1
|
Ahmadivand S, Fux R, Palić D. Ferritin Vaccine Platform for Animal and Zoonotic Viruses. Vaccines (Basel) 2024; 12:1112. [PMID: 39460279 PMCID: PMC11511493 DOI: 10.3390/vaccines12101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Viral infections in animals continue to pose a significant challenge, affecting livestock health, welfare, and food safety, and, in the case of zoonotic viruses, threatening global public health. The control of viral diseases currently relies on conventional approaches such as inactivated or attenuated vaccines produced via platforms with inherent limitations. Self-assembling ferritin nanocages represent a novel vaccine platform that has been utilized for several viruses, some of which are currently undergoing human clinical trials. Experimental evidence also supports the potential of this platform for developing commercial vaccines for veterinary viruses. In addition to improved stability and immunogenicity, ferritin-based vaccines are safe and DIVA-compatible, and can be rapidly deployed in response to emerging epidemics or pandemics. This review discusses the structural and functional properties of ferritin proteins, followed by an overview of the design and production of ferritin-based vaccines, the mechanisms of immune responses, and their applications in developing vaccines against animal and zoonotic viruses.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
2
|
Qu Z, Wu X, Guo X, Han H, Zhang P, Wang M, Song Y, Jiao F, He S, Lu S, Zhang X. Self-assembled nanoparticle with E protein domain III of DTMUV based on ferritin as carrier can induce a more comprehensive immune response and against DTMUV challenge in duck. Vet Microbiol 2023; 284:109820. [PMID: 37364454 DOI: 10.1016/j.vetmic.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Duck Tembusu virus (DTMUV) causes severe reduction in egg production and neurological symptoms in ducklings. Vaccination is the primary measure used to prevent DTMUV infections. In this study, self-assembled nanoparticles with the E protein domain III of DTMUV, using ferritin as a carrier (EDⅢ-RFNp), were prepared using a prokaryotic expression system. Ducks were intramuscularly vaccinated with EDⅢ-RFNp, EDⅢ protein, an inactivated vaccine HB strain (InV-HB), and PBS. At 0, 4, and 6 weeks post-primary vaccination, the EDIII protein-specific antibody titre, IL-4, and IFN-γ concentrations in serum were determined by ELISA, and neutralising antibodies titres in sera were determined by virus neutralising assay. Peripheral blood lymphocytes proliferation was determined by CCK-8 kit. Following challenge with the virulent DTMUV strain, the clinical signals and survival rate of the vaccinated ducks were recorded, and DTMUV RNA levels in the blood and tissues of the surviving ducks were determined by real-time quantitative RT-PCR. The near-spherical EDⅢ-RFNp nanoparticles with 13.29 ± 1.43 nm diameter were observed by transmission electron microscope. At 4 and 6 weeks post-primary vaccination, special and Virus neutralisation (VN) antibodies, lymphocyte proliferation (stimulator index, SI), and concentrations of IL-4 and IFN-γ in the EDⅢ-RFNp group were significantly higher than in the EDⅢ and PBS groups. In the DTMUV virulent strain challenge test, the EDⅢ-RFNp-vaccinated ducks showed milder clinical signs and higher survival rates than EDⅢ- and PBS-vaccinated ducks. The DTMUV RNA levels in the blood and tissues of EDⅢ-RFNp-vaccinated ducks were significantly lower than those in EDⅢ- and PBS-vaccinated ducks. Additionally, the EDⅢ protein-special and VN antibodies, SI value, and concentration of IL-4 and IFN-γ in the InV-HB group was significantly higher than that of the PBS group at 4 and 6 weeks post-primary vaccination. InV-HB provided more efficient protection than PBS based on a higher survival rate, milder signals, and lower levels of the DTMUV virus in the blood and tissues. These results indicated that EDⅢ-RFNp effectively protected ducks against DTMUV challenge and could be a vaccine candidate to prevent DTMUV infection.
