1
|
Chung KH, Chang YS, Yen WT, Lin L, Abimannan S. Depression assessment using integrated multi-featured EEG bands deep neural network models: Leveraging ensemble learning techniques. Comput Struct Biotechnol J 2024; 23:1450-1468. [PMID: 38623563 PMCID: PMC11016871 DOI: 10.1016/j.csbj.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.
Collapse
Affiliation(s)
- Kuo-Hsuan Chung
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yue-Shan Chang
- National Taipei University, Sanxia District, New Taipei City 237, Taiwan
| | - Wei-Ting Yen
- National Taipei University, Sanxia District, New Taipei City 237, Taiwan
| | - Linen Lin
- Department of Psychiatry, En Chu Kong Hospital, Taiwan
| | - Satheesh Abimannan
- Amity School of Engineering and Technology, Amity University Maharashtra, Mumbai, India
| |
Collapse
|
2
|
Siddique F, Lee BK. Predicting adolescent psychopathology from early life factors: A machine learning tutorial. GLOBAL EPIDEMIOLOGY 2024; 8:100161. [PMID: 39279846 PMCID: PMC11402309 DOI: 10.1016/j.gloepi.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The successful implementation and interpretation of machine learning (ML) models in epidemiological studies can be challenging without an extensive programming background. We provide a didactic example of machine learning for risk prediction in this study by determining whether early life factors could be useful for predicting adolescent psychopathology. Methods In total, 9643 adolescents ages 9-10 from the Adolescent Brain and Cognitive Development (ABCD) Study were included in ML analysis to predict high Child Behavior Checklist (CBCL) scores (i.e., t-scores ≥ 60). ML models were constructed using a series of predictor combinations (prenatal, family history, sociodemographic) across 5 different algorithms. We assessed ML performance through sensitivity, specificity, F1-score, and area under the curve (AUC) metrics. Results A total of 1267 adolescents (13.1 %) were found to have high CBCL scores. The best performing algorithms were elastic net and gradient boosted trees. The best performing elastic net models included prenatal and family history factors (Sensitivity 0.654, Specificity 0.713; AUC 0.742, F1-score 0.401) and prenatal, family, history, and sociodemographic factors (Sensitivity 0.668, Specificity 0.704; AUC 0.745, F1-score 0.402). Across all 5 ML algorithms, family history factors (e.g., either parent had nervous breakdowns, trouble holding jobs/fights/police encounters, and counseling for mental issues) and sociodemographic covariates (e.g., maternal age, child's sex, caregiver income and caregiver education) tended to be better predictors of adolescent psychopathology. The most important prenatal predictors were unplanned pregnancy, birth complications, and pregnancy complications. Conclusion Our results suggest that inclusion of prenatal, family history, and sociodemographic factors in ML models can generate moderately accurate predictions of adolescent psychopathology. Issues associated with model overfitting, hyperparameter tuning, and system seed setting should be considered throughout model training, testing, and validation. Future early risk predictions models may improve with the inclusion of additional relevant covariates.
Collapse
Affiliation(s)
- Faizaan Siddique
- Department of Epidemiology and Biostatistics, School of Public Health, Drexel University, Philadelphia, PA, United States of America
- Conestoga High School, Berwyn, PA, United States of America
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, School of Public Health, Drexel University, Philadelphia, PA, United States of America
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Yoo A, Li F, Youn J, Guan J, Guyer AE, Hostinar CE, Tagkopoulos I. Prediction of adolescent depression from prenatal and childhood data from ALSPAC using machine learning. Sci Rep 2024; 14:23282. [PMID: 39375420 PMCID: PMC11458604 DOI: 10.1038/s41598-024-72158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Depression is a major cause of disability and mortality for young people worldwide and is typically first diagnosed during adolescence. In this work, we present a machine learning framework to predict adolescent depression occurring between ages 12 and 18 years using environmental, biological, and lifestyle features of the child, mother, and partner from the child's prenatal period to age 10 years using data from 8467 participants enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). We trained and compared several cross-sectional and longitudinal machine learning techniques and found the resulting models predicted adolescent depression with recall (0.59 ± 0.20), specificity (0.61 ± 0.17), and accuracy (0.64 ± 0.13), using on average 39 out of the 885 total features (4.4%) included in the models. The leading informative features in our predictive models of adolescent depression were female sex, parental depression and anxiety, and exposure to stressful events or environments. This work demonstrates how using a broad array of evidence-driven predictors from early in life can inform the development of preventative decision support tools to assist in the early detection of risk for mental illness.
Collapse
Affiliation(s)
- Arielle Yoo
- Department of Computer Science, University of California - Davis, Davis, USA
- Genome Center, University of California - Davis, Davis, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, USA
| | - Fangzhou Li
- Department of Computer Science, University of California - Davis, Davis, USA
- Genome Center, University of California - Davis, Davis, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, USA
| | - Jason Youn
- Department of Computer Science, University of California - Davis, Davis, USA
- Genome Center, University of California - Davis, Davis, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, USA
| | - Joanna Guan
- Department of Psychology, University of California - Davis, Davis, USA
- Center for Mind and Brain, University of California - Davis, Davis, USA
| | - Amanda E Guyer
- Center for Mind and Brain, University of California - Davis, Davis, USA
- Department of Human Ecology, University of California - Davis, Davis, USA
| | - Camelia E Hostinar
- Department of Psychology, University of California - Davis, Davis, USA
- Center for Mind and Brain, University of California - Davis, Davis, USA
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California - Davis, Davis, USA.
- Genome Center, University of California - Davis, Davis, USA.
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, USA.
| |
Collapse
|
4
|
Li R, Huang Y, Wang Y, Song C, Lai X. MRI-based deep learning for differentiating between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2024; 345:111907. [PMID: 39357171 DOI: 10.1016/j.pscychresns.2024.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Mood disorders, particularly bipolar disorder (BD) and major depressive disorder (MDD), manifest changes in brain structure that can be detected using structural magnetic resonance imaging (MRI). Although structural MRI is a promising diagnostic tool, prevailing diagnostic criteria for BD and MDD are predominantly subjective, sometimes leading to misdiagnosis. This challenge is compounded by a limited understanding of the underlying causes of these disorders. In response, we present SE-ResNet, a Residual Network (ResNet)-based framework designed to discriminate between BD, MDD, and healthy controls (HC) using structural MRI data. Our approach extends the traditional Squeeze-and-Excitation (SE) layer by incorporating a dedicated branch for spatial attention map generation, equipped with soft-pooling, a 7 × 7 convolution, and a sigmoid function, intended to detect complex spatial patterns. The fusion of channel and spatial attention maps through element-wise addition aims to enhance the model's ability to discriminate features. Unlike conventional methods that use max-pooling for downsampling, our methodology employs soft-pooling, which aims to preserve a richer representation of input features and reduce data loss. When evaluated on a proprietary dataset comprising 303 subjects, the SE-ResNet achieved an accuracy of 85.8 %, a recall of 85.7 %, a precision of 85.9 %, and an F1 score of 85.8 %. These performance metrics suggest that the SE-ResNet framework has potential as a tool for detecting psychiatric disorders using structural MRI data.
