1
|
Liu TT, Qiu CY, Li XM, Hu WP. CXCL10 Enhances Acid-Sensing Ion Channel Currents in Rat Dorsal Root. Mol Neurobiol 2025; 62:1882-1893. [PMID: 39046700 DOI: 10.1007/s12035-024-04390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-β-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Yang Y, Zhang S, Yang J, Yao C, Li X, Dai W, Liu J. The aqueous extract of Armadillidium vulgare Latreille alleviates neuropathic pain via inhibiting neuron-astrocyte crosstalk mediated by the IL-12-IFN-γ-IFNGR-CXCL10 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119173. [PMID: 39617087 DOI: 10.1016/j.jep.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Armadillidium vulgare Latreille (AV), the dried body of pillbug, was originally described in Shennong's Classic of Materia Medica. As a common analgesic in animal-based traditional Chinese medicine, it is mainly used to relieve pain, promoting diuresis, relieving fatigue and so on. Our work demonstrated that AV could alleviate various types of acute and chronic pain including neuropathic pain (NP). And transcriptome sequencing analysis revealed that AV could suppress CXCL10 to alleviate NP, however, the upstream mechanisms governing CXCL10 synthesis remain vague. AIM OF THE STUDY The research's goal was to identify the mechanism via which AV regulates CXCL10 to ameliorate NP. MATERIALS AND METHODS Chronic constriction injury (CCI) to the sciatic nerve was used to induce the NP model 14 days following surgery. To identify cell signaling pathways, various approaches were used, including transcriptome sequencing, western blotting, immunofluorescence, as well as ELISA. The in vitro assay involved the cultivation of neuron PC12 cells and astrocyte C6 cells. RESULTS Both in vivo and in vitro results demonstrated that IL-12/IL-18 enhanced IFN-γ production in spinal neurons, which acted on IFN-γ receptors on neurons and astrocytes to upregulate CXCL10 expression in these cells, illustrating the pivotal role of IL-12 in the crosstalk between neurons and astrocytes. The role of IL-12 in pain regulation was elucidated for the first time within the nervous system. Additionally, its synergistic interaction with IL-18 on the downstream IFN-γ-CXCL10 pathway dramatically altered the activation of neurons and astrocytes. And AV could suppress CXCL10 to alleviate NP by mediating the IL-12-IFN-γ-IFNGR signaling pathway. CONCLUSIONS We explored a new target for NP by regulating neuron-astrocyte crosstalk and provided a theoretical basis for AV in clinical use.
Collapse
Affiliation(s)
- Yujie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changheng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Zhao Y, Li T, Jiang Z, Gai C, Yu S, Xin D, Li T, Liu D, Wang Z. The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury. Neural Regen Res 2024; 19:1084-1094. [PMID: 37862212 PMCID: PMC10749591 DOI: 10.4103/1673-5374.382860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/05/2022] [Accepted: 07/11/2023] [Indexed: 10/22/2023] Open
Abstract
We previously showed that hydrogen sulfide (H2S) has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice. However, the precise mechanism underlying the role of H2S in this situation remains unclear. In this study, we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine, a H2S precursor, attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionine β synthase (a major H2S synthetase in the brain) in the prefrontal cortex. We also found that an miR-9-5p inhibitor blocked the expression of cystathionine β synthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia. Furthermore, miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury. L-cysteine decreased the expression of CXCL11, an miR-9-5p target gene, in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3, FSTL1, SOCS2 and SOCS5, while treatment with an miR-9-5p inhibitor reversed these changes. These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoring β-synthase expression, thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
5
|
Martin Gil C, Raoof R, Versteeg S, Willemen HLDM, Lafeber FPJG, Mastbergen SC, Eijkelkamp N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav Immun 2024; 116:203-215. [PMID: 38070625 DOI: 10.1016/j.bbi.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Collapse
Affiliation(s)
- Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanneke L D M Willemen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Shao M, Zhang W, Li Y, Tang L, Hao ZZ, Liu S. Patch-seq: Advances and Biological Applications. Cell Mol Neurobiol 2023; 44:8. [PMID: 38123823 DOI: 10.1007/s10571-023-01436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.
