1
|
Abdallah BM, Elshoeibi AM, ElTantawi N, Arif M, Hourani RF, Akomolafe AF, Hamwi MN, Mahmood FR, Saracoglu KT, Saracoglu A, Chivese T. Comparison of postoperative pain in children after maintenance anaesthesia with propofol or sevoflurane: a systematic review and meta-analysis. Br J Anaesth 2024; 133:93-102. [PMID: 38670899 PMCID: PMC11213989 DOI: 10.1016/j.bja.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Propofol and sevoflurane are two of the most commonly used anaesthetics for paediatric surgery. Data from some clinical trials suggest that postoperative pain incidence is lower when propofol is used for maintenance of anaesthesia compared with sevoflurane, although this is not clear. METHODS This meta-analysis compared postoperative pain following maintenance of anaesthesia with propofol or sevoflurane in paediatric surgeries. PubMed Medline, Embase, Scopus, Web of Science and Cochrane Library were searched for randomised controlled trials (RCTs) that compared postoperative pain between sevoflurane and propofol anaesthesia in children. After quality assessment, a meta-analysis was carried out using bias-adjusted inverse heterogeneity methods, heterogeneity using I2 and publication bias using Doi plots. RESULTS In total, 13 RCTs with 1174 children were included. The overall synthesis suggested nearly two-fold higher odds of overall postoperative pain in the sevoflurane group compared with the propofol group (odds ratio [OR] 1.88, 95% confidence interval [CI] 1.12-3.15, I2=58.2%). Further, children in the sevoflurane group had higher odds of having higher pain scores (OR 3.18, 95% CI 1.83-5.53, I2=20.9%), and a 60% increase in the odds of requiring postoperative rescue analgesia compared with propofol (OR 1.60, 95% CI 0.89-2.88, I2=58.2%). CONCLUSIONS Children maintained on inhalational sevoflurane had higher odds of postoperative pain compared with those maintained on propofol. The results also suggest that sevoflurane is associated with higher odds of needing postoperative rescue analgesia compared with propofol. REGISTRATION The protocol for this systematic review and meta-analysis was registered on the International Prospective Register of Systematic Reviews (PROSPERO) with registration ID CRD42023445913.
Collapse
Affiliation(s)
| | | | | | - Mariah Arif
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Razan F Hourani
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Mahmoud N Hamwi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Kemal T Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ayten Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Aisha Bint Hamad Al-Attiyah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Tawanda Chivese
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Marín-Prida J, Rodríguez-Ulloa A, Besada V, Llopiz-Arzuaga A, Batista NV, Hernández-González I, Pavón-Fuentes N, Marciano Vieira ÉL, Falcón-Cama V, Acosta EF, Martínez-Donato G, Cervantes-Llanos M, Lingfeng D, González LJ, Fernández-Massó JR, Guillén-Nieto G, Pentón-Arias E, Amaral FA, Teixeira MM, Pentón-Rol G. The effects of Phycocyanobilin on experimental arthritis involve the reduction in nociception and synovial neutrophil infiltration, inhibition of cytokine production, and modulation of the neuronal proteome. Front Immunol 2023; 14:1227268. [PMID: 37936684 PMCID: PMC10627171 DOI: 10.3389/fimmu.2023.1227268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Alexey Llopiz-Arzuaga
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Department of Cellular Engineering and Biocatalysis , Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Nathália Vieira Batista
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Viviana Falcón-Cama
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Emilio F. Acosta
- Department of Characterization, Center for Advanced Studies of Cuba, Havana, Cuba
| | - Gillian Martínez-Donato
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Majel Cervantes-Llanos
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dai Lingfeng
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Luis J. González