Collapse
Affiliation(s)
- Ruipeng Li
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China.
| | - Yueqi Huang
- Seventh People's Hospital of Hangzhou, Hangzhou, 310013, China
| | - Yanbin Wang
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China
| | - Chen Song
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China.
| | - Xiaobo Lai
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Park Y, Park S, Lee M. Effectiveness of artificial intelligence in detecting and managing depressive disorders: Systematic review. J Affect Disord 2024; 361:445-456. [PMID: 38889858 DOI: 10.1016/j.jad.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/27/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES This study underscores the importance of exploring AI's creative applications in treating depressive disorders to revolutionize mental health care. Through innovative integration of AI technologies, the research confirms their positive effects on preventing, diagnosing, and treating depression. The systematic review establishes an evidence base for AI in depression management, offering directions for effective interventions. METHODS This systematic literature review investigates the effectiveness of AI in depression management by analyzing studies from January 1, 2017, to May 31, 2022. Utilizing search engines like IEEE Xplore, PubMed, and Web of Science, the review focused on keywords such as Depression/Mental Health, Machine Learning/Artificial Intelligence, and Prediction/Diagnosis. The analysis of 95 documents involved classification based on use, data type, and algorithm type. RESULTS The study revealed that AI in depression management excelled in accuracy, particularly in monitoring and prediction. Biomarker-derived data demonstrated the highest accuracy, with the CNN algorithm proving most effective. The findings affirm the therapeutic benefits of AI, including treatment, detection, and disease prediction, highlighting its potential in analyzing monitored data for depression management. LIMITATIONS This study exclusively examined the application of AI in individuals with depressive disorders. Interpretation should be cautious due to the limited scope of subjects to this specific population. CONCLUSIONS To introduce digital healthcare and therapies for ongoing depression management, it's crucial to present empirical evidence on the medical fee payment system, safety, and efficacy. These findings support enhanced medical accessibility through digital healthcare, offering personalized disease management for patients seeking non-face-to-face treatment.
Collapse
Affiliation(s)
- Yoonseo Park
- Department of Convergence Healthcare Medicine, Ajou University, Suwon, South Korea
| | - Sewon Park
- Department of Medical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Munjae Lee
- Department of Medical Science, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
6
|
Metin SZ, Uyulan Ç, Farhad S, Ergüzel TT, Türk Ö, Metin B, Çerezci Ö, Tarhan N. Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy. Clin EEG Neurosci 2024:15500594241273181. [PMID: 39251228 DOI: 10.1177/15500594241273181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.
Collapse
Affiliation(s)
| | - Çağlar Uyulan
- Department of Mechanical Engineering, Katip Çelebi University, İzmir, Turkey
| | - Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Türker Tekin Ergüzel
- Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| | - Ömer Türk
- Department of Computer Technologies, Artuklu University, Mardin, Turkey
| | - Barış Metin
- Neurology Department, Medical Faculty, Uskudar University, Istanbul, Turkey
| | - Önder Çerezci
- Department of Physioterapy and Rehabilitation, Faculty of Health SciencesUskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
7
|
Mirjebreili SM, Shalbaf R, Shalbaf A. Prediction of treatment response in major depressive disorder using a hybrid of convolutional recurrent deep neural networks and effective connectivity based on EEG signal. Phys Eng Sci Med 2024; 47:633-642. [PMID: 38358619 DOI: 10.1007/s13246-024-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, we have developed a novel method based on deep learning and brain effective connectivity to classify responders and non-responders to selective serotonin reuptake inhibitors (SSRIs) antidepressants in major depressive disorder (MDD) patients prior to the treatment using EEG signal. The effective connectivity of 30 MDD patients was determined by analyzing their pretreatment EEG signals, which were then concatenated into delta, theta, alpha, and beta bands and transformed into images. Using these images, we then fine tuned a hybrid Convolutional Neural Network that is enhanced with bidirectional Long Short-Term Memory cells based on transfer learning. The Inception-v3, ResNet18, DenseNet121, and EfficientNet-B0 models are implemented as base models. Finally, the models are followed by BiLSTM and dense layers in order to classify responders and non-responders to SSRI treatment. Results showed that the EfficiencyNet-B0 has the highest accuracy of 98.33, followed by DensNet121, ResNet18 and Inception-v3. Therefore, a new method was proposed in this study that uses deep learning models to extract both spatial and temporal features automatically, which will improve classification results. The proposed method provides accurate identification of MDD patients who are responding, thereby reducing the cost of medical facilities and patient care.
Collapse
Affiliation(s)
| | - Reza Shalbaf
- Institute for Cognitive Science Studies, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ajith M, Aycock DM, Tone EB, Liu J, Misiura MB, Ellis R, Plis SM, King TZ, Dotson VM, Calhoun V. A deep learning approach for mental health quality prediction using functional network connectivity and assessment data. Brain Imaging Behav 2024; 18:630-645. [PMID: 38340285 DOI: 10.1007/s11682-024-00857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model's performance evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group. The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health. Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms in advancing our understanding and management of mental health.
Collapse
Affiliation(s)
- Meenu Ajith
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, GA, 30303, USA.
| | - Dawn M Aycock
- Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, P.O. Box 4019, Atlanta, GA, 30302, USA
| | - Erin B Tone
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Jingyu Liu
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Departments of Neurology, Emory University, 615 Michael Street, Suite 505, Atlanta, GA, 30322, USA
| | - Rebecca Ellis
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Sergey M Plis
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA, 30302-5010, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, GA, 30303, USA
| |
Collapse
|
9
|
Brookshire G, Kasper J, Blauch NM, Wu YC, Glatt R, Merrill DA, Gerrol S, Yoder KJ, Quirk C, Lucero C. Data leakage in deep learning studies of translational EEG. Front Neurosci 2024; 18:1373515. [PMID: 38765672 PMCID: PMC11099244 DOI: 10.3389/fnins.2024.1373515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
A growing number of studies apply deep neural networks (DNNs) to recordings of human electroencephalography (EEG) to identify a range of disorders. In many studies, EEG recordings are split into segments, and each segment is randomly assigned to the training or test set. As a consequence, data from individual subjects appears in both the training and the test set. Could high test-set accuracy reflect data leakage from subject-specific patterns in the data, rather than patterns that identify a disease? We address this question by testing the performance of DNN classifiers using segment-based holdout (in which segments from one subject can appear in both the training and test set), and comparing this to their performance using subject-based holdout (where all segments from one subject appear exclusively in either the training set or the test set). In two datasets (one classifying Alzheimer's disease, and the other classifying epileptic seizures), we find that performance on previously-unseen subjects is strongly overestimated when models are trained using segment-based holdout. Finally, we survey the literature and find that the majority of translational DNN-EEG studies use segment-based holdout. Most published DNN-EEG studies may dramatically overestimate their classification performance on new subjects.
Collapse
Affiliation(s)
| | - Jake Kasper
- SPARK Neuro Inc., New York, NY, United States
| | - Nicholas M. Blauch
- SPARK Neuro Inc., New York, NY, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | | | - Ryan Glatt
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, United States
| | - David A. Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, United States
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
- Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | | | | | - Colin Quirk
- SPARK Neuro Inc., New York, NY, United States
| | - Ché Lucero
- SPARK Neuro Inc., New York, NY, United States
| |
Collapse
|
10
|
Zhang L, Wang L, Yu M, Wu R, Steffens DC, Potter GG, Liu M. Hybrid representation learning for cognitive diagnosis in late-life depression over 5 years with structural MRI. Med Image Anal 2024; 94:103135. [PMID: 38461654 PMCID: PMC11016377 DOI: 10.1016/j.media.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/14/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
Collapse
Affiliation(s)
- Lintao Zhang
- School of Information Science and Engineering, Linyi University, Linyi, Shandong 27600, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Minhui Yu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Rong Wu
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, United States
| | - David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
11
|
Ellis CA, Sancho ML, Miller RL, Calhoun VD. Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585728. [PMID: 38562835 PMCID: PMC10983917 DOI: 10.1101/2024.03.19.585728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Deep learning methods are increasingly being applied to raw electroencephalogram (EEG) data. However, if these models are to be used in clinical or research contexts, methods to explain them must be developed, and if these models are to be used in research contexts, methods for combining explanations across large numbers of models must be developed to counteract the inherent randomness of existing training approaches. Model visualization-based explainability methods for EEG involve structuring a model architecture such that its extracted features can be characterized and have the potential to offer highly useful insights into the patterns that they uncover. Nevertheless, model visualization-based explainability methods have been underexplored within the context of multichannel EEG, and methods to combine their explanations across folds have not yet been developed. In this study, we present two novel convolutional neural network-based architectures and apply them for automated major depressive disorder diagnosis. Our models obtain slightly lower classification performance than a baseline architecture. However, across 50 training folds, they find that individuals with MDD exhibit higher β power, potentially higher δ power, and higher brain-wide correlation that is most strongly represented within the right hemisphere. This study provides multiple key insights into MDD and represents a significant step forward for the domain of explainable deep learning applied to raw EEG. We hope that it will inspire future efforts that will eventually enable the development of explainable EEG deep learning models that can contribute both to clinical care and novel medical research discoveries.