Collapse
Affiliation(s)
- Mingting Shao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Zhang Z, Zhu Z, Zuo X, Wang X, Ju C, Liang Z, Li K, Zhang J, Luo L, Ma Y, Song Z, Li X, Li P, Quan H, Huang P, Yao Z, Yang N, Zhou J, Kou Z, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation reduces neuropathic pain after spinal cord injury by downregulating CXCL10 expression. CNS Neurosci Ther 2023; 29:3995-4017. [PMID: 37475184 PMCID: PMC10651991 DOI: 10.1111/cns.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Liang Luo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Peipei Huang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yao
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Ning Yang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jie Zhou
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology, School of Basic MedicineAir Force Military Medical UniversityXi'anShaanxiChina
| | - Beiyu Chen
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
8
|
Lien W, Zhou X, Liang Y, Ching CT, Wang C, Lu F, Chang H, Lin F, Wang HD. Therapeutic potential of nanoceria pretreatment in preventing the development of urological chronic pelvic pain syndrome: Immunomodulation via reactive oxygen species scavenging and SerpinB2 downregulation. Bioeng Transl Med 2023; 8:e10346. [PMID: 36684074 PMCID: PMC9842028 DOI: 10.1002/btm2.10346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Urological chronic pelvic pain syndrome (UCPPS) manifests as pelvic pain with frequent urination and has a 10% prevalence rate without effective therapy. Nanoceria (cerium oxide nanoparticles [CNPs]) were synthesized in this study to achieve potential long-term pain relief, using a commonly used UCPPS mouse model with cyclophosphamide-induced cystitis. Transcriptome sequencing analysis revealed that serpin family B member 2 (SerpinB2) was the most upregulated marker in mouse bladder, and SerpinB2 was downregulated with CNP pretreatment. The transcriptome sequencing analysis results agreed with quantitative polymerase chain reaction and western blot analysis results for the expression of related mRNAs and proteins. Analysis of Gene Expression Omnibus (GEO) datasets revealed that SerpinB2 was a differentially upregulated gene in human UCPPS. In vitro SerpinB2 knockdown downregulated proinflammatory chemokine expression (chemokine receptor CXCR3 and C-X-C motif chemokine ligand 10) upon treatment with 4-hydroperoxycyclophosphamide. In conclusion, CNP pretreatment may prevent the development of UCPPS, and reactive oxygen species (ROS) scavenging and SerpinB2 downregulation may modulate the immune response in UCPPS.
Collapse
Affiliation(s)
- Wei‐Chih Lien
- Department of Physical Medicine and RehabilitationNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Xin‐Ran Zhou
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
| | - Ya‐Jyun Liang
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
| | - Congo Tak‐Shing Ching
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Chia‐Yih Wang
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
- Institute of Basic Medical Sciences, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
| | - Fu‐I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan, Republic of China
- The iEGG and Animal Biotechnology CenterNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Huei‐Cih Chang
- Department of Physical Medicine and Rehabilitation, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
| | - Feng‐Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunan, MiaoliTaiwan, Republic of China
| | - Hui‐Min David Wang
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan, Republic of China
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung CityTaiwan, Republic of China
| |
Collapse
|
9
|
Gruchot J, Lein F, Lewen I, Reiche L, Weyers V, Petzsch P, Göttle P, Köhrer K, Hartung HP, Küry P, Kremer D. Siponimod Modulates the Reaction of Microglial Cells to Pro-Inflammatory Stimulation. Int J Mol Sci 2022; 23:13278. [PMID: 36362063 PMCID: PMC9655930 DOI: 10.3390/ijms232113278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Ferdinand Lein
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| |
Collapse
|
10
|
Targeting G protein coupled receptors for alleviating neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:99-117. [PMID: 36357081 DOI: 10.1016/bs.pmbts.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pain sensation is a normal physiological response to alert and prevent further tissue damage. It involves the perception of external stimuli by somatosensory neurons, then transmission of the message to various other types of neurons present in the spinal cord and brain to generate an appropriate response. Currently available analgesics exhibit very modest efficacy, and that too in only a subset of patients with chronic pain conditions, particularly neuropathic pain. The G protein-coupled receptors (GPCRs) are expressed on presynaptic, postsynaptic terminals, and soma of somatosensory neurons, which binds to various types of ligands to modulate neuronal activity and thus pain sensation in both directions. Fundamentally, neuropathic pain arises due to aberrant neuronal plasticity, which includes the sensitization of peripheral primary afferents (dorsal root ganglia and trigeminal ganglia) and the sensitization of central nociceptive neurons in the spinal cord or trigeminal nucleus or brain stem and cortex. Owing to the expression profiles of GPCRs in somatosensory neurons and other neuroanatomical regions involved in pain processing and transmission, this article shall focus only on four families of GPCRs: 1- Opioid receptors, 2-Cannabinoid receptors, 3-Adenosine receptors, and 4-Chemokine receptors.
