1
|
Oroszi T, Huiting W, Keijser JN, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-Body Vibration Affects Hippocampal Choline Acetyltransferase and Synaptophysin Expression and Improves Spatial Memory in Young Adult Mice. J Integr Neurosci 2024; 23:173. [PMID: 39344235 DOI: 10.31083/j.jin2309173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Beneficial effects of whole-body vibration (WBV) on brain and musculoskeletal health in mice have been demonstrated, but underlying mechanisms remain relatively unrevealed. WBV improves attention and memory performance in mice, putatively through stimulation of the cholinergic system. Here, we investigated the effects of WBV on the septo-hippocampal cholinergic system. METHODS Young C57BL/6 mice (8 weeks old) were subjected to 10 min WBV/day (mechanical vibration: 30 Hz; ~0.1-μm peak-to-peak displacement), 5X/week for 5 weeks. In Experiment 1, choline acetyltransferase (ChAT)-immunoreactivity in the septum and hippocampus was analyzed either 2 or 24 h after the last WBV session. Pseudo-WBV-treated mice (same handling procedure as WBV, but no vibrations) served as controls. In Experiment 2, the longitudinal profile of ChAT-immunoreactivity was analyzed in the hippocampus after 1, 2, 3, 4, or 5 weeks of WBV. In addition, synaptophysin immunostaining was performed at either 2 and 5 weeks of WBV. Mice housed 1/cage during the entire experiment served as controls. The balance-beam test was used to monitor the functional impact of WBV. In Experiment 3, a Y-maze reference-memory test was performed after 5 weeks of WBV to obtain a functional cognitive outcome measure of WBV. Pseudo-WBV treated mice served as controls. RESULTS In Experiment 1, ChAT-immunoreactivity was significantly enhanced after the last WBV session of the 5-week period. This was found in the septum, Cornu Ammonis 1 (CA1), CA3, and dentate gyrus, and was dependent on layer and time-point (2 or 24 h). Experiment 2 revealed that, ChAT-immunoreactivity was lower after 2 weeks of WBV, whereas it was significantly higher after 5 weeks (similar to in Experiment 1). Immunostaining for synaptophysin, a marker for synaptic density, was also significantly higher after 5 weeks of WBV, but not significantly lower after 2 weeks, as was ChAT. WBV-treated groups performed significantly better than did controls on the balance beam from week 3 onwards. Experiment 3 showed that WBV-treated mice had better spatial-reference memory performance in the Y-maze test than did pseudo-WBV controls. CONCLUSIONS Our results indicate that WBV stimulates the septo-hippocampal cholinergic system in a gradual and dynamic way that may contribute to improved spatial-memory performance. This finding suggests that WBV, by upregulation of the septo-hippocampal cholinergic system, may be considered a valuable therapeutic strategy to enhance brain functions in aging, neurodegenerative, and other brain diseases.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Wouter Huiting
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jan N Keijser
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, 1085 Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Ahuja G, Arauz YLA, van Heuvelen MJG, Kortholt A, Oroszi T, van der Zee EA. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol 2024; 15:1422152. [PMID: 39144715 PMCID: PMC11323691 DOI: 10.3389/fneur.2024.1422152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Whole-body vibration (WBV) therapy is a way of passive exercise in which subjects are exposed to mild and well-controlled mechanical vibrations through a vibrating platform. For a long time, studies have focused on the effects and applications of WBV to enhance musculoskeletal performance in athletes and patients suffering from musculoskeletal disorders. Recent evidence points toward the positive effect of WBV on the brain and its therapeutic potential in brain disorders. Research being done in the field gradually reveals cellular and molecular mechanisms underlying WBV affecting the body and brain. Particularly, the influence of WBV on immune and brain function is a growing field that warrants an up-to-date and integrated review. Immune function is closely intertwined with brain functioning and plays a significant role in various brain disorders. Dysregulation of the immune response is linked to conditions such as neuroinflammation, neurodegenerative diseases, and mood disorders, highlighting the crucial connection between the immune system and the brain. This review aims to explore the impact of WBV on the cellular and molecular pathways involved in immune and brain functions. Understanding the effects of WBV at a cellular and molecular level will aid in optimizing WBV protocols to improve its therapeutic potential for brain disorders.
Collapse
Affiliation(s)
- Gargi Ahuja
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Wrześniewski K, Pałka T, Blecharz J. The influence of vibratory massage after physical exertion on selected psychological processes. Front Psychol 2024; 15:1380282. [PMID: 38765830 PMCID: PMC11099259 DOI: 10.3389/fpsyg.2024.1380282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Good mental preparation of an athlete plays an important role in achieving optimal sports results. An athlete who enters a competition should not feel fatigue resulting from intense physical exercise. Therefore, new and effective methods are being sought that could help accelerate the process of both physical and mental regeneration. Vibrotherapy is one of them. The aim of the study was to determine the optimal frequency of vibration, its duration and the position in which the subjects were placed during the treatments, in relation to the reduction of subjectively perceived exertion muscle pain, mental discomfort, emotional states and the level of cognitive processes that were disturbed by intense physical activity. Sixteen healthy male volunteers were involved in this study. The participants were assessed for their aerobic and anaerobic capacity. Each of the subjects performed a set of intensive physical exercises and then underwent vibrotherapy treatment. In random order, each of the men tested the effectiveness of eight combinations of frequency, duration, and body position. Psychological tests were conducted for each combination: frequency, duration of treatment, and position during treatment, in four stages: (1) before the start of the experiment (baseline POMS measurements), (2) immediately after the exercise (VAS scale, scale examining psychological discomfort and STROOP test), (3) immediately after the vibration treatment (POMS measurements, VAS scale, scale examining psychological discomfort and STROOP test), (4) 24 h after the vibration treatment (VAS scale examining subjective assessment of perceived pain and psychological discomfort). Based on the results, it was concluded that all the studied variables improved significantly over time (after the vibration treatment and 24 h after training). In addition, a statistically significant interaction measurement × frequency was noted for vigor scale (52HZ favored greater improvement in this state), and a statistically significant interaction was found for measurement × time for the VAS scale (p < 0.05) - the lower pain value was indicated 24 h after the 10-min vibration treatment. The type of frequency used, position, and duration of the treatment did not play a statistically significant role in changing STROOP test results and severity of psychological discomfort (p > 0.05).