Collapse
Affiliation(s)
- Charles A Ellis
- Center for Translational Research in Neuroimaging and Data Science at Georgia State University, the Georgia Institute of Technology and Emory University, Atlanta GA 30303, USA
| | - Martina Lapera Sancho
- Center for Translational Research in Neuroimaging and Data Science at Georgia State University, the Georgia Institute of Technology and Emory University, Atlanta GA 30303, USA
| | - Robyn L Miller
- Center for Translational Research in Neuroimaging and Data Science at Georgia State University, the Georgia Institute of Technology and Emory University, Atlanta GA 30303, USA
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science at Georgia State University, the Georgia Institute of Technology and Emory University, Atlanta GA 30303, USA
- Department of Computer Science, Georgia State University, Atlanta GA 30303, USA
| |
Collapse
|
12
|
Ho CSH, Wang J, Tay GWN, Ho R, Husain SF, Chiang SK, Lin H, Cheng X, Li Z, Chen N. Interpretable deep learning model for major depressive disorder assessment based on functional near-infrared spectroscopy. Asian J Psychiatr 2024; 92:103901. [PMID: 38183738 DOI: 10.1016/j.ajp.2023.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) affects a substantial number of individuals worldwide. New approaches are required to improve the diagnosis of MDD, which relies heavily on subjective reports of depression-related symptoms. AIM Establish an objective measurement and evaluation of MDD. METHODS Functional near-infrared spectroscopy (fNIRS) was used to investigate the brain activity of MDD patients and healthy controls (HCs). Leveraging a sizeable fNIRS dataset of 263 HCs and 251 patients with MDD, including mild to moderate MDD (mMDD; n = 139) and severe MDD (sMDD; n = 77), we developed an interpretable deep learning model for screening MDD and staging its severity. RESULTS The proposed deep learning model achieved an accuracy of 80.9% in diagnostic classification and 78.6% in severity staging for MDD. We discerned five channels with the most significant contribution to MDD identification through Shapley additive explanations (SHAP), located in the right medial prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, and left posterior superior frontal cortex. The findings corresponded closely to the features of haemoglobin responses between HCs and individuals with MDD, as we obtained a good discriminative ability for MDD using cortical channels that are related to the disorder, namely the frontal and temporal cortical channels with areas under the curve of 0.78 and 0.81, respectively. CONCLUSION Our study demonstrated the potential of integrating the fNIRS system with artificial intelligence algorithms to classify and stage MDD in clinical settings using a large dataset. This approach can potentially enhance MDD assessment and provide insights for clinical diagnosis and intervention.
Collapse
Affiliation(s)
- Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Hospital, Singapore.
| | - Jinyuan Wang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Gabrielle Wann Nii Tay
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Hospital, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Syeda F Husain
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Soon Kiat Chiang
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Hospital, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Hai Lin
- Department of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao Cheng
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Zhifei Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Nanguang Chen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
13
|
Gupta C, Khullar V, Goyal N, Saini K, Baniwal R, Kumar S, Rastogi R. Cross-Silo, Privacy-Preserving, and Lightweight Federated Multimodal System for the Identification of Major Depressive Disorder Using Audio and Electroencephalogram. Diagnostics (Basel) 2023; 14:43. [PMID: 38201350 PMCID: PMC10795654 DOI: 10.3390/diagnostics14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In this day and age, depression is still one of the biggest problems in the world. If left untreated, it can lead to suicidal thoughts and attempts. There is a need for proper diagnoses of Major Depressive Disorder (MDD) and evaluation of the early stages to stop the side effects. Early detection is critical to identify a variety of serious conditions. In order to provide safe and effective protection to MDD patients, it is crucial to automate diagnoses and make decision-making tools widely available. Although there are various classification systems for the diagnosis of MDD, no reliable, secure method that meets these requirements has been established to date. In this paper, a federated deep learning-based multimodal system for MDD classification using electroencephalography (EEG) and audio datasets is presented while meeting data privacy requirements. The performance of the federated learning (FL) model was tested on independent and identically distributed (IID) and non-IID data. The study began by extracting features from several pre-trained models and ultimately decided to use bidirectional short-term memory (Bi-LSTM) as the base model, as it had the highest validation accuracy of 91% compared to a convolutional neural network and LSTM with 85% and 89% validation accuracy on audio data, respectively. The Bi-LSTM model also achieved a validation accuracy of 98.9% for EEG data. The FL method was then used to perform experiments on IID and non-IID datasets. The FL-based multimodal model achieved an exceptional training and validation accuracy of 99.9% when trained and evaluated on both IID and non-IIID datasets. These results show that the FL multimodal system performs almost as well as the Bi-LSTM multimodal system and emphasize its suitability for processing IID and non-IIID data. Several clients were found to perform better than conventional pre-trained models in a multimodal framework for federated learning using EEG and audio datasets. The proposed framework stands out from other classification techniques for MDD due to its special features, such as multimodality and data privacy for edge machines with limited resources. Due to these additional features, the framework concept is the most suitable alternative approach for the early classification of MDD patients.
Collapse
Affiliation(s)
- Chetna Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140417, Punjab, India; (C.G.); (V.K.)
| | - Vikas Khullar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140417, Punjab, India; (C.G.); (V.K.)
| | - Nitin Goyal
- Department of Computer Science and Engineering, School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kirti Saini
- Department of Electronics and Communication Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Ritu Baniwal
- Department of Computer Science, Jyotiba Phule Government College, Radaur, Yamunanagar 135133, Haryana, India;
| | - Sushil Kumar
- Department of Computer Science and Engineering, School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Rashi Rastogi
- Department of Computer Applications, Sir Chottu Ram Institute of Engineering & Technology, Ch. Charan Singh University, Meerut 250001, Uttar Pradesh, India;
| |
Collapse
|
14
|
Ellis CA, Sattiraju A, Miller RL, Calhoun VD. Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538813. [PMID: 37873255 PMCID: PMC10592604 DOI: 10.1101/2023.04.29.538813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to manually engineered features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance, in this case, is the use of transfer learning. While a number of studies have presented transfer learning approaches for manually engineered EEG features, relatively few approaches have been developed for raw resting-state EEG. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available single-channel sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. Statistical testing reveals that our approach significantly improves the performance of our model (p < 0.05), and we also find that the performance of our approach exceeds that of many previous studies using both engineered features and raw EEG. We further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses, identifying key frequency bands and channels utilized across models. Our proposed approach represents a significant step forward for the domain of raw resting-state EEG classification and has broader implications for use with other electrophysiology and time-series modalities. Importantly, it has the potential to expand the use of deep learning methods across a greater variety of raw EEG datasets and lead to the development of more reliable EEG classifiers.
Collapse
Affiliation(s)
- Charles A Ellis
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, Emory University Atlanta, USA
| | - Abhinav Sattiraju
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, Emory University Atlanta, USA
| | - Robyn L Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, Emory University Atlanta, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, Emory University Atlanta, USA
| |
Collapse
|
15
|
Lee HT, Cheon HR, Lee SH, Shim M, Hwang HJ. Risk of data leakage in estimating the diagnostic performance of a deep-learning-based computer-aided system for psychiatric disorders. Sci Rep 2023; 13:16633. [PMID: 37789047 PMCID: PMC10547830 DOI: 10.1038/s41598-023-43542-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Deep-learning approaches with data augmentation have been widely used when developing neuroimaging-based computer-aided diagnosis (CAD) systems. To prevent the inflated diagnostic performance caused by data leakage, a correct cross-validation (CV) method should be employed, but this has been still overlooked in recent deep-learning-based CAD studies. The goal of this study was to investigate the impact of correct and incorrect CV methods on the diagnostic performance of deep-learning-based CAD systems after data augmentation. To this end, resting-state electroencephalogram (EEG) data recorded from post-traumatic stress disorder patients and healthy controls were augmented using a cropping method with different window sizes, respectively. Four different CV approaches were used to estimate the diagnostic performance of the CAD system, i.e., subject-wise CV (sCV), overlapped sCV (oSCV), trial-wise CV (tCV), and overlapped tCV (otCV). Diagnostic performances were evaluated using two deep-learning models based on convolutional neural network. Data augmentation can increase the performance with all CVs, but inflated diagnostic performances were observed when using incorrect CVs (tCV and otCV) due to data leakage. Therefore, the correct CV (sCV and osCV) should be used to develop a deep-learning-based CAD system. We expect that our investigation can provide deep-insight for researchers who plan to develop neuroimaging-based CAD systems for psychiatric disorders using deep-learning algorithms with data augmentation.