Collapse
|
11
|
De Berdt P, Vanvarenberg K, Ucakar B, Bouzin C, Paquot A, Gratpain V, Loriot A, Payen V, Bearzatto B, Muccioli GG, Gatto L, Diogenes A, des Rieux A. The human dental apical papilla promotes spinal cord repair through a paracrine mechanism. Cell Mol Life Sci 2022; 79:252. [PMID: 35445984 PMCID: PMC11072347 DOI: 10.1007/s00018-022-04210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
Traumatic spinal cord injury is an overwhelming condition that strongly and suddenly impacts the patient's life and her/his entourage. There are currently no predictable treatments to repair the spinal cord, while many strategies are proposed and evaluated by researchers throughout the world. One of the most promising avenues is the transplantation of stem cells, although its therapeutic efficiency is limited by several factors, among which cell survival at the lesion site. In our previous study, we showed that the implantation of a human dental apical papilla, residence of stem cells of the apical papilla (SCAP), supported functional recovery in a rat model of spinal cord hemisection. In this study, we employed protein multiplex, immunohistochemistry, cytokine arrays, RT- qPCR, and RNAseq technology to decipher the mechanism by which the dental papilla promotes repair of the injured spinal cord. We found that the apical papilla reduced inflammation at the lesion site, had a neuroprotective effect on motoneurons, and increased the apoptosis of activated macrophages/ microglia. This therapeutic effect is likely driven by the secretome of the implanted papilla since it is known to secrete an entourage of immunomodulatory or pro-angiogenic factors. Therefore, we hypothesize that the secreted molecules were mainly produced by SCAP, and that by anchoring and protecting them, the human papilla provides a protective niche ensuring that SCAP could exert their therapeutic actions. Therapeutic abilities of the papilla were demonstrated in the scope of spinal cord injury but could very well be beneficial to other types of tissue.
Collapse
Affiliation(s)
- P De Berdt
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - K Vanvarenberg
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - B Ucakar
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - C Bouzin
- IREC Imaging platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - A Paquot
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids (BPBL), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - V Gratpain
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - A Loriot
- de Duve Institute, Computational Biology and Bioinformatics Unit (CBIO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - V Payen
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - B Bearzatto
- Institut de Recherche Expérimentale et Clinique (IREC), Center for Applied Molecular Technologies (CTMA), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - G G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids (BPBL), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - L Gatto
- de Duve Institute, Computational Biology and Bioinformatics Unit (CBIO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A des Rieux
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium.
| |
Collapse
|
12
|
Goodin BR, Overstreet DS, Penn TM, Bakshi R, Quinn TL, Sims A, Ptacek T, Jackson P, Long DL, Aroke EN. Epigenome-wide DNA methylation profiling of conditioned pain modulation in individuals with non-specific chronic low back pain. Clin Epigenetics 2022; 14:45. [PMID: 35346352 PMCID: PMC8962463 DOI: 10.1186/s13148-022-01265-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathoanatomic cause of chronic low back pain (cLBP) cannot be identified for up to 90% of individuals. However, dysfunctional processing of endogenous nociceptive input, measured as conditioned pain modulation (CPM), has been associated with cLBP and may involve changes in neuronal gene expression. Epigenetic-induced changes such as DNA methylation (DNAm) have been associated with cLBP. METHODS In the present study, the relationship between CPM and DNAm changes in a sample of community-dwelling adults with nonspecific cLBP (n = 48) and pain-free controls (PFC; n = 50) was examined using reduced representation bisulfite sequencing. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to identify key pathways involved in efficient versus deficient CPM. RESULTS Based on CPM efficiency, we identified 6006 and 18,305 differentially methylated CpG sites (DMCs) with q values < 0.01 among individuals with cLBP and PFCs, respectively. Most of the DMCs were hypomethylated and annotated to genes of relevance to pain, including OPRM1, ADRB2, CACNA2D3, GNA12, LPL, NAXD, and ASPHD1. In both cLBP and PFC groups, the DMCs annotated genes enriched many GO terms relevant to pain processing, including transcription regulation by RNA polymerase II, nervous system development, generation of neurons, neuron differentiation, and neurogenesis. Both groups also enriched the pathways involved in Rap1-signaling, cancer, and dopaminergic neurogenesis. However, MAPK-Ras signaling pathways were enriched in the cLBP, not the PFC group. CONCLUSIONS This is the first study to investigate the genome-scale DNA methylation profiles of CPM phenotype in adults with cLBP and PFCs. Based on CPM efficiency, fewer DMC enrichment pathways were unique to the cLBP than the PFCs group. Our results suggest that epigenetically induced modification of neuronal development/differentiation pathways may affect CPM efficiency, suggesting novel potential therapeutic targets for central sensitization. However, CPM efficiency and the experience of nonspecific cLBP may be independent. Further mechanistic studies are required to confirm the relationship between CPM, central sensitization, and nonspecific cLBP.