Collapse
Affiliation(s)
- Krzysztof Wrześniewski
- Department of Psychology, Institute of Social Sciences, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Jan Blecharz
- Department of Psychology, Institute of Social Sciences, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| |
Collapse
|
4
|
Oroszi T, Felszeghy K, Luiten PG, Schoemaker RG, van der Zee EA, Nyakas C. Whole body vibration ameliorates anxiety-like behavior and memory functions in 30 months old senescent male rats. Heliyon 2024; 10:e26608. [PMID: 38404823 PMCID: PMC10884920 DOI: 10.1016/j.heliyon.2024.e26608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Whole body vibration (WBV) is a form of passive exercise that offers an alternative physical training to aged individuals with limitations in their physical and mental capabilities. The aim of the present study was to explore the therapeutic potential of five weeks of WBV on anxiety-like behaviors as well as learning and memory abilities in senescent thirty months old rats. Animals were exposed to 5 min vibration twice per day, five times per week during the five consecutive weeks. Pseudo WBV treated animals served as controls. After five weeks of WBV treatment, animals were tested for anxiety-like behavior by the open field test and for spatial and object memory functions by the novel and spatial object recognition tests, respectively. As a result, anxiety-like and exploratory behaviors were significantly improved in the WBV treated group compared to the pseudo WBV group. Furthermore, WBV treatment increased discrimination performance in both spatial and object memory function testing. These results indicate that WBV treatment in thirty months old rats seems to have comparable beneficial effects on age-related emotional and cognitive performance as what has been reported in younger age groups.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Klára Felszeghy
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Paul G.M. Luiten
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Eddy A. van der Zee
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Suk HJ, Buie N, Xu G, Banerjee A, Boyden ES, Tsai LH. Vibrotactile stimulation at gamma frequency mitigates pathology related to neurodegeneration and improves motor function. Front Aging Neurosci 2023; 15:1129510. [PMID: 37273653 PMCID: PMC10233036 DOI: 10.3389/fnagi.2023.1129510] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
The risk for neurodegenerative diseases increases with aging, with various pathological conditions and functional deficits accompanying these diseases. We have previously demonstrated that non-invasive visual stimulation using 40 Hz light flicker ameliorated pathology and modified cognitive function in mouse models of neurodegeneration, but whether 40 Hz stimulation using another sensory modality can impact neurodegeneration and motor function has not been studied. Here, we show that whole-body vibrotactile stimulation at 40 Hz leads to increased neural activity in the primary somatosensory cortex (SSp) and primary motor cortex (MOp). In two different mouse models of neurodegeneration, Tau P301S and CK-p25 mice, daily exposure to 40 Hz vibrotactile stimulation across multiple weeks also led to decreased brain pathology in SSp and MOp. Furthermore, both Tau P301S and CK-p25 mice showed improved motor performance after multiple weeks of daily 40 Hz vibrotactile stimulation. Vibrotactile stimulation at 40 Hz may thus be considered as a promising therapeutic strategy for neurodegenerative diseases with motor deficits.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nicole Buie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Guojie Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Arit Banerjee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Cambridge, MA, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Shantakumari N, Ahmed M. Whole body vibration therapy and cognitive functions: a systematic review. AIMS Neurosci 2023; 10:130-143. [PMID: 37426779 PMCID: PMC10323263 DOI: 10.3934/neuroscience.2023010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
Abstract
Whole Body Vibration has been found to induce physiological changes in human subjects, improving their neuromuscular, respiratory and cardiovascular functions. Evidence from animal research prove that whole-body vibration appears to induce changes in molecular and cellular levels to alter cognitive functions in mice. There is evolving evidence for a potential value of whole body vibration in improving cognition and preventing the development of age-related cognitive disorders in humans. However, literature on the biological consequences of whole-body vibration on the human brain is scanty. If so, gathering the available evidences would help decide the possibility of designing appropriate whole-body vibration protocols to extend its application to induce neurocognitive enhancement and optimize its effects. Therefore, a systematic review of the literature was performed, consulting the ProQuest, MEDLINE and Scopus bibliographic databases, to summarize the available scientific evidence on the effects of whole-body vibration on cognitive functions in adults. Results of the review suggest that whole-body vibration therapy enhances a wide spectrum of cognitive functions in adults although there isn't enough evidence available yet to be able to design a standardized protocol to achieve optimum cognitive enhancement.
Collapse
Affiliation(s)
- Nisha Shantakumari
- College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Musaab Ahmed
- College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Iwamoto M, Yonekura S, Atsumi N, Hirabayashi S, Kanazawa H, Kuniyoshi Y. Respiratory entrainment of the locus coeruleus modulates arousal level to avoid physical risks from external vibration. Sci Rep 2023; 13:7069. [PMID: 37127727 PMCID: PMC10151378 DOI: 10.1038/s41598-023-32995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Slow rocking chairs can easily put people to sleep, while violent shaking, such as during earthquakes, may lead to rapid awakening. However, the influence of external body vibrations on arousal remains unclear. Herein, a computational model of a locus coeruleus (LC)-norepinephrine (NE) system and cardio-respiratory system were used to show that respiratory entrainment of the LC modulates arousal levels, which is an adaptation to avoid physical risks from external vibration. External vibrations of sinusoidal waves with different frequencies ranging from 0.1 to 20 [Hz] were applied to the LC based on the results of previous studies. We found that respiratory entrainment of the LC decreased the breathing rate (BR) and heart rate (HR) to maintain the HR within its normal range. Furthermore, 1:1 phase locking enhanced arousal level while phase-amplitude coupling decreased it for larger vibration stimuli. These findings suggest that respiratory entrainment of the LC might automatically modulate cardio-respiratory system homeostasis and arousal levels for performance readiness (fight/flight or freeze) to avoid physical risks from larger external vibrations.
Collapse
Affiliation(s)
- Masami Iwamoto
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Shogo Yonekura
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Noritoshi Atsumi
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Satoko Hirabayashi
- Human Science Research-Domain, Toyota Central R &D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Hoshinori Kanazawa
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuo Kuniyoshi
- Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
8
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
9
|
Wen J, Leng L, Hu M, Hou X, Huang J. Effects of whole-body vibration training on cognitive function: A systematic review. Front Hum Neurosci 2023; 17:854515. [PMID: 36845880 PMCID: PMC9947405 DOI: 10.3389/fnhum.2023.854515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background Whole-body vibration (WBV) training is a novel training method that stimulates the human neuromuscular system by the use of vibration, the frequency and amplitude of which are controlled, thereby inducing adaptive changes in the body. WBV training is widely used as a clinical prevention and rehabilitation tool in physical medicine and neuro-rehabilitation as a clinical prevention and rehabilitation tool. Objectives The aim of the present study was to review the effects of WBV on cognitive function, provide an evidence-based foundation for future research on WBV training, and promote additional popularization and use of the methodology in clinical practice. Methods A systematic review of articles extracted from the following six databases was conducted: PubMed, Web of Science, China National Knowledge Infrastructure, Embase, Cochrane, and Scopus. A literature search was performed on articles in which the effects of WBV on cognitive function were evaluated. Results Initially, a total of 340 studies were initially identified, among which 18 articles that satisfied the inclusion criteria were selected for inclusion in the systematic review. Participants were allocated into two groups: patients with cognitive impairment and healthy individuals. The results demonstrated that WBV was both positive and ineffective in its influence on cognitive function. Conclusion The majority of studies suggested that WBV may be a useful strategy for the management of cognitive impairment and should be considered for inclusion in rehabilitation programs. However, the impact of WBV on cognition requires additional, larger, and adequately powered studies. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=376821, identifier CRD42022376821.