Collapse
Affiliation(s)
- Hyung-Tak Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Hye-Ran Cheon
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Seung-Hwan Lee
- Psychiatry Department, Ilsan Paik Hospital, Inje University, Goyang, Republic of Korea
- Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea
| | - Miseon Shim
- Department of Artificial Intelligence, Tech University of Korea, Siheung, Republic of Korea.
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
16
|
Gour N, Hassan T, Owais M, Ganapathi II, Khanna P, Seghier ML, Werghi N. Transformers for autonomous recognition of psychiatric dysfunction via raw and imbalanced EEG signals. Brain Inform 2023; 10:25. [PMID: 37689601 PMCID: PMC10492733 DOI: 10.1186/s40708-023-00201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 09/11/2023] Open
Abstract
Early identification of mental disorders, based on subjective interviews, is extremely challenging in the clinical setting. There is a growing interest in developing automated screening tools for potential mental health problems based on biological markers. Here, we demonstrate the feasibility of an AI-powered diagnosis of different mental disorders using EEG data. Specifically, this work aims to classify different mental disorders in the following ecological context accurately: (1) using raw EEG data, (2) collected during rest, (3) during both eye open, and eye closed conditions, (4) at short 2-min duration, (5) on participants with different psychiatric conditions, (6) with some overlapping symptoms, and (7) with strongly imbalanced classes. To tackle this challenge, we designed and optimized a transformer-based architecture, where class imbalance is addressed through focal loss and class weight balancing. Using the recently released TDBRAIN dataset (n= 1274 participants), our method classifies each participant as either a neurotypical or suffering from major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), subjective memory complaints (SMC), or obsessive-compulsive disorder (OCD). We evaluate the performance of the proposed architecture on both the window-level and the patient-level. The classification of the 2-min raw EEG data into five classes achieved a window-level accuracy of 63.2% and 65.8% for open and closed eye conditions, respectively. When the classification is limited to three main classes (MDD, ADHD, SMC), window level accuracy improved to 75.1% and 69.9% for eye open and eye closed conditions, respectively. Our work paves the way for developing novel AI-based methods for accurately diagnosing mental disorders using raw resting-state EEG data.
Collapse
Affiliation(s)
- Neha Gour
- Khalifa University Center for Autonomous Robotic System and Cyber-Physical Security System Center, Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Taimur Hassan
- Khalifa University Center for Autonomous Robotic System and Cyber-Physical Security System Center, Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Departement of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Muhammad Owais
- Khalifa University Center for Autonomous Robotic System and Cyber-Physical Security System Center, Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Iyyakutti Iyappan Ganapathi
- Khalifa University Center for Autonomous Robotic System and Cyber-Physical Security System Center, Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Pritee Khanna
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| | - Mohamed L Seghier
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Naoufel Werghi
- Khalifa University Center for Autonomous Robotic System and Cyber-Physical Security System Center, Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Soni S, Seal A, Mohanty SK, Sakurai K. Electroencephalography signals-based sparse networks integration using a fuzzy ensemble technique for depression detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Cao B, Yang E, Wang L, Mo Z, Steffens DC, Zhang H, Liu M, Potter GG. Brain morphometric features predict depression symptom phenotypes in late-life depression using a deep learning model. Front Neurosci 2023; 17:1209906. [PMID: 37539384 PMCID: PMC10394384 DOI: 10.3389/fnins.2023.1209906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Objectives Our objective was to use deep learning models to identify underlying brain regions associated with depression symptom phenotypes in late-life depression (LLD). Participants Diagnosed with LLD (N = 116) and enrolled in a prospective treatment study. Design Cross-sectional. Measurements Structural magnetic resonance imaging (sMRI) was used to predict five depression symptom phenotypes from the Hamilton and MADRS depression scales previously derived from factor analysis: (1) Anhedonia, (2) Suicidality, (3) Appetite, (4) Sleep Disturbance, and (5) Anxiety. Our deep learning model was deployed to predict each factor score via learning deep feature representations from 3D sMRI patches in 34 a priori regions-of-interests (ROIs). ROI-level prediction accuracy was used to identify the most discriminative brain regions associated with prediction of factor scores representing each of the five symptom phenotypes. Results Factor-level results found significant predictive models for Anxiety and Suicidality factors. ROI-level results suggest the most LLD-associated discriminative regions in predicting all five symptom factors were located in the anterior cingulate and orbital frontal cortex. Conclusions We validated the effectiveness of using deep learning approaches on sMRI for predicting depression symptom phenotypes in LLD. We were able to identify deep embedded local morphological differences in symptom phenotypes in the brains of those with LLD, which is promising for symptom-targeted treatment of LLD. Future research with machine learning models integrating multimodal imaging and clinical data can provide additional discriminative information.
Collapse
Affiliation(s)
- Bing Cao
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Erkun Yang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Han Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
19
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
20
|
Tasci G, Gun MV, Keles T, Tasci B, Barua PD, Tasci I, Dogan S, Baygin M, Palmer EE, Tuncer T, Ooi CP, Acharya UR. QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals. CHAOS, SOLITONS & FRACTALS 2023; 172:113472. [DOI: 10.1016/j.chaos.2023.113472] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
21
|
Sakib N, Islam MK, Faruk T. Machine Learning Model for Computer-Aided Depression Screening among Young Adults Using Wireless EEG Headset. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:1701429. [PMID: 37293375 PMCID: PMC10247322 DOI: 10.1155/2023/1701429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis, variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data filtered at different band frequencies were applied to KNN and SVM classifiers with different kernels. At AB band (8-30 Hz) frequency, 98.43 ± 0.15% accuracy was achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using a KNN classifier. And with the same features and classifier overall accuracy = 98.10 ± 0.11, NPV = 0.977, precision = 0.984, sensitivity = 0.984, specificity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and testing with 5-fold CV. From the findings, it can be concluded that EEG data from an Emotiv headset can be used to detect depression with the proposed method.
Collapse
Affiliation(s)
- Nazmus Sakib
- Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
| | - Md Kafiul Islam
- Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
| | - Tasnuva Faruk
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Department of Public Health, Independent University Bangladesh (IUB), Dhaka, Bangladesh
| |
Collapse
|
22
|
Xiong X, Feng J, Zhang Y, Wu D, Yi S, Wang C, Liu R, He J. Improved HHT-microstate analysis of EEG in nicotine addicts. Front Neurosci 2023; 17:1174399. [PMID: 37292161 PMCID: PMC10244792 DOI: 10.3389/fnins.2023.1174399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background Substance addiction is a chronic disease which causes great harm to modern society and individuals. At present, many studies have applied EEG analysis methods to the substance addiction detection and treatment. As a tool to describe the spatio-temporal dynamic characteristics of large-scale electrophysiological data, EEG microstate analysis has been widely used, which is an effective method to study the relationship between EEG electrodynamics and cognition or disease. Methods To study the difference of EEG microstate parameters of nicotine addicts at each frequency band, we combine an improved Hilbert Huang Transformation (HHT) decomposition with microstate analysis, which is applied to the EEG of nicotine addicts. Results After using improved HHT-Microstate method, we notice that there is significant difference in EEG microstates of nicotine addicts between viewing smoke pictures group (smoke) and viewing neutral pictures group (neutral). Firstly, there is a significant difference in EEG microstates at full-frequency band between smoke and neutral group. Compared with the FIR-Microstate method, the similarity index of microstate topographic maps at alpha and beta bands had significant differences between smoke and neutral group. Secondly, we find significant class × group interactions for microstate parameters at delta, alpha and beta bands. Finally, the microstate parameters at delta, alpha and beta bands obtained by the improved HHT-microstate analysis method are selected as features for classification and detection under the Gaussian kernel support vector machine. The highest accuracy is 92% sensitivity is 94% and specificity is 91%, which can more effectively detect and identify addiction diseases than FIR-Microstate and FIR-Riemann methods. Conclusion Thus, the improved HHT-Microstate analysis method can effectively identify substance addiction diseases and provide new ideas and insights for the brain research of nicotine addiction.
