1
|
Ardizzone A, Bulzomì M, De Luca F, Silvestris N, Esposito E, Capra AP. Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients. Curr Issues Mol Biol 2024; 46:9831-9843. [PMID: 39329936 PMCID: PMC11430620 DOI: 10.3390/cimb46090584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the safety of fluoropyrimidine therapy could be improved by identifying new DPYD polymorphisms associated with ADRs. This study was carried out to assess whether testing for the underestimated c.2194G>A (DPYD*6 polymorphism, rs1801160) is useful, in addition to other well-known variants, in reducing the risk of ADRs in patients undergoing chemotherapy treatment. This retrospective study included 132 patients treated with fluoropyrimidine-containing regimens who experienced ADRs such as gastrointestinal, dermatological, hematological, and neurological. All subjects were screened for DPYD variants DPYD2A (IVS14+1G>A, c.1905+1G>A, rs3918290), DPYD13 (c.1679T>G, rs55886062), c.2846A>T (rs67376798), c.1236G>A (rs56038477), and c.2194G>A by real-time polymerase chain reaction (RT-PCR). In this cohort, the heterozygous c.2194G>A variant was present in 26 patients, while 106 individuals were WT; both subgroups were compared for the incidence of ADRs. This assessment revealed a high incidence of gastrointestinal and hematological ADRs in DPYD6 carriers compared to WT. Moreover, we have shown a higher prevalence of ADRs in females compared to males when stratifying c.2194G>A carrier individuals. Considering that c.2194G>A was linked to clinically relevant ADRs, we suggest that this variant should also be assessed preventively to reduce the risk of fluoropyrimidine-related ADRs.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| |
Collapse
|
2
|
van Kuilenburg ABP, Pleunis-van Empel MCH, Brouwer RB, Sijben AEJ, Knapen DG, Oude Munnink TH, van Zanden JJ, Janssens-Puister J, Dobritzsch D, Meinsma R, Meijer-Jansen J, van Dooren SJM, Vijzelaar R, Pop A, Salomons GS, Maring JG, Niezen-Koning KE. Lethal Capecitabine Toxicity in Patients With Complete Dihydropyrimidine Dehydrogenase Deficiency Due to Ultra-Rare DPYD Variants. JCO Precis Oncol 2024; 8:e2300599. [PMID: 38709992 DOI: 10.1200/po.23.00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
A DPD deficiency should be considered in case of severe toxicity even in the absence of common risk variants in DPYD.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Rick B Brouwer
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Medlon BV, Enschede, the Netherlands
| | | | - Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thijs H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jelmer J van Zanden
- Martini Hospital Groningen, Certe Department of Clinical Chemistry, the Netherlands
| | - Jenny Janssens-Puister
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Doreen Dobritzsch
- Department of Chemistry, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Rutger Meinsma
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Judith Meijer-Jansen
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ana Pop
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Gajja S Salomons
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Jan Gerard Maring
- Departments of Clinical Pharmacy and Medical Oncology, Isala, Zwolle, the Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Martin JH, Galettis P, Flynn A, Schneider J. Phenotype versus genotype to optimize cancer dosing in the clinical setting-focus on 5-fluorouracil and tyrosine kinase inhibitors. Pharmacol Res Perspect 2024; 12:e1182. [PMID: 38429945 PMCID: PMC10907881 DOI: 10.1002/prp2.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Cancer medicines often have narrow therapeutic windows; toxicity can be severe and sometimes fatal, but inadequate dose intensity reduces efficacy and survival. Determining the optimal dose for each patient is difficult, with body-surface area used most commonly for chemotherapy and flat dosing for tyrosine kinase inhibitors, despite accumulating evidence of a wide range of exposures in individual patients with many receiving a suboptimal dose with these strategies. Therapeutic drug monitoring (measuring the drug concentration in a biological fluid, usually plasma) (TDM) is an accepted and well validated method to guide dose adjustments for individual patients to improve this. However, implementing TDM in routine care has been difficult outside a research context. The development of genotyping of various proteins involved in drug elimination and activity has gained prominence, with several but not all Guideline groups recommending dose reductions for particular variant genotypes. However, there is increasing concern that dosing recommendations are based on limited data sets and may lead to unnecessary underdosing and increased cancer mortality. This Review discusses the evidence surrounding genotyping and TDM to guide decisions around best practice.