Collapse
Affiliation(s)
- Burel R Goodin
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Addiction and Pain Prevention and Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Demario S Overstreet
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Terence M Penn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rahm Bakshi
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Sims
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Ptacek
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin N Aroke
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
13
|
Zhang Y, Jiang S, Liao F, Huang Z, Yang X, Zou Y, He X, Guo Q, Huang C. A transcriptomic analysis of neuropathic pain in the anterior cingulate cortex after nerve injury. Bioengineered 2022; 13:2058-2075. [PMID: 35030976 PMCID: PMC8973654 DOI: 10.1080/21655979.2021.2021710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The anterior cingulate cortex (ACC) is a core brain region processing pain emotion. In this study, we performed RNA sequencing analysis to reveal transcriptomic profiles of the ACC in a rat chronic constriction injury (CCI) model. A total of 1628 differentially expressed genes (DEGs) were identified by comparing sham-operated rats with rats of 12 hours, 1, 3, 7, and 14 days after surgery, respectively. Although these inflammatory-related DEGs were generally increased after CCI, different kinetics of time-series expression were observed with the development of neuropathic pain affection. Specifically, the expression of Ccl5, Cxcl9 and Cxcl13 continued to increase following CCI. The expression of Ccl2, Ccl3, Ccl4, Ccl6, and Ccl7 were initially upregulated after CCI and subsequently decreased after 12 hours. Similarly, the expression of Rac2, Cd68, Icam-1, Ptprc, Itgb2, and Fcgr2b increased after 12 hours but reduced after 1 day. However, the expression of the above genes increased again 7 days after CCI, when the neuropathic pain affection had developed. Furthermore, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment and interaction network analyses further showed a high connectivity degree among these chemokine targeting genes. Similar expressional changes in these genes were found in the rat spinal dorsal horn responsible for nociception processing. Taken together, our results indicated chemokines and their targeting genes in the ACC may be differentially involved in the initiation and maintenance of neuropathic pain affection. These genes may be a target for not only the nociception but also the pain affection following nerve injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shiwei Jiang
- Medical College of Xiangya, Central South University, Changsha, China
| | - Fei Liao
- Department of Anesthesiology, People's Hospital of Yuxi City, Yuxi, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Qiao X, Zhang W, Zhao W. Role of CXCL10 in Spinal Cord Injury. Int J Med Sci 2022; 19:2058-2070. [PMID: 36483597 PMCID: PMC9724238 DOI: 10.7150/ijms.76694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) results in acute inflammatory responses and secondary damages, including neuronal and glial cell death, axonal damage and demyelination, and blood-brain barrier (BBB) damage, eventually leading to neuronal dysfunction and other complications. C-X-C motif Chemokine Ligand 10 (CXCL10) is expressed after the injury, playing multiple roles in the development and progression of SCI. Moreover, the CXCL10 antagonist can restrict inflammatory immune responses and promote neuronal regeneration and functional recovery. In this review, we summarize the structure and biological functions of CXCL10, and the roles of the CXCL10 / CXCR3 axis in acute inflammatory responses, secondary damages, and complications during SCI, thus providing a potential theoretical basis by highlighting CXCL10 as a new potential drug target for the treatment of SCI.