Collapse
Affiliation(s)
- Xin Xiong
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Jiannan Feng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Yaru Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Di Wu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Sanli Yi
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Chunwu Wang
- College of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, China
| | - Ruixiang Liu
- Department of Clinical Psychology, Second People's Hospital of Yunnan, Kunming, China
| | - Jianfeng He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
23
|
Andrew J, Rudra M, Eunice J, Belfin RV. Artificial intelligence in adolescents mental health disorder diagnosis, prognosis, and treatment. Front Public Health 2023; 11:1110088. [PMID: 37064712 PMCID: PMC10102508 DOI: 10.3389/fpubh.2023.1110088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- J. Andrew
- Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
- *Correspondence: J. Andrew
| | - Madhuria Rudra
- Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jennifer Eunice
- Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - R. V. Belfin
- BRIC, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
24
|
KAYA Ş, TASCİ B. Electroencephalogram-Based Major Depressive Disorder Classification Using Convolutional Neural Network and Transfer Learning. TURKISH JOURNAL OF SCIENCE AND TECHNOLOGY 2023; 18:207-214. [DOI: 10.55525/tjst.1242881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Major Depressive Disorder (MDD) is a worldwide common disease with a high risk of becoming chronic, suicidal, and recurrence, with serious consequences such as loss of workforce. Objective tests such as EEG, EKG, brain MRI, and Doppler USG are used to aid diagnosis in MDD detection. With advances in artificial intelligence and sample data from objective testing for depression, an early depression detection system can be developed as a way to reduce the number of individuals affected by MDD. In this study, MDD was tried to be diagnosed automatically with a deep learning-based approach using EEG signals. In the study, 3-channel modma dataset was used as a dataset. Modma dataset consists of EEG signals of 29 controls and 26 MDD patients. ResNet18 convolutional neural network was used for feature extraction. The ReliefF algorithm is used for feature selection. In the classification phase, kNN was preferred. The accuracy was yielded 95.65% for Channel 1, 87.00% for Channel 2, and 86.94% for Channel 3.
Collapse
Affiliation(s)
- Şuheda KAYA
- Elazığ Ruh Sağlığı ve Hastalıkları Hastanesi
| | | |
Collapse
|
25
|
Yang L, Wang Y, Zhu X, Yang X, Zheng C. A gated temporal-separable attention network for EEG-based depression recognition. Comput Biol Med 2023; 157:106782. [PMID: 36931203 DOI: 10.1016/j.compbiomed.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Depression, a common mental illness worldwide, needs to be diagnosed and cured at an early stage. To assist clinical diagnosis, an EEG-based deep learning frame, which is named the gated temporal-separable attention network (GTSAN), is proposed in this paper for depression recognition. GTSAN model extracts discriminative information from EEG recordings in two ways. On the one hand, the gated recurrent unit (GRU) is used in the GTSAN model to capture the EEG historical information to form the features. On the other hand, the model digs the multilevel information by using an improved version of temporal convolutional network (TCN), called temporal-separable convolution network (TSCN), which applies causal convolution and dilated convolution to extract features from fine to coarse scales. The TSCN and GRU features can be produced in parallel. Finally, the new model introduces the attention mechanism to give different weights to these features, allowing them to be used to identify depression more effectively. Experiments on two depression datasets have demonstrated that the proposed model can mine potential depression patterns in data and obtain high recognition accuracies. The proposed model provides the possibility of using an EEG-based system to assist for diagnosing depression.
Collapse
Affiliation(s)
- Lijun Yang
- School of Mathematics and Statistics, Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, Henan University, Kaifeng 475004, China; Center for Applied Mathematics of Henan Province, Henan University, Zhengzhou, 450046, China.
| | - Yixin Wang
- School of Mathematics and Statistics, Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, Henan University, Kaifeng 475004, China.
| | - Xiangru Zhu
- Institute of Cognition, Brain, and Health, Henan University, Kaifeng 475004, China.
| | - Xiaohui Yang
- School of Mathematics and Statistics, Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, Henan University, Kaifeng 475004, China; Center for Applied Mathematics of Henan Province, Henan University, Zhengzhou, 450046, China.
| | - Chen Zheng
- School of Mathematics and Statistics, Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, Henan University, Kaifeng 475004, China; Center for Applied Mathematics of Henan Province, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
26
|
Zhang J, Xu B, Yin H. Depression screening using hybrid neural network. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-16. [PMID: 37362740 PMCID: PMC9992920 DOI: 10.1007/s11042-023-14860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Depression is a common cause of increased suicides worldwide, and studies have shown that the number of patients suffering from major depressive disorder (MDD) increased several-fold during the COVID-19 pandemic, highlighting the importance of disease detection and depression management, while increasing the need for effective diagnostic tools. In recent years, machine learning and deep learning methods based on electroencephalography (EEG) have achieved significant results in the field of automatic depression detection. However, most current studies have focused on a small number of EEG signal channels, and experimental data require special processing by professionals. In this study, 128 channels of EEG signals were simply filtered and 24-fold leave-one-out cross-validation experiments were performed using 2DCNN-LSTM classifier, support vector machine, K-nearest neighbor and decision tree. The current results show that the proposed 2DCNN-LSTM model has an average classification accuracy of 95.1% with an AUC of 0.98 for depression detection of 6-second participant EEG signals, and the model is much better than 72.05%, 79.7% and 79.49% for support vector machine, K nearest neighbor and decision tree. In addition, we found that the model achieved a 100% probability of correctly classifying the EEG signals of 300-second participants.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Baomin Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Hongfeng Yin
- School of Computer and Information Technology, Cangzhou Jiaotong College, Cangzhou, Hebei China
| |
Collapse
|
27
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
28
|
Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern Methods of Diagnostics and Treatment of Neurodegenerative Diseases and Depression. Diagnostics (Basel) 2023; 13:573. [PMID: 36766678 PMCID: PMC9914271 DOI: 10.3390/diagnostics13030573] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
This paper discusses the promising areas of research into machine learning applications for the prevention and correction of neurodegenerative and depressive disorders. These two groups of disorders are among the leading causes of decline in the quality of life in the world when estimated using disability-adjusted years. Despite decades of research, the development of new approaches for the assessment (especially pre-clinical) and correction of neurodegenerative diseases and depressive disorders remains among the priority areas of research in neurophysiology, psychology, genetics, and interdisciplinary medicine. Contemporary machine learning technologies and medical data infrastructure create new research opportunities. However, reaching a consensus on the application of new machine learning methods and their integration with the existing standards of care and assessment is still a challenge to overcome before the innovations could be widely introduced to clinics. The research on the development of clinical predictions and classification algorithms contributes towards creating a unified approach to the use of growing clinical data. This unified approach should integrate the requirements of medical professionals, researchers, and governmental regulators. In the current paper, the current state of research into neurodegenerative and depressive disorders is presented.