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Flávio Almeida Amaral
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| |
Collapse
|
3
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
4
|
Wong SSC, Choi EKY, Chan WS, Cheung CW. Propofol total intravenous anaesthesia versus inhalational anaesthesia for acute postoperative pain in patients with morphine patient-controlled analgesia: a large-scale retrospective study with covariate adjustment. BMC Anesthesiol 2022; 22:140. [PMID: 35538421 PMCID: PMC9088064 DOI: 10.1186/s12871-022-01683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background To compare the postoperative analgesic effect of propofol total intravenous anaesthesia (TIVA) versus inhalational anaesthesia (GAS) in patients using morphine patient-controlled analgesia (PCA). Methods A retrospective cohort study was performed in a single tertiary university hospital. Adult patients who used PCA morphine after general anaesthesia across 15 types of surgeries were included. Patients who received propofol TIVA were compared to those who had inhalational anaesthesia. Primary outcomes assessed were postoperative numerical rating scale (NRS) pain scores and postoperative opioid consumption. Results Data from 4202 patients were analysed. The overall adjusted NRS pain scores were significantly lower in patients who received propofol TIVA at rest (GEE: β estimate of the mean on a 0 to 10 scale = -0.56, 95% CI = (-0.74 to -0.38), p < 0.001; GAS as reference group) and with movement (β estimate = -0.89, 95% CI = (-1.1 to -0.69), p < 0.001) from postoperative days (POD) 1–3. Propofol TIVA was associated with lower overall adjusted postoperative morphine consumption (β estimate = -3.45, 95% CI = (-4.46 to -2.44), p < 0.001). Patients with propofol TIVA had lower adjusted NRS pain scores with movement for hepatobiliary/pancreatic (p < 0.001), upper gastrointestinal (p < 0.001) and urological surgeries (p = 0.005); and less adjusted postoperative morphine consumption for hepatobiliary/pancreatic (p < 0.001), upper gastrointestinal (p = 0.006) and urological surgeries (p = 0.002). There were no differences for other types of surgeries. Conclusion Propofol TIVA was associated with statistically significant, but small reduction in pain scores and opioid consumption in patients using PCA morphine. Subgroup analysis suggests clinically meaningful analgesia possibly for hepatobiliary/pancreatic and upper gastrointestinal surgeries. Trial registration This study is registered at ClinicalTrials.gov (NCT03875872). Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01683-9.
Collapse
Affiliation(s)
- Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong, China. .,Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China.
| | - Edward Kwok Yiu Choi
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Wing Shing Chan
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong, China.,Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| |
Collapse
|
5
|
Miyanishi M, Yaguramaki T, Maehara Y, Nagata O. Three cases of difficulty in achieving definitive loss of consciousness with remimazolam. JA Clin Rep 2022; 8:4. [PMID: 35015166 PMCID: PMC8752651 DOI: 10.1186/s40981-021-00485-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Remimazolam is a novel, ultra-short-acting benzodiazepine used for general anesthesia. Because remimazolam is an emerging drug, the tolerance to remimazolam in benzodiazepine-taking patients has been unclear. Also, the efficacy of remimazolam in different races is not fully elucidated so far. Case presentation Here we experienced three cases in which high dose of remimazolam was needed for attempting to achieve appropriate anesthetic depth. Two of the three cases were of preoperatively benzodiazepine-taking patients. The other was a case of a Chinese patient. In all three cases, conversion to general anesthesia with propofol was necessitated. Conclusions When signs of inadequate sedative effect of remimazolam are observed in patients of benzodiazepine users or of different races, conversion to another sedative agent such as propofol should be considered.