Collapse
Affiliation(s)
- Xinyu Qiao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.,Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, China
| | - Weijiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.,Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
15
|
Gjefsen E, Gervin K, Goll G, Bråten LCH, Wigemyr M, Aass HCD, Vigeland MD, Schistad E, Pedersen LM, Pripp AH, Storheim K, Selmer KK, Zwart JA. Macrophage migration inhibitory factor: a potential biomarker for chronic low back pain in patients with Modic changes. RMD Open 2021; 7:rmdopen-2021-001726. [PMID: 34344830 PMCID: PMC8336134 DOI: 10.1136/rmdopen-2021-001726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/20/2023] Open
Abstract
Background Low back pain (LBP) is a leading cause of disability worldwide, but the aetiology remains poorly understood. Finding relevant biomarkers may lead to better understanding of disease mechanisms. Patients with vertebral endplate bone marrow lesions visualised on MRI as Modic changes (MCs) have been proposed as a distinct LBP phenotype, and inflammatory mediators may be involved in the development of MCs. Objectives To identify possible serum biomarkers for LBP in patients with MCs. Methods In this case control study serum levels of 40 cytokines were compared between patients with LBP and MC type 1 (n=46) or type 2 (n=37) and healthy controls (n=50). Results Analyses identified significantly higher levels of six out of 40 cytokines in the MC type 1 group (MC1), and five in the MC type 2 group (MC2) compared with healthy controls. Six cytokines were moderately correlated with pain. Principal component analyses revealed clustering and separation of patients with LBP and controls, capturing 40.8% of the total variance, with 10 cytokines contributing to the separation. Macrophage migration inhibitory factor (MIF) alone accounted for 92% of the total contribution. Further, receiver operating characteristics analysis revealed that MIF showed an acceptable ability to distinguish between patients and controls (area under the curve=0.79). Conclusions These results suggest that cytokines may play a role in LBP with MCs. The clinical significance of the findings is unknown. MIF strongly contributed to clustering of patients with LBP with MCs and controls, and might be a biomarker for MCs. Ultimately, these results may guide future research on novel treatments for this patient group.
Collapse
Affiliation(s)
- Elisabeth Gjefsen
- Communication and Research Unit for Musculoskeletal Disorders, Oslo universitetssykehus Ulleval, Oslo, Norway .,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Guro Goll
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Monica Wigemyr
- Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | | | - Maria Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Elina Schistad
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology Research Support Services, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Kjersti Storheim
- Communication and Research Unit for Musculoskeletal Disorders, Oslo universitetssykehus Ulleval, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | | | - John Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Chen L, Zheng J, Yang Z, Chen W, Wang Y, Wei P. Identification of key candidate genes in local dorsal root ganglion inflammation by integrated bioinformatics analysis. Exp Ther Med 2021; 22:821. [PMID: 34131444 PMCID: PMC8193217 DOI: 10.3892/etm.2021.10253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present study was to identify potential markers of local dorsal root ganglion (DRG) inflammation to aid diagnosis, treatment and prognosis evaluation of DRG pain. A localized inflammation of the DRG (LID) rat model was used to study the contribution of inflammation to pain. The dataset GSE38859 was obtained from the Gene Expression Omnibus database. Pre-treatment standardization of gene expression data for each experiment was performed using the R/Bioconductor Limma package. Differentially expressed genes (DEGs) were identified between a LID model and a sham surgery control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs and gene set enrichment analysis (GSEA) were carried out using the ‘clusterProfiler’ package in R. Using the Search Tool for Retrieval of Interacting Genes, a protein-protein interaction network was constructed and visualized. Candidate genes with the highest potential validity were validated using reverse transcription-quantitative PCR and western blotting. In total, 66 DEGs were enriched in GO terms related to inflammation and the immune response processes. KEGG analysis revealed 14 associated signaling pathway terms. Protein-protein interaction network analysis revealed 9 node genes, 3 of which were among the top 10 DEGs. Matrix metallopeptidase 9, chemokine CXCL9, and complement component 3 were identified as key regulators of DRG inflammatory pain progression.