Collapse
Affiliation(s)
- Natalia Shusharina
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Denis Yukhnenko
- Department of Social Security and Humanitarian Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Stepan Botman
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Viktor Sapunov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Vladimir Savinov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Gleb Kamyshov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Dmitry Sayapin
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Igor Voznyuk
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Department of Neurology, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
29
|
Emre İE, Erol Ç, Taş C, Tarhan N. Multi-class classification model for psychiatric disorder discrimination. Int J Med Inform 2023; 170:104926. [PMID: 36442444 DOI: 10.1016/j.ijmedinf.2022.104926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Physicians follow-up a symptom-based approach in the diagnosis of psychiatric diseases. According to this approach, a process based on internationally valid diagnostic tools such as The Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Classification of Diseases (ICD), patient reports and the observation and experience of the physician is monitored. As in other fields of medicine, the search for biomarkers that can be used in processes related to diseases continues in psychiatry and various researches are carried out in this field. OBJECTIVES Within the scope of this study, a dataset containing electroencephalogram (EEG) measurements of individuals diagnosed with different psychiatric diseases were analyzed by machine learning methods and the diseases were differentiated/classified with the models obtained. Thus, it was investigated whether EEG data could be a biomarker for psychiatric diseases. MATERIALS AND METHODS In the dataset analyzed within the scope of the study, for 550 patients (81 bipolar disorder, 95 attention deficit and hyperactivity disorder - ADHD, 67 depression, 34 obsessive compulsive disorder - OCD, 75 opioid, 146 posttraumatic stress disorder - PTSD, 52 schizophrenia) and 84 healthy individuals, there are 634 samples (rows), 77 variables (columns) in total. 76 of the variables consist of absolute power values belonging to 4 frequency bands (alpha, beta, delta, theta) collected from 19 different electrodes. 80 % of the dataset was used for training the models and 20 % of the data was used for testing the performance of the models. The 5-fold cross validation (CV) method, which repeats 3 times in the training dataset, was used and with this method, the hyperparameters used in the models were also optimized. Different models have been established with the selected hyperparameters and the performance of these models has been tested with the test dataset. C5.0, random forest (RF), support vector machine (SVM) and artificial neural networks (ANN) were used to build the models. RESULTS Within the scope of the study, the absolute power values obtained from EEG measurements performed using 19 electrodes were analyzed by machine learning methods. It was concluded that classification between disease groups was feasible with a high accuracy (C5.0-0.841, SVM_radial - 0.841, RF - 0.762). It was observed that ADHD, depression and schizophrenia diseases can be differentiated better (F-score = 1, balanced accuracy = 1) once the results were evaluated on a class category basis according to the F- measure and balanced accuracy values. DISCUSSION AND CONCLUSION Through the medium of the analyzes made within the scope of this study, it was investigated whether EEG data could be used as a biomarker for the detection and diagnosis of psychiatric diseases. The findings obtained from this study revealed that by using EEG data as a biomarker, it can be highly predicted whether a person has a psychiatric disease or not. Once evaluated with broad strokes, it is feasible to assert that it is possible to analyze whether the person who consults a physician with a complaint is ranked among the psychiatric disease class with EEG measurement. When trying to differentiate between numerous and diverse disease categories, it may be claimed that some diseases (ADHD, depression, schizophrenia) can be distinguished better by coming to the fore on a model basis. Considering the findings, it is anticipated that the analyzes obtained as a result of this study will contribute to the studies to be conducted using machine learning in the field of psychiatry.
Collapse
Affiliation(s)
- İlkim Ecem Emre
- Marmara University, Faculty of Business Administration, Department of Management Information Systems, İstanbul, Turkey; İstanbul University, Institute of Graduate Studies in Sciences, İstanbul, Turkey.
| | - Çiğdem Erol
- İstanbul University, Department of Informatics and Science Faculty Biology Department, Turkey.
| | - Cumhur Taş
- Üsküdar University, Faculty of Humanities and Social Sciences, Department of Psychology, Turkey.
| | - Nevzat Tarhan
- Üsküdar University, Faculty of Humanities and Social Sciences, Department of Psychology, Turkey.
| |
Collapse
|
30
|
Liu Z, Wong NM, Shao R, Lee SH, Huang CM, Liu HL, Lin C, Lee TM. Classification of Major Depressive Disorder using Machine Learning on brain structure and functional connectivity. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Barua PD, Vicnesh J, Lih OS, Palmer EE, Yamakawa T, Kobayashi M, Acharya UR. Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cogn Neurodyn 2022:1-22. [PMID: 36467993 PMCID: PMC9684805 DOI: 10.1007/s11571-022-09904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren't any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.
Collapse
Affiliation(s)
- Prabal Datta Barua
- School of Management and Enterprise, University of Southern Queensland, Springfield, Australia
| | - Jahmunah Vicnesh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Elizabeth Emma Palmer
- Discipline of Pediatric and Child Health, School of Clinical Medicine, University of New South Wales, Kensington, Australia
- Sydney Children’s Hospitals Network, Sydney, Australia
| | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Udyavara Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taizhong, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
33
|
Zhang B, Wei D, Yan G, Lei T, Cai H, Yang Z. Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107113. [PMID: 36103735 DOI: 10.1016/j.cmpb.2022.107113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance. METHODS This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data. RESULTS Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%. CONCLUSION Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.
Collapse
Affiliation(s)
- Bingtao Zhang
- School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Dan Wei
- School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guanghui Yan
- School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Lei
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haishu Cai
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhifei Yang
- School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
34
|
Li M, Liu Y, Liu Y, Pu C, Yin R, Zeng Z, Deng L, Wang X. Resting-state EEG-based convolutional neural network for the diagnosis of depression and its severity. Front Physiol 2022; 13:956254. [PMID: 36299253 PMCID: PMC9589234 DOI: 10.3389/fphys.2022.956254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The study aimed to assess the value of the resting-state electroencephalogram (EEG)-based convolutional neural network (CNN) method for the diagnosis of depression and its severity in order to better serve depressed patients and at-risk populations. Methods: In this study, we used the resting state EEG-based CNN to identify depression and evaluated its severity. The EEG data were collected from depressed patients and healthy people using the Nihon Kohden EEG-1200 system. Analytical processing of resting-state EEG data was performed using Python and MATLAB software applications. The questionnaire included the Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), Symptom Check-List-90 (SCL-90), and the Eysenck Personality Questionnaire (EPQ). Results: A total of 82 subjects were included in this study, with 41 in the depression group and 41 in the healthy control group. The area under the curve (AUC) of the resting-state EEG-based CNN in depression diagnosis was 0.74 (95%CI: 0.70–0.77) with an accuracy of 66.40%. In the depression group, the SDS, SAS, SCL-90 subscales, and N scores were significantly higher in the major depression group than those in the non-major depression group (p < 0.05). The AUC of the model in depression severity was 0.70 (95%CI: 0.65–0.75) with an accuracy of 66.93%. Correlation analysis revealed that major depression AI scores were significantly correlated with SAS scores (r = 0.508, p = 0.003) and SDS scores (r = 0.765, p < 0.001). Conclusion: Our model can accurately identify the depression-specific EEG signal in terms of depression diagnosis and severity identification. It would eventually provide new strategies for early diagnosis of depression and its severity.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Liu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Liu
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Changqin Pu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ruocheng Yin
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ziqiang Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- *Correspondence: Libin Deng, ; Xing Wang,
| | - Xing Wang
- School of Life Sciences, Nanchang University, Nanchang, China
- Clinical Medical Experiment Center, Nanchang University, Nanchang, China
- *Correspondence: Libin Deng, ; Xing Wang,
| |
Collapse
|
35
|
Abstract
BACKGROUND In this modern era, depression is one of the most prevalent mental disorders from which millions of individuals are affected today. The symptoms of depression are heterogeneous and often coincide with other disorders such as bipolar disorder, Parkinson's, schizophrenia, etc. It is a serious mental illness that may lead to other health problems if left untreated. Currently, identifying individuals with depression is totally based on the expertise of the clinician's experience. In order to assist clinicians in identifying the characteristics and classifying depressed people, different types of data modalities and machine learning techniques have been incorporated by researchers in this field. This study aims to find the answers to some important questions related to the trend of publications, data modality, machine learning models, dataset usage, pre-processing techniques and feature extraction and selection techniques that are prevalent and guide the direction of future research on depression diagnosis. METHODS This systematic review was conducted using a broad range of articles from two major databases: IEEE Xplore and PubMed. Studies ranging from the years 2011 to April 2021 were retrieved from the databases resulting in a total of 590 articles (53 articles from the IEEE Xplore database and 537 articles from the PubMed database). Out of those, the articles which satisfied the defined inclusion criteria were investigated for further analysis. RESULTS A total of 135 articles were identified and analysed for this review. High growth in the number of publications has been observed in recent years. Furthermore, significant diversity in the use of data modalities and machine learning classifiers has also been noted in this study. fMRI data with an SVM classifier was found to be the most popular choice among researchers. In most of the studies, data scarcity and small sample size, particularly for neuroimaging data are major concerns. The use of identical data pre-processing tools for similar data modalities can be seen. This study also provides statistical analysis of the current framework with respect to the modality, machine learning classifier, sample size and accuracy by applying one-way ANOVA and the Tukey - Kramer test. CONCLUSION The results indicate that an effective fusion of machine learning techniques with a potential data modality has a promising future for assisting clinicians in automatic depression diagnosis.