Collapse
Affiliation(s)
- Jennifer H. Martin
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Peter Galettis
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Alex Flynn
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jennifer Schneider
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
4
|
Lešnjaković L, Ganoci L, Bilić I, Šimičević L, Mucalo I, Pleština S, Božina N. DPYD genotyping and predicting fluoropyrimidine toxicity: where do we stand? Pharmacogenomics 2023; 24:93-106. [PMID: 36636997 DOI: 10.2217/pgs-2022-0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluoropyrimidines (FPs) are antineoplastic drugs widely used in the treatment of various solid tumors. Nearly 30% of patients treated with FP chemotherapy experience severe FP-related toxicity, and in some cases, toxicity can be fatal. Patients with reduced activity of DPD, the main enzyme responsible for the breakdown of FP, are at an increased risk of experiencing severe FP-related toxicity. While European regulatory agencies and clinical societies recommend pre-treatment DPD deficiency screening for patients starting treatment with FPs, this is not the case with American ones. Pharmacogenomic guidelines issued by several pharmacogenetic organizations worldwide recommend testing four DPD gene (DPYD) risk variants, but these can predict only a proportion of toxicity cases. New evidence on additional common DPYD polymorphisms, as well as identification and functional characterization of rare DPYD variants, could partially address the missing heritability of DPD deficiency and FP-related toxicity.
Collapse
Affiliation(s)
- Lucija Lešnjaković
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivan Bilić
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Mucalo
- Centre for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Paulsen NH, Vojdeman F, Andersen SE, Bergmann TK, Ewertz M, Plomgaard P, Hansen MR, Esbech PS, Pfeiffer P, Qvortrup C, Damkier P. DPYD genotyping and dihydropyrimidine dehydrogenase (DPD) phenotyping in clinical oncology. A clinically focused minireview. Basic Clin Pharmacol Toxicol 2022; 131:325-346. [PMID: 35997509 PMCID: PMC9826411 DOI: 10.1111/bcpt.13782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND In clinical oncology, systemic 5-fluorouracil (5-FU) and its oral pro-drugs are used to treat a broad group of solid tumours. Patients with dihydropyrimidine dehydrogenase (DPD) enzyme deficiency are at elevated risk of toxicity if treated with standard doses of 5-FU. DPYD genotyping and measurements of plasma uracil concentration (DPD phenotyping) can be applied as tests for DPD deficiency. In April 2020, the European Medicines Agency recommended pre-treatment DPD testing to reduce the risk of 5-FU-related toxicity. OBJECTIVES The objective of this study is to present the current evidence for DPD testing in routine oncological practice. METHODS Two systematic literature searches were performed following the PRISMA guidelines. We identified studies examining the possible benefit of DPYD genotyping or DPD phenotyping on the toxicity risk. FINDINGS Nine and 12 studies met the criteria for using DPYD genotyping and DPD phenotyping, respectively. CONCLUSIONS The evidence supporting either DPYD genotyping or DPD phenotyping as pre-treatment tests to reduce 5-FU toxicity is poor. Further evidence is still needed to fully understand and guide clinicians to dose by DPD activity.
Collapse
Affiliation(s)
- Niels Herluf Paulsen
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Fie Vojdeman
- Department of Clinical BiochemistryHolbaek HospitalHolbaekDenmark
| | | | - Troels K. Bergmann
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Department of Regional Health ResearchUniversity of Southern DenmarkEsbjergDenmark
| | - Marianne Ewertz
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Morten Rix Hansen
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Novo NordiskSøborgDenmark
| | - Peter Skov Esbech
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
| | - Per Pfeiffer
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of OncologyOdense University HospitalOdenseDenmark
| | - Camilla Qvortrup
- Department of Oncology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Per Damkier
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
6
|
De Mattia E, Silvestri M, Polesel J, Ecca F, Mezzalira S, Scarabel L, Zhou Y, Roncato R, Lauschke VM, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. Rare genetic variant burden in DPYD predicts severe fluoropyrimidine-related toxicity risk. Biomed Pharmacother 2022; 154:113644. [PMID: 36063648 PMCID: PMC9463069 DOI: 10.1016/j.biopha.2022.113644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Preemptive targeted pharmacogenetic testing of candidate variations in DPYD is currently being used to limit toxicity associated with fluoropyrimidines. The use of innovative next generation sequencing (NGS) approaches could unveil additional rare (minor allele frequency <1%) genetic risk variants. However, their predictive value and management in clinical practice are still controversial, at least partly due to the challenges associated with functional analyses of rare variants. The aim of this study was to define the predictive power of rare DPYD variants burden on the risk of severe fluoropyrimidine-related toxicity. The DPYD coding sequence and untranslated regions were analyzed by NGS in 120 patients developing