Kang
| | - Jianzhong Yang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Jianzhong Yang
| |
Collapse
|
4
|
Abstract
Survivors of breast and other cancers often report protracted difficulty in performing tasks involving concentration and memory, even years after the completion of treatment. The current study investigated whether cancer and treatment history is associated with deficits in sensory filtering (gating out) and sensory memory (gating in), early processes in stimulus processing that may contribute to difficulties in later remembering. A group of breast cancer survivors and age-matched healthy control participants (mean age 54 years) underwent testing with paired-click and oddball tasks while electroencephalographic (EEG) signals were recorded. The survivors showed relatively poor inhibition of redundant sensory stimulation (P50 suppression). Dipole source analysis localized the survivors' impairment to the hippocampus, with preservation of function in gating mechanisms of the frontal lobe and auditory cortex. Survivors also showed disruption to sensory memory processes needed to register novel information in an otherwise uniform auditory environment (mismatch negativity). The findings suggest that survivors experience deficits in early, automatic mechanisms of sensory gating, which may trigger a cascade of later perceived attentional and memory deficits. If our account is accurate, ideal therapies might aim to restore early inhibitory processes, such as those gauged by P50 suppression.
Collapse
Affiliation(s)
- Robert D. Melara
- Department of Psychology, City College, City University of New York, New York, NY, USA
| | - James C. Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan- Kettering Cancer Center, New York, NY, USA
| | - Raquel Bibi
- Department of Psychology, City College, City University of New York, New York, NY, USA
| | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan- Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Wittemann M, Brielmaier J, Rubly M, Kennel J, Werler F, Schmitgen MM, Kubera KM, Hirjak D, Wolf ND, Reith W, Wolf RC. Cognition and Cortical Thickness in Heavy Cannabis Users. Eur Addict Res 2021; 27:115-122. [PMID: 33080597 DOI: 10.1159/000509987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acute and long-term adverse effects of heavy cannabis use (HCU) on neurocognitive function have been suggested, as much as regional changes of brain volume. However, little is known about the relationship between impaired cognition and brain structure in individuals with HCU. OBJECTIVE Here, we investigated associations between cognition and cortical thickness (CT) in males with HCU and male controls. METHODS Twenty-six individuals with HCU and 20 controls were examined using a comprehensive neuropsychological test battery and high-resolution structural MRI at 3T. CT was calculated using the Computational Anatomy Toolbox (CAT12). RESULTS Individuals with HCU differed from controls with respect to verbal learning performance and verbal working memory only. Individuals with HCU showed reduced CT in medial temporal, orbitofrontal, and cingulate regions, as well as in areas of the middle temporal and fusiform cortex (peak voxel family-wise error-corrected p < 0.001, followed by empirically determined correction for spatial extent) compared to HC. Verbal learning performance was associated with right entorhinal and left orbitofrontal CT reductions. Entorhinal CT was also significantly associated with amount and frequency of current weekly cannabis use. CONCLUSIONS The data support the notion of domain-specific cognitive impairment in individuals with HCU and provide a neuromechanistic understanding of such deficits, particularly with respect to abnormal CT in brain areas associated with long-term memory processing.
Collapse
Affiliation(s)
- Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany
| | - Jule Brielmaier
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany.,Department of Obstetrics and Gynecology, RKH Clinic Ludwigsburg, Ludwigsburg, Germany
| | - Mathias Rubly
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany
| | - Jennifer Kennel
- Department of Psychiatry and Psychotherapy, SHG-Kliniken Saarbrücken, Saarbrücken, Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine D Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University, Saarbrücken, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,
| |
Collapse
|
6
|
The Role of Gamma Oscillations in the Pathophysiology of Substance Use Disorders. J Pers Med 2020; 11:jpm11010017. [PMID: 33379187 PMCID: PMC7824040 DOI: 10.3390/jpm11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Substance use disorders (SUDs) are a major public health problem—with over 200 million people reporting drug use in 2016. Electroencephalography (EEG) is a powerful tool that can provide insights into the impact of SUDs on cognition. Specifically, modulated gamma activity may provide an index of the pathophysiology of SUDs. Thus, the purpose of this review was to investigate the impact of alcohol, tobacco, cannabis, cocaine, and amphetamine on gamma activity, among pre-clinical and clinical populations during acute and chronic exposure and withdrawal states. We searched multiple databases for key terms related to SUDs, EEG, and gamma and ensured rigorous methods by using a standardized review reporting tool. We included 30 studies in this review and found that all substances were associated with modulation of gamma activity, across states and in both preclinical and clinical populations. Gamma oscillations appeared to be differentially modulated in clinical versus preclinical populations and had the most complex relationship with alcohol, indicating that it may act differently than other substances. The findings of this review offer insights into the pathophysiology of SUDs, providing a potential window into novel treatments for SUDs via modulation of gamma activity.
Collapse
|
7
|
Roach BJ, Carrión RE, Hamilton HK, Bachman P, Belger A, Duncan E, Johannesen J, Light GA, Niznikiewicz M, Addington J, Bearden CE, S Cadenhead K, Cannon TD, A Cornblatt B, McGlashan TH, Perkins DO, Seidman L, Tsuang M, Walker EF, Woods SW, Mathalon DH. Reliability of mismatch negativity event-related potentials in a multisite, traveling subjects study. Clin Neurophysiol 2020; 131:2899-2909. [PMID: 33160266 DOI: 10.1016/j.clinph.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine the optimal methods for measuring mismatch negativity (MMN), an auditory event-related potential (ERP), and quantify sources of MMN variance in a multisite setting. METHODS Reliability of frequency, duration, and double (frequency + duration) MMN was determined from eight traveling subjects, tested on two occasions at eight laboratory sites. Deviant-specific variance components were estimated for MMN peak amplitude and latency measures using different ERP processing methods. Generalizability (G) coefficients were calculated using two-facet (site and occasion), fully-crossed models and single-facet (occasion) models within each laboratory to assess MMN reliability. RESULTS G-coefficients calculated from two-facet models indicated fair (0.4 < G<=0.6) duration MMN reliability at electrode Fz, but poor (G < 0.4) double and frequency MMN reliability. Single-facet G-coefficients averaged across laboratory resulted in improved reliability (G > 0.5). MMN amplitude reliability was greater than latency reliability, and reliability with mastoid referencing significantly outperformed nose-referencing. CONCLUSIONS EEG preprocessing methods have an impact on the reliability of MMN amplitude. Within site MMN reliability can be excellent, consistent with prior single site studies. SIGNIFICANCE With standardized data collection and ERP processing, MMN can be reliably obtained in multisite studies, providing larger samples sizeswithin rare patient groups.
Collapse
Affiliation(s)
- Brian J Roach
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, United States; Center For PsychiatricNeuroscience, Feinstein Institute for Medical Research, North Shore-Long Island JewishHealth System, Manhasset, NY, United States; Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, United States
| | - Holly K Hamilton
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, CA, United States
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Atlanta VeteransAffairs Medical Center, Decatur, GA, United States
| | - Jason Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States; Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Margaret Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, United States
| | - Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscienceand Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Department of Psychology, Yale University, School of Medicine, New Haven, CT, United States
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, United States; Center For PsychiatricNeuroscience, Feinstein Institute for Medical Research, North Shore-Long Island JewishHealth System, Manhasset, NY, United States; Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, United States; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, United States
| | - Thomas H McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Larry Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, United States
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, CA, United States.
| |
Collapse
|
8
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|