Collapse
Affiliation(s)
- Zhehui Qu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China; Xinyang Key Laboratory of Integrated Technology for Prevention and Control of Major Livestock and Poultry Diseases, Xinyang, Henan 46400, PR China.
| | - Xian Wu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiaoqiu Guo
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Han Han
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Peipei Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Mengxiao Wang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Yilin Song
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Fengchao Jiao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shuhai He
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shaofang Lu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiwen Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| |
Collapse
|
3
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Zhehui Q, Xiwen Z, Xiaoqiu G, Zhuoyan L, Wenjing Y, Shuoshuo L, Wen Z, Fengchao J, Shuhai H, Shaofang L. Self-Assembled Nanoparticles with E Protein Domains I and II of Duck Tembusu Virus Can Induce a More Comprehensive Immune Response Against the Duck Tembusu Virus Challenge. Avian Dis 2023; 67:49-56. [PMID: 37140111 DOI: 10.1637/aviandiseases-d-22-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 03/11/2023]
Abstract
Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that causes a substantial drop in egg production and severe neurological disorders in domestic waterfowl. Self-assembled ferritin nanoparticles with E protein domains I and II (EDI-II) of DTMUV (EDI-II-RFNp) were prepared, and its morphology was observed. Two independent experiments were conducted. First, Cherry Valley ducks aged 14 days were vaccinated with EDI-II-RFNp, EDI-II, and phosphate buffered solution (PBS, pH 7.4), and special and virus neutralization (VN) antibodies, interleukin 4 (IL-4) and interferon gamma (IFN-γ) in serum, and lymphocyte proliferation were detected. Second, the vaccinated ducks with EDI-II-RFNp, EDI-II, and PBS were injected with virulent DTMUV, clinical signs at 7 days postinfection (dpi) were observed, and mRNA levels of DTMUV in the lungs, liver, and brain at 7 and 14 dpi were detected. The results showed near-spherical nanoparticles EDI-II-RFNp with a 16.46 ± 4.70 nm diameters. The levels of specific and VN antibodies, IL-4 and IFN-γ, and lymphocyte proliferation in the EDI-II-RFNp group were significantly higher than those in the EDI-II and PBS groups. In the DTMUV challenge test, clinical signs and mRNA levels in tissue were used to evaluate protection of EDI-II-RFNp. EDI-II-RFNp-vaccinated ducks showed milder clinical signs and lower levels of DTMUV RNA in the lungs, liver, and brain. These results indicate that EDI-II-RFNp effectively protects ducks against the DTMUV challenge and could be a vaccine candidate to provide an effective and safe method for preventing and controlling DTMUV infection.
Collapse
Affiliation(s)
- Qu Zhehui
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Zhang Xiwen
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Guo Xiaoqiu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Li Zhuoyan
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Yu Wenjing
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Lv Shuoshuo
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Zhang Wen
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Jiao Fengchao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - He Shuhai
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Lu Shaofang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| |
Collapse
|
5
|
Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021; 6:70. [PMID: 33986287 PMCID: PMC8119681 DOI: 10.1038/s41541-021-00330-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases such as COVID-19, malaria, and AIDS there is a clear urgency for more effective next-generation vaccines. One approach to improve the immunogenicity of vaccines is the use of nanoparticle platforms that present a repetitive array of antigen on its surface. This technology has been shown to improve antigen presenting cell uptake, lymph node trafficking, and B-cell activation through increased avidity and particle size. With a focus on design, we summarize natural platforms, methods of antigen attachment, and advancements in generating self-assembly that have led to new engineered platforms. We further examine critical parameters that will direct the usage and development of more effective platforms.
Collapse
Affiliation(s)
- Brian Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Haridhasapavalan KK, Ranjan SH, Bhattacharyya S, Thummer RP. Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Appl Microbiol Biotechnol 2021; 105:2363-2376. [PMID: 33651130 DOI: 10.1007/s00253-021-11194-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujal Harsh Ranjan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
8
|
Thermostable exoshells fold and stabilize recombinant proteins. Nat Commun 2017; 8:1442. [PMID: 29129910 PMCID: PMC5682286 DOI: 10.1038/s41467-017-01585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/04/2022] Open
Abstract
The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis. Improving recombinant protein expression and stabilization remains a significant challenge. Here, the authors engineer Archaeoglobus fulgidus ferritin as a thermostable exoshell to provide steric accommodation and charge complementation for recombinant proteins, which can improve yields by 100 fold.
Collapse
|