Collapse
Affiliation(s)
- Jiayi Wen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lu Leng
- School of Foreign Languages, Jinan University, Guangzhou, Guangdong, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Xiaohui Hou
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China,*Correspondence: Junhao Huang,
| |
Collapse
|
10
|
Faes Y, Rolli Salathé C, Herlig ML, Elfering A. Beyond physiology: Acute effects of side-alternating whole-body vibration on well-being, flexibility, balance, and cognition using a light and portable platform A randomized controlled trial. Front Sports Act Living 2023; 5:1090119. [PMID: 36793620 PMCID: PMC9922907 DOI: 10.3389/fspor.2023.1090119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
A good body-balance helps to prevent slips, trips and falls. New body-balance interventions must be explored, because effective methods to implement daily training are sparse. The purpose of the current study was to investigate acute effects of side-alternating whole-body vibration (SS-WBV) training on musculoskeletal well-being, flexibility, body balance, and cognition. In this randomized controlled trial, participants were randomly allocated into a verum (8.5 Hz, SS-WBV, N = 28) or sham (6 Hz, SS-WBV, N = 27) condition. The training consisted of three SS-WBV series that lasted one-minute each with two one-minute breaks in between. During the SS-WBV series, participants stood in the middle of the platform with slightly bent knees. During the breaks in between, participants could loosen up. Flexibility (modified fingertip-to-floor method), balance (modified Star Excursion Balance Test), and cognitive interference (Stroop Color Word Test) were tested before and after the exercise. Also, musculoskeletal well-being, muscle relaxation, sense of flexibility, sense of balance, and surefootedness were assessed in a questionnaire before and after the exercise. Musculoskeletal well-being was significantly increased only after verum. Also, muscle relaxation was significantly higher only after verum. The Flexibility-Test showed significant improvement after both conditions. Accordingly, sense of flexibility was significantly increased after both conditions. The Balance-Test showed significant improvement after verum, and after sham. Accordingly, increased sense of balance was significant after both conditions. However, surefootedness was significantly higher only after verum. The Stroop-Test showed significant improvement only after verum. The current study shows that one SS-WBV training session increases musculoskeletal well-being, flexibility, body balance and cognition. The abundance of improvements on a light and portable platform has great influence on the practicability of training in daily life, aiming to prevent slip trips and falls at work.
Collapse
Affiliation(s)
- Yannik Faes
- Business Psychology, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| | - Cornelia Rolli Salathé
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Marina Luna Herlig
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| | - Achim Elfering
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Arenales Arauz YL, van der Zee EA, Kamsma YPT, van Heuvelen MJG. Short-term effects of side-alternating Whole-Body Vibration on cognitive function of young adults. PLoS One 2023; 18:e0280063. [PMID: 36634088 PMCID: PMC9836316 DOI: 10.1371/journal.pone.0280063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Recent research in rodents and humans revealed that Whole-Body Vibration (WBV) is beneficial for cognitive functions. However, the optimal WBV conditions are not established: contrary to vertical WBV, side-alternating WBV was not investigated before. The present study investigated the short-term effects of side-alternating WBV in standing and sitting posture on specific cognitive function of young adults. We used a balanced cross-over design. Sixty healthy young adults (mean age 21.7 ± 2.0 years, 72% female) participated. They were exposed to three bouts of two-minute side-alternating WBV (frequency 27 Hz) and three control conditions in two different sessions. In one session a sitting posture was used and in the other session a standing (semi-squat) posture. After each condition selective attention and inhibition was measured with the incongruent condition of the Stroop Color-Word Interference Test. WBV significantly (p = 0.026) improved selective attention and inhibition in the sitting posture, but not in the standing posture. The sitting posture was perceived as more comfortable, joyous and less exhaustive as compared to the standing posture. This study demonstrated that side-alternating WBV in sitting posture improves selective attention and inhibition in healthy young adults. This indicates that posture moderates the cognitive effect of WBV, although the effects are still small. Future studies should focus on the working mechanisms and further optimization of settings, especially in individuals who are unable to perform active exercise.
Collapse
Affiliation(s)
- Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ype P. T. Kamsma
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Tóth K, Oroszi T, Nyakas C, van der Zee EA, Schoemaker RG. Whole-body vibration as a passive alternative to exercise after myocardial damage in middle-aged female rats: Effects on the heart, the brain, and behavior. Front Aging Neurosci 2023; 15:1034474. [PMID: 36960421 PMCID: PMC10028093 DOI: 10.3389/fnagi.2023.1034474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Background Females with cardiovascular disease seem more vulnerable to develop concomitant mental problems, such as depression and cognitive decline. Although exercise is shown beneficial in cardiovascular disease as well as in mental functions, these patients may be incapable or unmotivated to perform exercise. Whole body vibration (WBV) could provide a passive alternative to exercise. Aim of the present study was to compare WBV to exercise after isoproterenol (ISO)-induced myocardial damage in female rats, regarding effects on heart, brain and behavior. Methods One week after ISO (70 mg/kg s.c., on 2 consecutive days) or saline injections, 12 months old female rats were assigned to WBV (10 minutes daily), treadmill running (30 minutes daily) or pseudo intervention for 5 weeks. During the last 10 days, behavioral tests were performed regarding depressive-like behavior, cognitive function, and motor performance. Rats were sacrificed, brains and hearts were dissected for (immuno)histochemistry. Results Significant ISO-induced cardiac collagen deposition (0.67 ± 0.10 vs 0.18 ± 0.03%) was absent after running (0.45 ± 0.26 vs 0.46 ± 0.08%), but not after WBV (0.83 ± 0.12 vs 0.41 ± 0.05%). However, WBV as well as running significantly reduced hippocampal (CA3) collagen content in ISO-treated rats. Significant regional differences in hippocampal microglia activity and brain derived neurotrophic factor (BDNF) expression were observed. Significant ISO-induced CA1 microglia activation was reduced after WBV as well as running, while opposite effects were observed in the CA3; significant reduction after ISO that was restored by WBV and running. Both WBV and running reversed the ISO-induced increased BDNF expression in the CA1, Dentate gyrus and Hilus, but not in the CA3 area. Whereas running had no significant effect on behavior in the ISO-treated rats, WBV may be associated with short-term spatial memory in the novel location recognition test. Conclusion Although the female rats did not show the anticipated depressive-like behavior or cognitive decline after ISO, our data indicated regional effects on neuroinflammation and BDNF expression in the hippocampus, that were merely normalized by both WBV and exercise. Therefore, apart from the potential concern about the lack of cardiac collagen reduction, WBV may provide a relevant alternative for physical exercise.