Collapse
Affiliation(s)
- Mao Miyanishi
- Department of Anesthesiology, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toru Yaguramaki
- Department of Orthopaedic Surgery, JR Tokyo General Hospital, 2-1-3, Yoyogi, Shibuya-ku, Tokyo, 151-8528, Japan
| | - Yasuhiro Maehara
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Osamu Nagata
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
6
|
Aoki Y, Iwata H, Akinaga C, Shiko Y, Kawasaki Y, Kobayashi K, Nozawa H, Kinoshita H, Nakajima Y. Intraoperative Remifentanil Dosage in Surgery for Adolescent Idiopathic Scoliosis Does Not Increase Postoperative Opioid Consumption When Combined With Epidural Analgesia: A Retrospective Cohort Study. Cureus 2021; 13:e17361. [PMID: 34567901 PMCID: PMC8454257 DOI: 10.7759/cureus.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background In adults, high-dose remifentanil during surgery has been reported to increase postoperative opioid consumption, but this has not been well documented in children. Multimodal analgesia is recommended in the perioperative period for adolescent idiopathic scoliosis (AIS), but no report has examined opioid consumption under epidural analgesia, which is one of the most common types of analgesia. Aims To investigate the association between intraoperative remifentanil dosage and postoperative opioid consumption in AIS in the setting of combined epidural analgesia for postoperative multimodal analgesia. Methods In this retrospective cohort study, patients aged 10-18 years who underwent surgery for scoliosis and epidural analgesia for postoperative pain between July 2012 and April 2019 were included. The primary endpoint was the association between intraoperative cumulative weight-adjusted remifentanil dosage and logarithmic transformation of cumulative weight-adjusted fentanyl consumption in the intensive care unit (ICU). Nonopioid analgesics were investigated as secondary endpoints. An epidural catheter was inserted by the surgeon intraoperatively, and a local anesthetic was administered at the end of the surgery. Multivariate linear regression analysis with adjustment for confounders was performed for all analyses. Results In total, 142 patients were included, and the median intraoperative remifentanil dosage for all patients was 0.27 (interquartile range, 0.24-0.34) µg/kg/min. No association was observed between cumulative weight-adjusted intraoperative dosage of remifentanil and fentanyl, even after adjusting for potential confounders (slope = -1.25; 95% confidence interval [CI], -4.35 to 1.85; P = 0.43). No association was observed between nonopioid analgesic use and intraoperative remifentanil dosage. Conclusion No association was noted between remifentanil dosage during surgery for AIS and postoperative opioid consumption with epidural analgesia. However, this study has limitations due to its retrospective design; thus, further prospective studies are warranted.
Collapse
Affiliation(s)
- Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Hiroki Iwata
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Chieko Akinaga
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Yuki Shiko
- Clinical Research Center, Chiba University Hospital, Chiba, JPN
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, JPN
| | - Kensuke Kobayashi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Hiroki Nozawa
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Seirei Mikatahara General Hospital, Hamamatsu, JPN
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, JPN
| |
Collapse
|
7
|
Zhu X, Yue L, Fan C, Liu Y, Wang Y, Zhao H. Mechanism of Cdk5-synaptophysin-SNARE pathway in acute and chronic inflammatory pain. Am J Transl Res 2021; 13:1075-1084. [PMID: 33841641 PMCID: PMC8014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Currently, there is no favorable treatment plan for inflammatory pain, so exploring new analgesics is still a research hotspot in this area. Cyclin-dependent protein kinase 5 (Cdk5) is a pain-related protein kinase, but its mechanism in inflammatory pain has not been clarified. This research aimed to explore the mechanism of Cdk5-synaptophysin (Syn)-soluble N-ethylmaleimide-sensitivity factor (NSF) attachment protein receptor (SNARE) in acute and chronic inflammatory pain. METHODS Rat models of acute and chronic inflammatory pain were induced by formalin and complete Freund's adjuvant (CFA), separately, and some rats injected with normal saline through intraplantar injection were divided into a control group. Thirty minutes before modeling, rats were given Cdk5 inhibitor (Roscovitine, Ros), SNARE scavenger (botulinum toxin A, BTTA), glutamate receptor inhibitor (MK801), and dimethyl sulfoxide (DMSO) through spinal canals, and the paw withdrawal threshold (PWT) and thermal withdrawal latency (PWL) at difference time points were compared. RESULTS Compared with rats in the control group, those in the rat models of acute and chronic inflammatory pain showed lower PWT and PWL, higher Cdk5 enzyme level, tight correlation of Cdk5 with Syn, SNARE, p25 proteins, and higher levels of Cdk5, Syn and SNARE. And the above situation was dramatically reversed under intervention of Ros, BTTA and MK801. CONCLUSION Cdk5-Syn-SNARE pathway is a therapeutic target for inflammatory pain. Blocking the activation of this pathway is beneficial to exert analgesic effect.