Collapse
Affiliation(s)
- Sweta Bhadra
- Department of CS & IT, Cotton University, Guwahati, India
| | | |
Collapse
|
36
|
LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Kabbara A, Robert G, Khalil M, Verin M, Benquet P, Hassan M. An electroencephalography connectome predictive model of major depressive disorder severity. Sci Rep 2022; 12:6816. [PMID: 35473962 PMCID: PMC9042869 DOI: 10.1038/s41598-022-10949-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence showed that major depressive disorder (MDD) is associated with disruptions of brain structural and functional networks, rather than impairment of isolated brain region. Thus, connectome-based models capable of predicting the depression severity at the individual level can be clinically useful. Here, we applied a machine-learning approach to predict the severity of depression using resting-state networks derived from source-reconstructed Electroencephalography (EEG) signals. Using regression models and three independent EEG datasets (N = 328), we tested whether resting state functional connectivity could predict individual depression score. On the first dataset, results showed that individuals scores could be reasonably predicted (r = 0.6, p = 4 × 10-18) using intrinsic functional connectivity in the EEG alpha band (8-13 Hz). In particular, the brain regions which contributed the most to the predictive network belong to the default mode network. We further tested the predictive potential of the established model by conducting two external validations on (N1 = 53, N2 = 154). Results showed statistically significant correlations between the predicted and the measured depression scale scores (r1 = 0.52, r2 = 0.44, p < 0.001). These findings lay the foundation for developing a generalizable and scientifically interpretable EEG network-based markers that can ultimately support clinicians in a biologically-based characterization of MDD.
Collapse
Affiliation(s)
- Aya Kabbara
- Lebanese Association for Scientific Research, Tripoli, Lebanon
- MINDig, F-35000, Rennes, France
| | - Gabriel Robert
- Academic Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
- Empenn, U1228, IRISA, UMR 6074, Rennes, France
- Comportement et Noyaux Gris Centraux, EA 4712, CHU Rennes, Université de Rennes 1, 35000, Rennes, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
- CRSI Research Center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | - Marc Verin
- Comportement et Noyaux Gris Centraux, EA 4712, CHU Rennes, Université de Rennes 1, 35000, Rennes, France
- Univ Rennes, Inserm, LTSI-U1099, F-35000, Rennes, France
| | - Pascal Benquet
- Univ Rennes, Inserm, LTSI-U1099, F-35000, Rennes, France
| | - Mahmoud Hassan
- MINDig, F-35000, Rennes, France.
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| |
Collapse
|
38
|
Yan DD, Zhao LL, Song XW, Zang XH, Yang LC. Automated detection of clinical depression based on convolution neural network model. BIOMED ENG-BIOMED TE 2022; 67:131-142. [PMID: 35142145 DOI: 10.1515/bmt-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022]
Abstract
As a common mental disorder, depression is placing an increasing burden on families and society. However, the current methods of depression detection have some limitations, and it is essential to find an objective and efficient method. With the development of automation and artificial intelligence, computer-aided diagnosis has attracted more and more attention. Therefore, exploring the use of deep learning (DL) to detect depression has valuable potential. In this paper, convolutional neural network (CNN) is applied to build a diagnostic model for depression based on electroencephalogram (EEG). EEG recordings are analyzed by three different CNN structures, namely EEGNet, DeepConvNet and ShallowConvNet, to dichotomize depression patients and healthy controls. EEG data were collected in the resting state from three electrodes (Fp1, Fz, Fp2) among 80 subjects (40 depressive patients and 40 normal subjects). After the preprocessing step, the DL structures are employed to classify the data, and their recognition performance is evaluated by comparing the classification results. The classification performance shows that depression was effectively detected using EEGNet with 93.74% accuracy, 94.85% sensitivity and 92.61% specificity. In the process of optimizing the parameters of EEGNet structure, the highest accuracy can reach 94.27%. Compared with traditional diagnostic methods, EEGNet is highly worthy for the future depression detection and valuable in terms of accuracy and speed.
Collapse
Affiliation(s)
- Dan-Dan Yan
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Lu-Lu Zhao
- School of Control Science and Engineering, Shandong University, Jinan, China.,School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Xin-Wang Song
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xiao-Han Zang
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Li-Cai Yang
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
39
|
Lei Y, Belkacem AN, Wang X, Sha S, Wang C, Chen C. A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Uyulan C, de la Salle S, Erguzel TT, Lynn E, Blier P, Knott V, Adamson MM, Zelka M, Tarhan N. Depression Diagnosis Modeling With Advanced Computational Methods: Frequency-Domain eMVAR and Deep Learning. Clin EEG Neurosci 2022; 53:24-36. [PMID: 34080925 DOI: 10.1177/15500594211018545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroencephalogram (EEG)-based automated depression diagnosis systems have been suggested for early and accurate detection of mood disorders. EEG signals are highly irregular, nonlinear, and nonstationary in nature and are traditionally studied from a linear viewpoint by means of statistical and frequency features. Since, linear metrics present certain limitations and nonlinear methods have proven to be an efficient tool in understanding the complexities of the brain in the identification of underlying behavior of biological signals, such as electrocardiogram, EEG and magnetoencephalogram and thus, can be applied to all nonstationary signals. Various nonlinear algorithms can be used in the analysis of EEG signals. In this research paper, we aim to develop a novel methodology for EEG-based depression diagnosis utilizing 2 advanced computational techniques: frequency-domain extended multivariate autoregressive (eMVAR) and deep learning (DL). We proposed a hybrid method comprising a pretrained ResNet-50 and long-short term memory (LSTM) to capture depression-specific information and compared with a strong conventional machine learning (ML) framework having eMVAR connectivity features. The following 8 causality measures, which interpret the interaction mechanisms among spectrally decomposed oscillations, were used to extract features from multivariate EEG time series: directed coherence (DC), directed transfer function (DTF), partial DC (PDC), generalized PDC (gPDC), extended DC (eDC), delayed DC (dDC), extended PDC (ePDC), and delayed PDC (dPDC). The classification accuracies were 84% with DC, 85% with DTF, 95.3% with PDC, 95.1% with gPDC, 84.8% with eDC, 84.6% with dDC, 84.2% with ePDC, and 95.9% with dPDC for the eMVAR framework. Through a DL framework (ResNet-50 + LSTM), the classification accuracy was achieved as 90.22%. The results demonstrate that our DL methodology is a competitive alternative to the strong feature extraction-based ML methods in depression classification.