Collapse
Affiliation(s)
- Kata Tóth
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Regien G. Schoemaker
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Regien G. Schoemaker
| |
Collapse
|
13
|
Whole body vibration, an alternative for exercise to improve recovery from surgery? Brain Behav Immun Health 2022; 26:100521. [PMID: 36203743 PMCID: PMC9531049 DOI: 10.1016/j.bbih.2022.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery. Both whole body vibration (WBV) and running exercise restored the reduced cognitive flexibility caused by surgery. WBV as well as active exercise prevented surgery-induced declined neurogenesis. Active exercise, but not WBV, induced anxiety-like behavior after surgery. Neither WBV nor active exercise affected surgery-induced neuroinflammation. Neither WBV nor active exercise influenced hemodynamic recovery from surgery.
Collapse
|
14
|
Bonanni R, Cariati I, Romagnoli C, D’Arcangelo G, Annino G, Tancredi V. Whole Body Vibration: A Valid Alternative Strategy to Exercise? J Funct Morphol Kinesiol 2022; 7:jfmk7040099. [PMID: 36412761 PMCID: PMC9680512 DOI: 10.3390/jfmk7040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Cristian Romagnoli
- Sport Engineering Lab, Department of Industrial Engineering, “Tor Vergata” University of Rome, Via Politecnico 1, 00133 Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Potential of Whole-Body Vibration in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Human and Animal Studies. BIOLOGY 2022; 11:biology11081238. [PMID: 36009865 PMCID: PMC9405106 DOI: 10.3390/biology11081238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Exercise has shown to have a positive impact on both motor and non-motor functions in Parkinson’s Disease patients. However, particularly in later stages of the disease, reduced cognitive function and motor capacity may lead to an inability to stay physically active. Therefore, alternative strategies for patients with Parkinson’s Disease are necessary to minimize burden for patients, their families and public health care. Whole-Body Vibration could be such an alternative. Whole-Body Vibration is an exercise or treatment method in which subjects are exposed to a mechanical vibration while sitting, standing or exercising on a vibrating platform. Whole-Body Vibration is currently used for physiotherapy, sports and rehabilitation purposes. Whole-Body Vibration treatment is interesting because it affects both the body and brain. The potential of Whole-Body Vibration for, specifically, Parkinson’s Disease patients should be clarified for further application. For this purpose, we conducted an extensive systematic review of the articles investigating the effects of Whole-Body Vibrations (1) on animals and humans with Parkinson’s Disease and (2) on neuropathological Parkinson’s Disease mechanisms. The results show some potential of Whole-Body Vibration for Parkinson’s Disease patients. The recommendations provided by this review can be used by researchers and rehabilitative practitioners implementing Whole-Body Vibration as a treatment for Parkinson’s Disease patients. Abstract (1) Background: When the severity of Parkinson’s Disease (PD) increases, patients often have difficulties in performing exercises. Whole-Body Vibration (WBV) may be a suitable alternative. This systematic review aims to clarify if WBV shows potential as rehabilitative therapy for PD patients. (2) Methods: We searched several databases for controlled trials investigating the effects of WBV (1) on PD populations and (2) PD neuropathological mechanisms. We included both human and animal studies and performed meta-analyses. (3) Results: The studies on PD populations (14 studies) show an overall significant, but small, effect in favor of WBV (Hedges’ g = 0.28), for which the effects on stability (Hedges’ g = 0.39) and balance (Hedges’ g = 0.30) are the most prominent. The studies on the neuropathological mechanisms (18 studies) show WBV effects on neuroinflammation (Hedges’ g = –1.12) and several specific WBV effects on neurotransmitter systems, growth factors, neurogenesis, synaptic plasticity and oxidative stress. (4) Conclusions: The effects of WBV on human PD patients remains inconclusive. Nevertheless, WBV protocols with sufficient duration (≥3 weeks), session frequency (≥3 sessions/week) and vibration frequency (≥20 Hz) show potential as a treatment method, especially for motor function. The potential of WBV for PD patients is confirmed by the effects on the neuropathological mechanisms in mostly non-PD populations. We recommend high-quality future studies on both PD patients and PD mouse models to optimize WBV protocols and to examine the neuropathological mechanisms in PD populations.
Collapse
|
16
|
Benefits of Two 24-Week Interactive Cognitive-Motor Programs on Body Composition, Lower-Body Strength, and Processing Speed in Community Dwellings at Risk of Falling: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127117. [PMID: 35742365 PMCID: PMC9222305 DOI: 10.3390/ijerph19127117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
This 24-week randomized controlled trial study evaluated the effects of two interactive cognitive−motor programs on body composition, lower-body strength, and processing speed in community dwellings at risk of falling. Forty-eight participants (75.0 ± 5.4 years) were allocated into EG1 (psychomotor intervention program), EG2 (combined program (psychomotor intervention + whole-body vibration)), and a control group. EG programs induced significant improvements in bone mass, lower-body strength, and processing speed (p < 0.05), with similar treatment effects on lower-body strength and processing speed and higher bone mineral content and density within EG2. The fall rate decreased in EG1 (44.2%) and EG2 (63%) (p < 0.05). After the 12-week no-intervention follow-up, improvements in lower-body strength were reversed in both EGs, but those in processing speed were maintained, mainly in EG2 (p < 0.05). In conclusion, both programs were accepted and well tolerated. The combined program led to additional benefits in bone mass. Both programs positively impacted physical and cognitive risk factors for falls and injuries. They induced similar improvements in lower-body strength and processing speed, decreasing the fall rate. These findings suggest that both programs are successful for fall and injury prevention in the studied population.
Collapse
|
17
|
Beneficial effects of whole-body vibration exercise for brain disorders in experimental studies with animal models: a systematic review. Behav Brain Res 2022; 431:113933. [PMID: 35654174 DOI: 10.1016/j.bbr.2022.113933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 12/09/2022]
Abstract
Brain disorders have been a health challenge and is increasing over the years. Early diagnosis and interventions are considered essential strategies to treat patients at risk of brain disease. Physical exercise has shown to be beneficial for patients with brain diseases. A type of exercise intervention known as whole-body vibration (WBV) exercise gained increasing interest. During WBV, mechanical vibrations, produced by a vibrating platform are transmitted, to the body. The purpose of the current review was to summarize the effects of WBV exercise on brain function and behavior in experimental studies with animal models. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications from 1960 to July 2021, using the keywords "whole body vibration" AND (animal or mice or mouse or rat or rodent). From 1284 hits, 20 papers were selected. Rats were the main animal model used (75%) followed by mice (20%) and porcine model (5%), 16 studies used males species and 4 females. The risk of bias, accessed with the SYRCLE Risk of Bias tool, indicated that none of the studies fulfilled all methodological criteria, resulting in possible bias. Despite heterogeneity, the results suggest beneficial effects of WBV exercise on brain functioning, mainly related to motor performance, coordination, behavioral control, neuronal plasticity and synapse function. In conclusion, the findings observed in animal studies justifies continued clinical research regarding the effectiveness and potential of WBV for the treatment of various types of brain disorders such as trauma, developmental disorders, neurogenetic diseases and other neurological diseases.