Collapse
Affiliation(s)
- Xichun Zhu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Lihui Yue
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Chunyan Fan
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yuting Liu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yong Wang
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Hongwei Zhao
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
8
|
Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. Icaritin Alleviates Glutamate-Induced Neuronal Damage by Inactivating GluN2B-Containing NMDARs Through the ERK/DAPK1 Pathway. Front Neurosci 2021; 15:525615. [PMID: 33692666 PMCID: PMC7937872 DOI: 10.3389/fnins.2021.525615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023] Open
Abstract
Excitatory toxicity due to excessive glutamate release is considered the core pathophysiological mechanism of cerebral ischemia. It is primarily mediated by N-methyl-D-aspartate receptors (NMDARs) on neuronal membranes. Our previous studies have found that icaritin (ICT) exhibits neuroprotective effects against cerebral ischemia in rats, but the underlying mechanism is unclear. This study aims to investigate the protective effect of ICT on glutamate-induced neuronal injury and uncover its possible molecular mechanism. An excitatory toxicity injury model was created using rat primary cortical neurons treated with glutamate and glycine. The results showed that ICT has neuroprotective effects on glutamate-treated primary cortical neurons by increasing cell viability while reducing the rate of lactate dehydrogenase (LDH) release and reducing apoptosis. Remarkably, ICT rescued the changes in the ERK/DAPK1 signaling pathway after glutamate treatment by increasing the expression levels of p-ERK, p-DAPK1 and t-DAPK1. In addition, ICT also regulates NMDAR function during glutamate-induced injury by decreasing the expression level of the GluN2B subunit and enhancing the expression level of the GluN2A subunit. As cotreatment with the ERK-specific inhibitor U0126 and ICT abolishes the beneficial effects of ITC on the ERK/DAPK1 pathway, NMDAR subtypes and neuronal cell survival, ERK is recognized as a crucial mediator in the protective mechanism of ICT. In conclusion, our findings demonstrate that ICT has a neuroprotective effect on neuronal damage induced by glutamate, and its mechanism may be related to inactivating GluN2B-containing NMDAR through the ERK/DAPK1 pathway. This study provides a new clue for the prevention and treatment of clinical ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chaoming Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lijiao Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Liangdong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Association Between Intraoperative Remifentanil Dosage and Postoperative Opioid Consumption in Adolescent Idiopathic Spine Surgery: A Retrospective Cohort Study. Anesth Analg 2021; 133:984-990. [PMID: 33555691 DOI: 10.1213/ane.0000000000005395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) surgery is associated with significant postoperative pain. Remifentanil is a short-acting opioid that is often used as a component of total intravenous anesthesia. Remifentanil has been implicated in acute opioid tolerance and opioid-induced hyperalgesia, resulting in increased postoperative pain and opioid consumption. This retrospective study sought to investigate the relationship between the dose of intraoperative remifentanil and cumulative postoperative opioid consumption through 72 hours following surgery for pediatric AIS patients. METHODS We performed a retrospective chart review of adolescent patients undergoing posterior spine instrumentation under total intravenous general anesthesia at a single major pediatric center between January 2015 and October 2017. The relationship between intraoperative cumulative weight-adjusted remifentanil dose and logarithmic transformation of cumulative weight-adjusted opioid consumption through 72 hours following surgery was examined by regression analysis. A priori determined potential confounding variables were collected, including demographic data, perioperative analgesic agents (ie, ketamine, dexmedetomidine, and acetaminophen), surgical duration, vertebrae instrumented, and blood transfusion. Multivariable linear regression analysis was used to adjust for these possible confounding variables. RESULTS Eighty-nine patients met inclusion criteria, of which 78 had complete data for analysis. Univariable linear regression analysis revealed no association between remifentanil dose and opioid consumption through 72 hours following surgery (slope = 0.79 [95% confidence interval [CI], 0.61-0.98; R2 = 0.0039; P = .588]). After adjustment for possible confounding factors, no relationship between remifentanil dose (regression coefficient (coeff.) -0.08; 95% CI, -1.59 to 1.43; P = .912) and opioid consumption through 72 hours was found (slope =0.90 [95% CI, -0.65 to 2.46]; R2 = 0.1634). Similar results were obtained when the model was repeated for opioid consumption in postanesthesia care unit (PACU). CONCLUSIONS In this study examining adolescent patients undergoing surgery for idiopathic scoliosis, no association was found between the dose of intraoperative remifentanil and postoperative opioid consumption in the context of a propofol-based total intravenous anesthetic and multimodal analgesia. These results provide direction for future prospective controlled studies to further evaluate this relationship.