Collapse
Affiliation(s)
| | - Sara de la Salle
- Institute of Mental Health Research, 6363University of Ottawa, Ottawa, ON, Canada.,6363University of Ottawa, Ottawa, ON, Canada
| | | | - Emma Lynn
- Institute of Mental Health Research, 6363University of Ottawa, Ottawa, ON, Canada.,6363University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- Institute of Mental Health Research, 6363University of Ottawa, Ottawa, ON, Canada.,6363University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, 6363University of Ottawa, Ottawa, ON, Canada.,6363University of Ottawa, Ottawa, ON, Canada
| | | | | | - Nevzat Tarhan
- 232990Uskudar University, Istanbul, Turkey.,NPIstanbul Hospital, Istanbul, Turkey
| |
Collapse
|
41
|
Liu Y, Pu C, Xia S, Deng D, Wang X, Li M. Machine learning approaches for diagnosing depression using EEG: A review. Transl Neurosci 2022; 13:224-235. [PMID: 36045698 PMCID: PMC9375981 DOI: 10.1515/tnsci-2022-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Depression has become one of the most crucial public health issues, threatening the quality of life of over 300 million people throughout the world. Nevertheless, the clinical diagnosis of depression is now still hampered by behavioral diagnostic methods. Due to the lack of objective laboratory diagnostic criteria, accurate identification and diagnosis of depression remained elusive. With the rise of computational psychiatry, a growing number of studies have combined resting-state electroencephalography with machine learning (ML) to alleviate diagnosis of depression in recent years. Despite the exciting results, these were worrisome of these studies. As a result, ML prediction models should be continuously improved to better screen and diagnose depression. Finally, this technique would be used for the diagnosis of other psychiatric disorders in the future.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China
| | - Changqin Pu
- Queen Mary College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Shan Xia
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China
| | - Dingyu Deng
- Department of Internal Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xing Wang
- School of Life Sciences, Nanchang University, No.999 Xuefu Avenue, Honggutan District, Nanchang 330036, Jiangxi Province, China.,Clinical Diagnostics Laboratory, Clinical Medical Experiment Center, Nanchang University, Nanchang 330036, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
42
|
Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Safayari A, Bolhasani H. Depression diagnosis by deep learning using EEG signals: A systematic review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, Hikida T. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Netw 2021; 144:603-613. [PMID: 34649035 DOI: 10.1016/j.neunet.2021.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Neuroscience and artificial intelligence (AI) share a long history of collaboration. Advances in neuroscience, alongside huge leaps in computer processing power over the last few decades, have given rise to a new generation of in silico neural networks inspired by the architecture of the brain. These AI systems are now capable of many of the advanced perceptual and cognitive abilities of biological systems, including object recognition and decision making. Moreover, AI is now increasingly being employed as a tool for neuroscience research and is transforming our understanding of brain functions. In particular, deep learning has been used to model how convolutional layers and recurrent connections in the brain's cerebral cortex control important functions, including visual processing, memory, and motor control. Excitingly, the use of neuroscience-inspired AI also holds great promise for understanding how changes in brain networks result in psychopathologies, and could even be utilized in treatment regimes. Here we discuss recent advancements in four areas in which the relationship between neuroscience and AI has led to major advancements in the field; (1) AI models of working memory, (2) AI visual processing, (3) AI analysis of big neuroscience datasets, and (4) computational psychiatry.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anne Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, NY, USA
| | - Terry Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, USA; Division of Biological Sciences, University of California San Diego, CA, USA
| | - James DiCarlo
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, MA, USA
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
45
|
Zhang Z, Li G, Xu Y, Tang X. Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review. Diagnostics (Basel) 2021; 11:1402. [PMID: 34441336 PMCID: PMC8392727 DOI: 10.3390/diagnostics11081402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Artificial intelligence (AI) for medical imaging is a technology with great potential. An in-depth understanding of the principles and applications of magnetic resonance imaging (MRI), machine learning (ML), and deep learning (DL) is fundamental for developing AI-based algorithms that can meet the requirements of clinical diagnosis and have excellent quality and efficiency. Moreover, a more comprehensive understanding of applications and opportunities would help to implement AI-based methods in an ethical and sustainable manner. This review first summarizes recent research advances in ML and DL techniques for classifying human brain magnetic resonance images. Then, the application of ML and DL methods to six typical neurological and psychiatric diseases is summarized, including Alzheimer's disease (AD), Parkinson's disease (PD), major depressive disorder (MDD), schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). Finally, the limitations of the existing research are discussed, and possible future research directions are proposed.
Collapse
Affiliation(s)
- Zhao Zhang
- 715-3 Teaching Building No.5, Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China; (Z.Z.); (G.L.)
| | - Guangfei Li
- 715-3 Teaching Building No.5, Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China; (Z.Z.); (G.L.)
| | - Yong Xu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China;
| | - Xiaoying Tang
- 715-3 Teaching Building No.5, Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China; (Z.Z.); (G.L.)
| |
Collapse
|
46
|
de Bardeci M, Ip CT, Olbrich S. Deep learning applied to electroencephalogram data in mental disorders: A systematic review. Biol Psychol 2021; 162:108117. [PMID: 33991592 DOI: 10.1016/j.biopsycho.2021.108117] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
In recent medical research, tremendous progress has been made in the application of deep learning (DL) techniques. This article systematically reviews how DL techniques have been applied to electroencephalogram (EEG) data for diagnostic and predictive purposes in conducting research on mental disorders. EEG-studies on psychiatric diseases based on the ICD-10 or DSM-V classification that used either convolutional neural networks (CNNs) or long -short-term-memory (LSTMs) networks for classification were searched and examined for the quality of the information they contained in three domains: clinical, EEG-data processing, and deep learning. Although we found that the description of EEG acquisition and pre-processing was sufficient in most of the studies, we found, that many of them lacked a systematic characterization of clinical features. Furthermore, many studies used misguided model selection procedures or flawed testing. It is recommended that the study of psychiatric disorders using DL in the future must improve the quality of clinical data and follow state of the art model selection and testing procedures so as to achieve a higher research standard and head toward a clinical significance.
Collapse
Affiliation(s)
- Mateo de Bardeci
- Department for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Switzerland; University Hospital Zurich, Switzerland; University Zurich, Switzerland
| | - Cheng Teng Ip
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Olbrich
- Department for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Switzerland; University Hospital Zurich, Switzerland; University Zurich, Switzerland.
| |
Collapse
|
47
|
Chaabene S, Bouaziz B, Boudaya A, Hökelmann A, Ammar A, Chaari L. Convolutional Neural Network for Drowsiness Detection Using EEG Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:1734. [PMID: 33802357 PMCID: PMC7959292 DOI: 10.3390/s21051734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Drowsiness detection (DD) has become a relevant area of active research in biomedical signal processing. Recently, various deep learning (DL) researches based on the EEG signals have been proposed to detect fatigue conditions. The research presented in this paper proposes an EEG classification system for DD based on DL networks. However, the proposed DD system is mainly realized into two procedures; (i) data acquisition and (ii) model analysis. For the data acquisition procedure, two key steps are considered, which are the signal collection using a wearable Emotiv EPOC+ headset to record 14 channels of EEG, and the signal annotation. Furthermore, a data augmentation (DA) step has been added to the proposed system to overcome the problem of over-fitting and to improve accuracy. As regards the model analysis, a comparative study is also introduced in this paper to argue the choice of DL architecture and frameworks used in our DD system. In this sense, The proposed DD protocol makes use of a convolutional neural network (CNN) architecture implemented using the Keras library. The results showed a high accuracy value (90.42%) in drowsy/awake discrimination and revealed the efficiency of the proposed DD system compared to other research works.
Collapse
Affiliation(s)
- Siwar Chaabene
- Multimedia InfoRmation Systems and Advanced Computing Laboratory (MIRACL), University of Sfax, Sfax 3021, Tunisia; (S.C.); (B.B.); (A.B.)
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, Sfax 3021, Tunisia
| | - Bassem Bouaziz
- Multimedia InfoRmation Systems and Advanced Computing Laboratory (MIRACL), University of Sfax, Sfax 3021, Tunisia; (S.C.); (B.B.); (A.B.)
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, Sfax 3021, Tunisia
| | - Amal Boudaya
- Multimedia InfoRmation Systems and Advanced Computing Laboratory (MIRACL), University of Sfax, Sfax 3021, Tunisia; (S.C.); (B.B.); (A.B.)
- Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, Sfax 3021, Tunisia
| | - Anita Hökelmann
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, 39104 Magdeburg, Germany;
| | - Achraf Ammar
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, 39104 Magdeburg, Germany;
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre University, 92000 Nanterre, France
| | - Lotfi Chaari
- IRIT-ENSEEIHT, University of Toulouse, 31013 Toulouse, France;
| |
Collapse
|