Collapse
|
18
|
Chen T, Liu WB, Ren X, Li YF, Li W, Hang CH, Wang YH. Whole Body Vibration Attenuates Brain Damage and Neuroinflammation Following Experimental Traumatic Brain Injury. Front Cell Dev Biol 2022; 10:847859. [PMID: 35465331 PMCID: PMC9022659 DOI: 10.3389/fcell.2022.847859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major public health problem worldwide, and the research of neuroprotective drugs has encountered great difficulties. Whole body vibration (WBV) is a safe and powerful rehabilitative intervention in various clinical settings, but its effect on neurological diseases is not well documented. In this study, we investigated the effects of WBV pretreatment on brain damage following experimental TBI mimicked by controlled cortical impact (CCI) in mice. C57BL/6 J male mice were expose to WBV at 30 Hz twice per day for 20 days and injured by CCI. WBV had no effect on animal body weight, but significantly reduced the TBI-induced brain edema in the cortex. The results of immunostaining showed that the activation of microglia and astrocytes induced by TBI in brain sections was attenuated by WBV. In consistent, WBV markedly inhibited the expression of pro-inflammatory cytokines, while increased the levels of anti-inflammatory cytokine interleukin 10 (IL-10). In addition, WBV pretreatment alleviated neuronal apoptosis in the cortex and suppressed the cleavage of the apoptotic executive molecule caspase-1. The neurological dysfunction following TBI was determined by open field test and Morris Water Maze (MWM) assay. The results showed that motor activity, learning and memory ability were preserved by WBV compared to TBI-injured mice. In summary, our present data identified WBV as a clinically potent strategy with which to attenuate TBI-related brain damage through regulating neuroinflammation.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wen-Bo Liu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xu Ren
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Yun-Fei Li
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Wei Li
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yu-Hai Wang, ; Chun-Hua Hang,
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
- *Correspondence: Yu-Hai Wang, ; Chun-Hua Hang,
| |
Collapse
|
19
|
Khan MH, Huang X, Tian X, Ouyang C, Wang D, Feng S, Chen J, Xue T, Bao J, Zhang X. Short- and long-term effects of 3.5-23.0 Tesla ultra-high magnetic fields on mice behaviour. Eur Radiol 2022; 32:5596-5605. [PMID: 35294587 DOI: 10.1007/s00330-022-08677-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Higher static magnetic field (SMF) enables higher imaging capability in magnetic resonance imaging (MRI), which encourages the development of ultra-high field MRIs above 20 T with a prerequisite for safety issues. However, animal tests of ≥ 20 T SMF exposure are very limited. The objective of the current study is to evaluate mice behaviour consequences of 3.5-23.0 T SMF exposure. METHODS We systematically examined 112 mice for their short- and long-term behaviour responses to a 2-h exposure of 3.5-23.0 T SMFs. Locomotor activity and cognitive functions were measured by five behaviour tests, including balance beam, open field, elevated plus maze, three-chamber social recognition, and Morris water maze tests. RESULTS Besides the transient short-term impairment of the sense of balance and locomotor activity, the 3.5-23.0 T SMFs did not have long-term negative effects on mice locomotion, anxiety level, social behaviour, or memory. In contrast, we observed anxiolytic effects and positive effects on social and spatial memory of SMFs, which is likely correlated with the significantly increased CaMKII level in the hippocampus region of high SMF-treated mice. CONCLUSIONS Our study showed that the short exposures to high-field SMFs up to 23.0 T have negligible side effects on healthy mice and may even have beneficial outcomes in mice mood and memory, which is pertinent to the future medical application of ultra-high field SMFs in MRIs and beyond. KEY POINTS • Short-term exposure to magnetic fields up to 23.0 T is safe for mice. • High-field static magnetic field exposure transiently reduced mice locomotion. • High-field static magnetic field enhances memory while reduces the anxiety level.
Collapse
Affiliation(s)
- Md Hasanuzzaman Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xinfeng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xiaofei Tian
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Changjie Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Shuang Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Jutao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Xin Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, Anhui, China.
| |
Collapse
|
20
|
Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole Body Vibration Improves Spatial Memory, Anxiety-Like Behavior, and Motor Performance in Aged Male and Female Rats. Front Aging Neurosci 2022; 13:801828. [PMID: 35126091 PMCID: PMC8815031 DOI: 10.3389/fnagi.2021.801828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is a progressive process leading to functional decline in many domains. Recent studies have shown that physical exercise (PE) has a positive influence on the progression of age-related functional decline, including motor and brain functions. Whole body vibration (WBV) is a form of passive stimulation by mechanical vibration platforms, which offers an alternative for PE interventions, especially for aged individuals. WBV has been demonstrated to mimic the beneficial effects of PE on the musculoskeletal system, as well on the central nervous system. However, preclinical data with aged rodents are very limited. Hence, the purpose of this experiment was to investigate the effects of a 5-week WBV intervention with an aged animal model on memory functions, anxiety-related behavior, and motor performance. The 18-month old male (N = 14) and female (N = 14) Wistar rats were divided into two groups, namely, vibration and pseudo-vibration. Animals underwent a 5-week WBV intervention protocol with low intensity (frequency of 30 Hz and amplitude of 50–200 μm) stimulation. After 5 weeks, the following cognitive and motor tests were administered: open-field, novel and spatial object recognition, grip-hanging, and balance-beam. WBV-treated rats showed a decrease in their anxiety level in the open field test compared with those in the pseudo-treated controls. In addition, WBV-treated male animals showed significantly increased rearing in the open-field test compared to their pseudo controls. Spatial memory was significantly improved by WBV treatment, whereas WBV had no effect on object memory. Regarding motor performance, both grip strength and motor coordination were improved by WBV treatment. Our results indicate that WBV seems to have comparable beneficial effects on age-related emotional, cognitive, and motor decline as what has been reported for active PE. No striking differences were found between the sexes. As such, these findings further support the idea that WBV could be considered as a useful alternative for PE in case active PE cannot be performed due to physical or mental issues.