Collapse
|
10
|
Jiang P, Jiang Q, Yan Y, Hou Z, Luo D. Propofol ameliorates neuropathic pain and neuroinflammation through PPAR γ up-regulation to block Wnt/β-catenin pathway. Neurol Res 2020; 43:71-77. [PMID: 32985377 DOI: 10.1080/01616412.2020.1823107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE As an intravenous anesthetic, propofol has been exhibited to provide excellent clinical analgesia. Whether propofol has amelioration property for NP and neuroinflammation remains unexplored. The present study was arranged to probe the role of propofol in the mitigation of NP and neuroinflammation in rats and underlying mechanisms. METHODS Rats were randomly classified into the following groups: Model, Sham, Control, Propofol, GW9662, and Saline groups. The radiant heat stimulation was used to measure paw withdrawal latency (PWL), and mechanical stimulation was employed to detect paw withdrawal threshold (PWT). Subsequently, the expression of GFAP was assessed by immunofluorescence to reflect the activation of astrocyte. qRT-PCR and Western blot were utilized for the performance of mRNA and protein expression levels of PPAR γ as well as inflammation factors (TNF-α, IL-1β, and IL-6). RESULTS Pentobarbital sodium anesthesia significantly shortened the PWL and PWT, suppressed PPAR γ expression in rats in addition to elevating astrocyte activation and inflammation response. Propofol treatment attenuated the NP of rats as evidenced by restrained astrocyte activation level and inflammation factor levels. Rats treated with propofol had markedly heightened PPAR γ expression. PPAR γ exposure ameliorated NP and inflammation degree, which demonstrated by elevated astrocyte activation and inflammation levels as well as suppressed PWL and PWT in rats injected with PPAR γ inhibitor. Besides, PPAR γ decreased the expression level of β-catenin. CONCLUSION Propofol ameliorates NP and neuroinflammation of rats by up-regulating PPAR γ expression to block the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Qun Jiang
- Department of Anesthesiology, Traditional Chinese Medicine Hospital of Guangdong Province , Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Zhiqi Hou
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| | - Dexing Luo
- Department of Anesthesiology, Huizhou Municipal Central Hospital , Huizhou, Guangdong, P.R. China
| |
Collapse
|
11
|
Kaswan NK, Mohd Suhaimi NS, Mohammed Izham NA, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin inhibits nitric oxide production modulated through NMDA receptor in LPS-Induced SH-SY5Y cell in vitro model. LIFE SCIENCES, MEDICINE AND BIOMEDICINE 2020. [DOI: 10.28916/lsmb.4.9.2020.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Liu X, Geng J, Guo H, Zhao H, Ai Y. Propofol inhibited apoptosis of hippocampal neurons in status epilepticus through miR-15a-5p/NR2B/ERK1/2 pathway. Cell Cycle 2020; 19:1000-1011. [PMID: 32212891 DOI: 10.1080/15384101.2020.1743909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although a previous study reported that propofol had a therapeutic effect in status epilepticus (SE), the mechanisms underlying the effect of propofol in SE remain unclear. The aim of this study was to explore the regulatory mechanisms underlying propofol-induced inhibition of SE.A rat SE model was established using the lithium-pilocarpine injection method. A qRT-PCR and Western blot were utilized to detect the expression of relative molecules. Cell apoptosis was evaluated by a flow cytometry assay. The interaction between miR-15a-5p and NR2B was assessed using a luciferase reporter assay.Propofol inhibited cell apoptosis and increased miR-15a-5p expression both in hippocampal tissues of SE rats and low Mg2+-induced hippocampal neurons. Propofol-induced attenuation of apoptosis of low Mg2+-induced hippocampal neurons was mediated by miR-15a-5p. miR-15a-5p targeted NR2B and negatively regulated its expression. Propofol downregulated NR2B expression, mediated by miR-15a-5p. In terms of the mechanism of action, propofol suppressed the apoptosis of Mg2+-induced hippocampal neurons through the miR-15a-5p/NR2B/ERK1/2 pathway. In vivo experiment suggested that propofol inhibited the apoptosis of hippocampal neurons in SE rats by upregulating miR-15a-5p.In terms of the molecular mechanism of propofol, it appears to inhibit apoptosis of hippocampal neurons in SE through the miR-15a-5p/NR2B/ERK1/2 pathway. The findings provide theoretical support for propofol treatment of SE.