grade 3–5 (NCI-CTC vs3.0) fluoropyrimidine-related toxicity and 104 matched controls (no-toxicity). The functional impact of rare variants was assessed using two different in silico predictive tools (i.e., Predict2SNP and ADME Prediction Framework) and structural modeling. Plasma concentrations of uracil (U) and dihydrouracil (UH2) were quantified in carriers of the novel variants. Here, we demonstrate that the burden of rare variants was significantly higher in patients with toxicity compared to controls (p = 0.007, Mann-Whitney test). Carriers of at least one rare missense DPYD variant had a 16-fold increased risk in the first cycle and an 11-fold increased risk during the entire course of chemotherapy of developing a severe adverse event compared to controls (p = 0.013 and p = 0.0250, respectively by multinomial regression model). Quantification of plasmatic U/UH2 metabolites and in silico visualization of the encoded protein were consistent with the predicted functional effect for the novel variations. Analysis and consideration of rare variants by DPYD-sequencing could improve prevention of severe toxicity of fluoropyrimidines and improve patients’ quality of life. DPYD genotype-guided dosing reduces fluoropyrimidine (FP) toxicity risk. Rare DPYD variants associate with severe FP toxicities. Carriers of rare DPYD variants have 11-fold increased risk of toxicity. DPYD sequencing and in silico functional prediction could prevent FP toxicity events.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Marco Silvestri
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Department of Applied Research and Technological Development, Via Giacomo Venezian 1, 20133 Milano, Italy.
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Silvia Mezzalira
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany.
| | - Stefano Calza
- University of Brescia, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy.
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, via Franco Gallini n. 2, 33081 Aviano PN, Italy; Department of Medicine, University of Udine, Via delle Scienze, 206, 33100 Udine UD, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| |
Collapse
|
7
|
Fuereder T. Optimizing the prescription doses and tolerability of systemic therapy in head and neck cancer patients. Curr Opin Oncol 2022; 34:204-211. [PMID: 35266908 DOI: 10.1097/cco.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Squamous cell carcinoma of the head and neck accounts for 330 000 deaths and 650 000 cases worldwide annually. Systemic therapy is an essential pillar of multimodal therapy despite being accompanied with substantial toxicity. This article reviews the latest advances in systemic therapy for the treatment of locoregionally advanced and reccurent/metastatic head and neck cancer from a tolerability perspective. RECENT FINDINGS Multiple recent attempts have been made to optimize tolerability (and efficacy) of systemic therapy utilizing new regimens, modified prescription doses, drugs such as immunotherapies or genotyping to tailor the systemic therapy to the individual patient. SUMMARY Although treatment benefit has to be weighed against potential toxicity, it is reasonable to anticipate potential side effects of systemic therapies. In a vulnerable elderly or Asian patient population upfront dose modifications of cytotoxic chemotherapies might be reasonable. Special attention should be laid on the patient's nutritional status and early intervention recommended. Dihydropyrimidine dehydrogenase genotyping can predict 5-fluorouracil toxicity and identify patients for whom alternative regimens are more suitable. As for immune checkpoint inhibitor therapy, despite being well tolerated, the identification of biomarkers to predict reduced tolerability or severe toxicity would be highly desirable.
Collapse
Affiliation(s)
- Thorsten Fuereder
- Division of Oncology, Department of Medicine I & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Schneider JJ, Galettis P, Martin JH. Overcoming barriers to implementing precision dosing with 5-fluorouracil and capecitabine. Br J Clin Pharmacol 2021; 87:317-325. [PMID: 33386659 DOI: 10.1111/bcp.14723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in targeted cancer therapy, the fluoropyrimidines 5-fluorouracil (5FU) and capecitabine continue to play an important role in oncology. Historically, dosing of these drugs has been based on body surface area. This approach has been demonstrated to be an imprecise way to determine the optimal dose for a patient. Evidence in the literature has demonstrated that precision dosing approaches, such as DPD enzyme activity testing and, in the case of intravenous 5FU, pharmacokinetic-guided dosing, can reduce toxicity and yield better patient outcomes. However, despite the evidence, there has not been uniform adoption of these approaches in the clinical setting. When a drug such as 5FU has been used clinically for many decades, it may be difficult to change clinical practice. With the aim of facilitating change of practice, issues and barriers to implementing precision dosing approaches for 5FU and capecitabine are identified and discussed with possible solutions proposed.
Collapse
Affiliation(s)
- Jennifer J Schneider
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Peter Galettis
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Jennifer H Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| |
Collapse
|