Collapse
|
21
|
Reporting Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A Consensus Statement from an International Group of Experts. BIOLOGY 2021; 10:biology10100965. [PMID: 34681065 PMCID: PMC8533415 DOI: 10.3390/biology10100965] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Whole-body vibration (WBV) is an exercise or treatment method used in sports, physiotherapy, and rehabilitation. During WBV, people sit, stand, or exercise on a platform that generates vibrations. These vibrations generally occur between 20 and 60 times per second and have a magnitude of one or several millimeters. Research is focused on the effects of WBV on, for instance, physical and cognitive functions as well as the underlying mechanisms that may explain the effects. Research is not only done in humans but in animals and cell cultures as well. It is important to report the studies correctly, completely, and consistently. This way, researchers can interpret and compare each other’s studies, and data of different studies can be combined and analyzed together. To serve this goal, we developed new guidelines on how to report on WBV studies. The guidelines include checklists for human and animal/cell culture research, explanations, and examples of how to report. We included information about devices, vibrations, administration, general protocol, and subjects. The guidelines are WBV-specific and can be used by researchers alongside general guidelines for specific research designs. Abstract Whole-body vibration (WBV) is an exercise modality or treatment/prophylaxis method in which subjects (humans, animals, or cells) are exposed to mechanical vibrations through a vibrating platform or device. The vibrations are defined by their direction, frequency, magnitude, duration, and the number of daily bouts. Subjects can be exposed while performing exercises, hold postures, sitting, or lying down. Worldwide, WBV has attracted significant attention, and the number of studies is rising. To interpret, compare, and aggregate studies, the correct, complete, and consistent reporting of WBV-specific data (WBV parameters) is critical. Specific reporting guidelines aid in accomplishing this goal. There was a need to expand existing guidelines because of continuous developments in the field of WBV research, including but not limited to new outcome measures regarding brain function and cognition, modified designs of WBV platforms and attachments (e.g., mounting a chair on a platform), and comparisons of animal and cell culture studies with human studies. Based on Delphi studies among experts and using EQUATOR recommendations, we have developed extended reporting guidelines with checklists for human and animal/cell culture research, including information on devices, vibrations, administration, general protocol, and subjects. In addition, we provide explanations and examples of how to report. These new reporting guidelines are specific to WBV variables and do not target research designs in general. Researchers are encouraged to use the new WBV guidelines in addition to general design-specific guidelines.
Collapse
|
22
|
Yang F, Wen PS, Bethoux F, Zhao Y. Effects of Vibration Training on Cognition and Quality of Life in People with Multiple Sclerosis. Int J MS Care 2021; 24:132-138. [DOI: 10.7224/1537-2073.2020-095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Background: Multiple sclerosis (MS) detrimentally affects cognition and quality of life (QOL). Interventions that can improve cognitive deficit and QOL in people with MS are desired. This pilot study investigated the possible effects of vibration training on improving cognition and QOL in people with MS.
Methods: Eighteen adults with MS were randomized into two groups: training and control. The training group underwent 6 weeks of vibration training, and the control group maintained their normal lifestyle throughout the study. In both groups, before and after the training course, the disability status was evaluated by the Patient-Determined Disease Steps scale and the Multiple Sclerosis Functional Composite (MSFC), cognitive function was assessed by the Behavior Rating Inventory of Executive Function (BRIEF) and the Selective Reminding Test (SRT), and QOL was gauged by the 36-item Short Form Health Survey (SF-36).
Results: The training was well accepted by the participants, and no major adverse event was reported. All participants finished the entire protocol. Compared with the control group, after the training the training group showed greater improvements in MSFC score, Metacognition Index score of the BRIEF, SRT score, and physical domain score of the SF-36.
Conclusions: These results suggest that vibration training could be an effective alternative training paradigm to enhance cognition and QOL in people with MS, and they provide an encouraging base to conduct a large-scale clinical trial.
Collapse
Affiliation(s)
- Feng Yang
- From the Department of Kinesiology and Health (FY), Georgia State University, Atlanta, GA, USA
| | - Pey-Shan Wen
- Department of Occupational Therapy (P-SW), Georgia State University, Atlanta, GA, USA
| | - Francois Bethoux
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, OH, USA (FB)
| | - Yichuan Zhao
- Department of Mathematics and Statistics (YZ), Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Cariati I, Bonanni R, Annino G, Scimeca M, Bonanno E, D'Arcangelo G, Tancredi V. Dose-Response Effect of Vibratory Stimulus on Synaptic and Muscle Plasticity in a Middle-Aged Murine Model. Front Physiol 2021; 12:678449. [PMID: 34177622 PMCID: PMC8226218 DOI: 10.3389/fphys.2021.678449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Whole body vibration plays a central role in many work categories and can represent a health risk to the musculoskeletal system and peripheral nervous system. However, studies in animal and human models have shown that vibratory training, experimentally and/or therapeutically induced, can exert beneficial effects on the whole body, as well as improve brain functioning and reduce cognitive decline related to the aging process. Since the effects of vibratory training depend on several factors, such as vibration frequency and vibration exposure time, in this work, we investigated whether the application of three different vibratory protocols could modulate synaptic and muscle plasticity in a middle-aged murine model, counteracting the onset of early symptoms linked to the aging process. To this end, we performed in vitro electrophysiological recordings of the field potential in the CA1 region of mouse hippocampal slices, as well as histomorphometric and ultrastructural analysis of muscle tissue by optic and transmission electron microscopy, respectively. Our results showed that protocols characterized by a low vibration frequency and/or a longer recovery time exert positive effects at both hippocampal and muscular level, and that these effects improve significantly by varying both parameters, with an action comparable with a dose-response effect. Thus, we suggested that vibratory training may be an effective strategy to counteract cognitive impairment, which is already present in the early stages of the aging process, and the onset of sarcopenia, which is closely related to a sedentary lifestyle. Future studies are needed to understand the underlying molecular mechanisms and to determine an optimal vibratory training protocol.
Collapse
Affiliation(s)
- Ida Cariati
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Roberto Bonanni
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Rome, Italy.,"Diagnostica Medica" and "Villa dei Platani", Neuromed Group, Avellino, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| |
Collapse
|
24
|
Peng G, Yang L, Wu CY, Zhang LL, Wu CY, Li F, Shi HW, Hou J, Zhang LM, Ma X, Xiong J, Pan H, Zhang GQ. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int 2020; 142:104926. [PMID: 33276022 DOI: 10.1016/j.neuint.2020.104926] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that brings great harm and burden to both patients and society. This study aimed to examine the effects of whole-body vibration (WBV) training on a chronic restraint stress (CRS) induced depression rat model and provide an initial understanding of related molecular mechanisms. Adult Sprague-Dawley male rats were randomly divided into the following three groups: a) control group, b) depressive disorder group, and c) depression with WBV training treatment group. Daily food intake, body weight, sucrose preference test, open field test, elevated plus maze, forced swimming test, and Barnes maze task tests were performed. Immunofluorescence staining and ELISA analysis were used to assess neuronal damage, synaptic proteins, glial cells, and trophic factors. The data of behavioral tests and related biochemical indicators were statistically analyzed and compared between groups. Rats undergoing CRS showed increased anxiety-like behavior and memory impairment, along with synaptic atrophy and neuronal degeneration. WBV could reverse behavioral dysfunction, inhibit the degeneration of neurons, alleviate the damage of neurons and the pathological changes of glial cells, enhance trophic factor expression, and ameliorate the downregulation of dendritic and synaptic proteins after CRS. The effect of WBV in rats may be mediated via the reduction of hippocampal neuronal degeneration and by improving expression of synaptic proteins. WBV training exerts multifactorial benefits on MDD that supports its use as a promising new therapeutic option for improving depression-like behaviors in the depressive and/or potentially depressive.