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiefeng Geng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiming Guo
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaping Zhao
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiu Ai
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Irwin MG, Chung CKE, Ip KY, Wiles MD. Influence of propofol-based total intravenous anaesthesia on peri-operative outcome measures: a narrative review. Anaesthesia 2020; 75 Suppl 1:e90-e100. [PMID: 31903578 DOI: 10.1111/anae.14905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
Propofol-based total intravenous anaesthesia is well known for its smooth, clear-headed recovery and anti-emetic properties, but there are also many lesser known beneficial properties that can potentially influence surgical outcome. We will discuss the anti-oxidant, anti-inflammatory and immunomodulatory effects of propofol and their roles in pain, organ protection and immunity. We will also discuss the use of propofol in cancer surgery, neurosurgery and older patients.
Collapse
Affiliation(s)
- M G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - C K E Chung
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - K Y Ip
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - M D Wiles
- Department of Anaesthesia, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
14
|
Shirai T, Yano M, Natsume T, Awaga Y, Itani Y, Hama A, Matsuda A, Takamatsu H. Pharmacologic Modulation of Noxious Stimulus-evoked Brain Activation in Cynomolgus Macaques Observed with Functional Neuroimaging. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 59:94-103. [PMID: 31753062 DOI: 10.30802/aalas-jaalas-18-000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maintaining effective analgesia during invasive procedures performed under general anesthesia is important for minimizing postoperative complications and ensuring satisfactory patient wellbeing and recovery. While patients under deep sedation may demonstrate an apparent lack of response to noxious stimulation, areas of the brain related to pain perception may still be activated. Thus, these patients may still experience pain during invasive procedures. The current study used anesthetized or sedated cynomolgus macaques and functional magnetic resonance imaging (fMRI) to assess the activation of the parts of the brain involved in pain perception during the application of peripheral noxious stimuli. Noxious pressure applied to the foot resulted in the bilateral activation of secondary somatosensory cortex (SII) and insular cortex (Ins), which are both involved in pain perception, in macaques under either propofol or pentobarbital sedation. No activation of SII/Ins was observed in macaques treated with either isoflurane or a combination of medetomidine, midazolam, and butorphanol. No movement or other reflexes were observed in response to noxious pressure during stimulation under anesthesia or sedation. The current findings show that despite the lack of visible behavioral symptoms of pain during anesthesia or sedation, brain activation suggests the presence of pain depending on the anesthetic agent used. These data suggest that fMRI could be used to noninvasively assess pain and to confirm the analgesic efficacy of currently used anesthetics. By assessing analgesic efficacy, researchers may refine their experiments, and design protocols that improve analgesia under anesthesia.
Collapse
|
15
|
Ding XW, Sun X, Shen XF, Lu Y, Wang JQ, Sun ZR, Miao CH, Chen JW. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca 2+/CAMK II/ERK/NF-κB signaling pathway. Acta Pharmacol Sin 2019; 40:1303-1313. [PMID: 31235816 DOI: 10.1038/s41401-019-0258-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Metalloproteinase 9 (MMP-9) is able to degrade collagen IV, an important component of blood-brain barrier (BBB). Expression of MMPs, especially MMP-9, correlates with BBB disruption during central nervous system inflammation. Propofol has been reported to have anti-inflammation effects. In this study, we investigated the effects of propofol on TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells (hCMEC/D3 cells) and explored the underlying mechanisms. The hCMEC/D3 cells were treated with propofol (25 μM), followed by TNF-α (25 ng/mL). We showed that TNF-α treatment markedly increased MMP-9 expression and decreased collagen IV expression in hCMEC/D3 cells, which was blocked by pretreatment with propofol. TNF-α-induced downregulation of collagen IV was also reversed by MMP-9 knockdown with siRNA. We revealed that TNF-α upregulated MMP-9 expression in hCMEC/D3 cells through activation of Ca2+/CAMK II/ERK/NF-κB signaling pathway; co-treatment with inhibitors of CaMK II (KN93), ERK (LY3214996), NF-κB (PDTC) or Ca2+chelator (BAPTA-AM) abrogated the effect of TNF-α on MMP-9 expression. We further established an in vitro BBB model by co-culturing of hCMEC/D3 cells and human astrocytes for 6 days and measuring trans-endothelial electrical resistance (TEER) to reflect the BBB permeability. TNF-α treatment markedly decreased TEER value, which was attenuated by pretreatment with propofol (25 μM) or MMP-9 knockdown with siRNA. In conclusion, propofol inhibits TNF-α-induced MMP-9 expression in hCMEC/D3 cells via repressing the Ca2+/CAMKII/ERK/NF-κB signaling pathway. TNF-α-impaired BBB integrity could be reversed by propofol, and propofol attenuates the inhibitory effect of TNF-α on collagen IV.
Collapse
|
16
|
Furukawa T, Nikaido Y, Shimoyama S, Ogata Y, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. J Anesth 2019; 33:531-542. [PMID: 31332527 DOI: 10.1007/s00540-019-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG). METHODS The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics. RESULTS PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice. CONCLUSIONS The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshiki Ogata
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Hirata
- School of Dental Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
17
|
Wong SSC, Sun L, Qiu Q, Gu P, Li Q, Wang XM, Cheung CW. Propofol attenuates postoperative hyperalgesia via regulating spinal GluN2B-p38MAPK/EPAC1 pathway in an animal model of postoperative pain. Eur J Pain 2019; 23:812-822. [PMID: 30570802 DOI: 10.1002/ejp.1349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Total intravenous anesthesia with propofol has been shown to reduce postoperative pain in some clinical studies, but knowledge of its underlying analgesic mechanism remains limited. In this study, we compared the analgesic effects of propofol versus isoflurane in an animal model of postoperative pain and evaluated its underlying molecular mechanisms. METHODS Plantar incision was made in the hind paws of rats under general anesthesia with 2.5% of inhalational isoflurane (isoflurane group) or intravenous infusion of propofol (1.5 mg kg-1 min-1 , propofol group). Mechanical allodynia was assessed by paw withdrawal threshold before and after incision. Spinal dorsal horns (L3-L5) were harvested 1 hr after incision to assess the level of phosphorylated GluN2B, p38MAPK, ERK, JNK, and EPAC using Western blot and immunofluorescence. RESULTS Mechanical allodynia induced by plantar incision peaked at 1 hr and lasted for 3 days after incision. It was significantly less in the propofol group compared with the isoflurane group in the first 2 hr following incision. The incision-induced increases in phosphorylated GluN2B, p38MAPK, and EPAC1 were significantly reduced in the propofol group. The number of spinal dorsal neurons co-expressed with EPAC1 and c-Fos after the incision was significantly lower in the propofol group. CONCLUSION Propofol reduced pain responses in an animal model of postoperative pain and suppressed the spinal GluN2B-p38MAPK/EPAC1 signaling pathway. Since the p38MAPK/EPAC pathway plays a critical role in the development of postoperative hyperalgesia, our results provide evidence-based behavioral, molecular, and cellular mechanisms for the analgesic effects of propofol when used for general anesthesia. SIGNIFICANCE These findings may provide a new mechanism for the postsurgical analgesic effect of propofol, which is particularly interesting during the subacute period after surgery as it is the critical period for the development of persistent postsurgical pain.