Collapse
Affiliation(s)
- Guangcong Peng
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Luodan Yang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chong Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Ling L Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chun Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Fan Li
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hai W Shi
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jun Hou
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Li M Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hongying Pan
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| | - Guang Q Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| |
Collapse
|
25
|
Firmino SG, Duarte MLM, Neves JAB, Viana PAX, de Araújo FSB. Whole body vibration influence on bus fare collectors evaluated by using a brain training mobile app. Int Arch Occup Environ Health 2020; 94:495-501. [PMID: 33156391 DOI: 10.1007/s00420-020-01601-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present work aims to study the effects of whole body vibration (WBV) on bus fare collectors through the use of cognitive tests. It is of interest for all individuals working as bus fare collectors or any other activity where logic is of paramount importance and that is performed on a vibrating environment. METHODS Laboratory simulations were performed in 24 volunteers employing a vibrating platform subjected to vertical vibration. The influence of WBV on cognition was assessed using the performance on a logic game. The frequencies used were 5 Hz and 30 Hz. The acceleration amplitude values were set up as 0.7 m/s2 and 0.2 m/s2. A daily commute was simulated, based on data of the public transport system in the city of Belo Horizonte. A vibration-free test was initially performed to serve as a basis for comparison. RESULTS The data obtained in all situations were compared and statistically analyzed. At 5 Hz, variation only shows significant after 5 min of vibration ceased as if the residual effect had passed after 5 min of rest. The gender variable was not significant. However, the older the volunteer, the worse the performance. Regarding 30 Hz frequency, the hypotheses did not meet the condition of significance at 5% but showed an opposite tendency indicating, in this situation, a score increase. It is noticed that the female volunteers presented a better performance in relation to the male gender The residual effect lasts for less than 10 min for short exposure intervals, since the score of test 8, in 5 Hz and 30 Hz, show a reduction of performance. CONCLUSIONS From the results, it was possible to conclude that the frequency of 5 Hz may be related to reduced performance for long exposure times while the 30 Hz frequency has positive effects on cognition as the exposure time increases. In fact, it is a tendency much more than a clear statistical finding. Regarding comfort, most reports related to the frequency of 5 Hz are linked to the sensation of discomfort and difficulty in focusing visually, whereas, for the frequency of 30 Hz, the reports indicate a feeling of muscular comfort and increased easiness of concentration.
Collapse
Affiliation(s)
- S G Firmino
- GRAVIsh Group of Acoustics and Vibration in Human Beings, DEMEC/UFMG: Mechanical Engineering Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Campus Universitário, Belo Horizonte, MG, 31270-901, Brazil
| | - M L M Duarte
- GRAVIsh Group of Acoustics and Vibration in Human Beings, DEMEC/UFMG: Mechanical Engineering Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Campus Universitário, Belo Horizonte, MG, 31270-901, Brazil. .,PPGMEC/UFMG: Post-Graduation Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - J A B Neves
- FAFICH/UFMG: School of Philosophy and Human Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - P A X Viana
- GRAVIsh Group of Acoustics and Vibration in Human Beings, DEMEC/UFMG: Mechanical Engineering Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Campus Universitário, Belo Horizonte, MG, 31270-901, Brazil.,DEMEC/UFMG: Mechanical Engineering Department, Aeronautics Division, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - F S B de Araújo
- GRAVIsh Group of Acoustics and Vibration in Human Beings, DEMEC/UFMG: Mechanical Engineering Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Campus Universitário, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
26
|
Wuestefeld A, Fuermaier ABM, Bernardo-Filho M, da Cunha de Sá-Caputo D, Rittweger J, Schoenau E, Stark C, Marin PJ, Seixas A, Judex S, Taiar R, Nyakas C, van der Zee EA, van Heuvelen MJG, Tucha O. Towards reporting guidelines of research using whole-body vibration as training or treatment regimen in human subjects-A Delphi consensus study. PLoS One 2020; 15:e0235905. [PMID: 32697809 PMCID: PMC7375612 DOI: 10.1371/journal.pone.0235905] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Whole-body vibration (WBV) is a method utilizing vibrating platforms to expose individuals to mechanical vibration. In its various applications, it has been linked to improved muscular, skeletal, metabolic, or cognitive functioning, quality of life, and physiological parameters such as blood pressure. Most evidence concerning WBV is inconclusive and meta-analytical reviews may not readily produce insights since the research has a risk of misunderstandings of vibration parameters and incomplete reporting occurs. This study aims at laying an empirical foundation for reporting guidelines for human WBV studies to improve the quality of reporting and the currently limited comparability between studies. METHOD The Delphi methodology is employed to exploit the integrated knowledge of WBV experts to distil the specific aspects of WBV methodology that should be included in such guidelines. Over three rounds of completing online questionnaires, the expert panel (round 1/2/3: 51/40/37 experts respectively from 17 countries with an average of 19.4 years of WBV research experience) rated candidate items. RESULTS A 40-item list was established based on the ratings of the individual items from the expert panel with a large final consensus (94.6%). CONCLUSION The final consensus indicates comprehensiveness and valuableness of the list. The results are in line with previous guidelines but expand these extensively. The present results may therefore serve as a foundation for updated guidelines for reporting human WBV studies in order to improve the quality of reporting of WBV studies, improve comparability of studies and facilitate the development of WBV study designs.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
| | - Anselm B. M. Fuermaier
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- * E-mail:
| | - Mario Bernardo-Filho
- Laboratory of Mechanical Vibration and Integrative Practices, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratory of Mechanical Vibration and Integrative Practices, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculty Bezerra de Araújo, Physiotherapy Course, Universidade do Estado do Rio de Janeiro, Rio de Janeirom, Brazil
| | - Jörn Rittweger
- German Aerospace Center, University of Cologne, Cologne, Germany
| | - Eckhard Schoenau
- Department of Pediatrics, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Center for Prevention and Rehabilitation, UniReha GmbH, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Christina Stark
- Department of Pediatrics, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | | | - Adérito Seixas
- Escola Superior de Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | | | - Csaba Nyakas
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Molecular Neurobiology, University of Groningen, Groningen, Netherlands
| | - Marieke J. G. van Heuvelen
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Oliver Tucha
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Oroszi T, van Heuvelen MJ, Nyakas C, van der Zee EA. Vibration detection: its function and recent advances in medical applications. F1000Res 2020; 9:F1000 Faculty Rev-619. [PMID: 32595943 PMCID: PMC7308885 DOI: 10.12688/f1000research.22649.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrations are all around us. We can detect vibrations with sensitive skin mechanoreceptors, but our conscious awareness of the presence of vibrations is often limited. Nevertheless, vibrations play a role in our everyday life. Here, we briefly describe the function of vibration detection and how it can be used for medical applications by way of whole body vibration. Strong vibrations can be harmful, but milder vibrations can be beneficial, although to what extent and how large the clinical relevance is are still controversial. Whole body vibration can be applied via a vibrating platform, used in both animal and human research. Recent findings make clear that the mode of action is twofold: next to the rather well-known exercise (muscle) component, it also has a sensory (skin) component. Notably, the sensory (skin) component stimulating the brain has potential for several purposes including improvements in brain-related disorders. Combining these two components by selecting the optimal settings in whole body vibration has clear potential for medical applications. To realize this, the field needs more standardized and personalized protocols. It should tackle what could be considered the "Big Five" variables of whole body vibration designs: vibration amplitude, vibration frequency, method of application, session duration/frequency, and total intervention duration. Unraveling the underlying mechanisms by translational research can help to determine the optimal settings. Many systematic reviews on whole body vibration end with the conclusion that the findings are promising yet inconclusive. This is mainly because of the large variation in the "Big Five" settings between studies and incomplete reporting of methodological details hindering reproducibility. We are of the opinion that when (part of) these optimal settings are being realized, a much better estimate can be given about the true potential of whole body vibration as a medical application.
Collapse
Affiliation(s)
- Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Sañudo B, Seixas A, Gloeckl R, Rittweger J, Rawer R, Taiar R, van der Zee EA, van Heuvelen MJ, Lacerda AC, Sartorio A, Bemben M, Cochrane D, Furness T, de Sá-Caputo D, Bernardo-Filho M. Potential Application of Whole Body Vibration Exercise For Improving The Clinical Conditions of COVID-19 Infected Individuals: A Narrative Review From the World Association of Vibration Exercise Experts (WAVex) Panel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3650. [PMID: 32455961 PMCID: PMC7277771 DOI: 10.3390/ijerph17103650] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is a highly infectious respiratory disease which leads to several clinical conditions related to the dysfunction of the respiratory system along with other physical and psychological complaints. Severely affected patients are referred to intensive care units (ICUs), limiting their possibilities for physical exercise. Whole body vibration (WBV) exercise is a non-invasive, physical therapy, that has been suggested as part of the procedures involved with pulmonary rehabilitation, even in ICU settings. Therefore, in the current review, the World Association of Vibration Exercise Experts (WAVEX) reviewed the potential of WBV exercise as a useful and safe intervention for the management of infected individuals with COVID-19 by mitigating the inactivity-related declines in physical condition and reducing the time in ICU. Recommendations regarding the reduction of fatigue and the risk of dyspnea, the improvement of the inflammatory and redox status favoring cellular homeostasis and the overall improvement in the quality of life are provided. Finally, practical applications for the use of this paradigm leading to a better prognosis in bed bound and ICU-bound subjects is proposed.
Collapse
Affiliation(s)
- Borja Sañudo
- Departamento de Educación Física y Deporte, Universidad de Sevilla, 41013 Seville, Spain;
| | - Adérito Seixas
- Escola Superior de Saúde, Universidade Fernando Pessoa, 4200-253 Porto, Portugal
| | - Rainer Gloeckl
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany;
- Department of Pulmonary Rehabilitation, Philipps–University of Marburg, German Center for Lung Research (DZL), 35037 Marburg, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Department of Pediatrics and Adolescent Medicine, University of Cologne, D50931 Cologne, Germany
| | - Rainer Rawer
- Head of Research & Development Department, Novotec Medical GmbH & Galileo Training, 75172 Pforzheim, Germany;
| | - Redha Taiar
- Université de Reims Champagne Ardenne, 51100 Grand Est, France;
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands;
| | - Ana Cristina Lacerda
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina 39100-000, MG, Brazil;
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research & Division of Metabolic Diseases, 20145 Milan, Italy;
| | - Michael Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA;
| | - Darryl Cochrane
- School of Sport, Exercise and Nutrition, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Trentham Furness
- Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC 3065, Australia;
| | - Danúbia de Sá-Caputo
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (D.d.S.-C.); (M.B.-F.)
- Faculdade Bezerra de Araújo, Rio de Janeiro 23052-180, Brazil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (D.d.S.-C.); (M.B.-F.)
| |
Collapse
|
29
|
Heesterbeek M, van der Zee EA, van Heuvelen MJG. Feasibility of Three Novel Forms of Passive Exercise in a Multisensory Environment in Vulnerable Institutionalized Older Adults with Dementia. J Alzheimers Dis 2019; 70:681-690. [PMID: 31256137 PMCID: PMC6700638 DOI: 10.3233/jad-190309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increasing physical activity levels in patients with dementia can reduce pathology severity and progression of the disease. However, physical activity programs can be challenging to adhere to for this vulnerable population. Three novel forms of passive exercise in a multisensory environment may be feasible alternatives for patients who can no longer be involved in physical activity. OBJECTIVE To determine the feasibility of three different forms of passive exercise in a multisensory environment in inactive institutionalized older adults with dementia. METHODS 120 patients with dementia participated in this single blind randomized controlled trial (64.5% female, age 85.3±6.8 years Mini-Mental State Examination range 0-29). Ninety participants were randomly assigned to one of the three intervention groups: Therapeutic Motion Simulation (TMSim), Whole Body Vibration (WBV), and TMSim + WBV. Participants received 6 weeks of passive exercise, 4 sessions a week, 4 (WBV) to 12 (TMSim and TMSim + WBV) minutes per session. Feasibility of the novel forms of passive exercise was evaluated based on attendance, compliance, (proxy) experience scores, adverse events and drop-out rates. RESULTS On average 87.9% of the offered intervention sessions were attended. All three forms of passive exercise were well appreciated by the participants (7.3 on a scale from 0 to 10). Intervention related drop-out rates were reasonable (12.2%) and no serious adverse events occurred. CONCLUSION The novel passive exercise interventions TMSim, WBV, and TMSim + WBV are feasible to apply in patients at all stages of dementia. More research is needed to establish effectiveness of passive exercise to limit adverse effects of dementia.
Collapse
Affiliation(s)
- Marelle Heesterbeek
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Eddy Anton van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marieke Joan Gerda van Heuvelen
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|