Collapse
Affiliation(s)
- Stanley S-C Wong
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liting Sun
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Qiu Qiu
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Wong SSC, Leung MYY, Cheung CW. The effect of total intravenous anaesthesia with propofol on postoperative pain after third molar surgery: A double-blind randomized controlled trial. Eur J Pain 2018; 23:884-893. [PMID: 30592344 DOI: 10.1002/ejp.1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Total intravenous anaesthesia (TIVA) with propofol may reduce pain after surgery compared with inhalational anaesthetic techniques. Whether propofol provides analgesic benefit may be influenced by the surgical procedure and anaesthetic/analgesic regime. Third molar surgery is a consistent and fairly standard surgical technique that provides a good model for postoperative pain. We investigated whether propofol TIVA or sevoflurane (SEVO) inhalational anaesthesia would produce better quality pain relief after third molar surgery. METHODS In this double-blind, randomized controlled trial, patients scheduled for bilateral third molar surgery received propofol TIVA or SEVO inhalational anaesthesia. Postoperative numerical rating pain scores, analgesic consumption, adverse effects and global pain satisfaction were assessed. RESULTS Data from 48 patients in each group were analysed. The area under curves for numerical rating scale pain scores were significantly lower in the propofol TIVA group at rest and during mouth opening between 1 and 72 hr after surgery (p = 0.013 at rest, p = 0.021 with mouth opening). There was no difference in postoperative analgesic consumption. Propofol TIVA was associated with less postoperative headache (p = 0.041 in the postoperative anaesthetic care unit, p = 0.036 in ward). There were no differences in other adverse effects including postoperative nausea and vomiting. Global pain satisfaction and level of postoperative discomfort at 24 hr after surgery were significantly better in the propofol TIVA group (p = 0.008 and p = 0.009, respectively). CONCLUSION Propofol TIVA was associated with reduced postoperative pain after bilateral third molar surgery, but did not reduce postoperative analgesic consumption. SIGNIFICANCE Choice of general anaesthetic technique can affect postoperative analgesia. The results of this study suggest that propofol TIVA improves postoperative pain and patient satisfaction after third molar surgery compared to inhalational anaesthesia.
Collapse
Affiliation(s)
- Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Mike Yiu Yan Leung
- Department of Oral and Maxillofacial Surgery, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
|
20
|
Abstract
Endotracheal intubation, a common procedure in neonatal intensive care, results in distress and disturbs physiologic homeostasis in the newborn. Analgesics, sedatives, vagolytics, and/or muscle relaxants have the potential to blunt these adverse effects, reduce the duration of the procedure, and minimize the number of attempts necessary to intubate the neonate. The medical care team must understand efficacy, safety, and pharmacokinetic data for individual medications to select the optimal cocktail for each clinical situation. Although many units utilize morphine for analgesia, remifentanil has a superior pharmacokinetic profile and efficacy data. Because of hypotensive effects in preterm neonates, sedation with midazolam should be restricted to near-term and term neonates. A vagolytic, generally atropine, blunts bradycardia induced by vagal stimulation. A muscle relaxant improves procedural success when utilized by experienced practitioners; succinylcholine has an optimal pharmacokinetic profile, but potentially concerning adverse effects; rocuronium may be the agent of choice based on more robust safety data despite a relatively prolonged duration of action. In the absence of an absolute contraindication, neonates should receive analgesia with consideration of sedation, a vagolytic, and a muscle relaxant before endotracheal intubation. Neonatal units must develop protocols for premedication and optimize logistics to ensure safe and timely administration of appropriate agents.
Collapse
|