Collapse
Affiliation(s)
- Linhai Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Junshui Zheng
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhuan Yang
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Yangjian Wang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
17
|
Ju YY, Jiang M, Xu F, Wang D, Ding B, Ma LJ, Wu H. CXCL10 and CXCR3 in the Trigeminal Ganglion Contribute to Trigeminal Neuropathic Pain in Mice. J Pain Res 2021; 14:41-51. [PMID: 33469355 PMCID: PMC7811485 DOI: 10.2147/jpr.s288292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Trigeminal neuropathic pain is very common clinically, but effective treatments are lacking. Chemokines and their receptors have been implicated in the pathogenesis of chronic pain. This study explored the role of the chemokine CXCL10 and its receptor, CXCR3, in trigeminal neuropathic pain in mice. Materials and Methods Trigeminal neuropathic pain was established by partial infraorbital nerve ligation (pIONL) in wild-type and Cxcr3−/− mice. Facial mechanical allodynia was evaluated by behavioral testing. A lentivirus containing Cxcr3 shRNA (LV-Cxcr3 shRNA) was microinjected into the trigeminal ganglion (TG) to knock down Cxcr3 expression. Quantitative polymerase chain reaction assays and immunofluorescence staining were used to examine Cxcl10/Cxcr3 mRNA expression and protein distribution. Western blotting was performed to examine activation of extracellular signal-regulated kinase (ERK) and AKT in the TG. Intra-TG injection of an AKT inhibitor was performed to examine the role of AKT in trigeminal neuropathic pain. Results pIONL induced persistent trigeminal neuropathic pain, which was alleviated in Cxcr3−/− mice. Intra-TG injection of LV-Cxcr3 shRNA attenuated pIONL-induced mechanical allodynia. Furthermore, pIONL increased the expression of CXCR3 and its major ligand, CXCL10, in TG neurons. Intra-TG injection of CXCL10 induced pain hypersensitivity in wild-type mice but not in Cxcr3−/− mice. CXCL10 also induced activation of ERK and AKT in the TG of wild-type mice. Finally, pIONL-induced activation of ERK and AKT was reduced in Cxcr3−/− mice. Intra-TG injection of the AKT inhibitor alleviated pIONL-induced mechanical allodynia in WT mice but not in Cxcr3−/− mice. Conclusion CXCL10 acts on CXCR3 to induce ERK and AKT activation in TG neurons and contributes to the maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Yuan-Yuan Ju
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Ming Jiang
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feifei Xu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dongqin Wang
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Bixiao Ding
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Kong YF, Sha WL, Wu XB, Zhao LX, Ma LJ, Gao YJ. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci Bull 2020; 37:339-352. [PMID: 33196963 DOI: 10.1007/s12264-020-00608-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons. Furthermore, in Cxcr3-/- mice, CXCL10 did not increase the number of APs, and the SNL-induced increase of the numbers of APs in DRG neurons was reduced. Finally, CXCL10 induced the activation of p38 and ERK in ND7-23 neuronal cells and DRG neurons. Pretreatment of DRG neurons with the P38 inhibitor SB203580 decreased the number of APs induced by CXCL10. Our data indicate that CXCR3, activated by CXCL10, mediates p38 and ERK activation in DRG neurons and enhances neuronal excitability, which contributes to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Yan-Fang Kong
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Lin-Xia Zhao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
19
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
20
|
Viswanath O, Urits I, Burns J, Charipova K, Gress K, McNally A, Urman RD, Welschmeyer A, Berger AA, Kassem H, Sanchez MG, Kaye AD, Eubanks TN, Cornett EM, Ngo AL. Central Neuropathic Mechanisms in Pain Signaling Pathways: Current Evidence and Recommendations. Adv Ther 2020; 37:1946-1959. [PMID: 32291648 PMCID: PMC7467462 DOI: 10.1007/s12325-020-01334-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Purpose This is a comprehensive review of the current literature on central neuropathic pain mechanisms that is secondary to spinal cord injury. It reviews recent and seminal findings on the pathophysiology, diagnosis, and treatment and compares treatment options and recommendations. Recent Findings Neuropathic pain (NP) is a common complication of spinal cord injury (SCI). Chronicity of NP is attributed to increased abundance of inflammatory mediators and ion channel dysfunction leading to afferent nerve sensitization; nerve damage and nerve–glia cross talk have also been implicated. Conventional treatment is medical and has had limited success. Recent studies have made headway in identifying novel biomarkers, including microRNA and psychosocial attributes that can predict progress from SCI to chronic NP (CNP). Recent advances have provided evidence of efficacy for two promising drugs. Baclofen was able to provide good, long-lasting pain relief. Ziconotide, a voltage-gated calcium channel blocker, was studied in a small trial and was able to provide good analgesia in most participants. However, several participants had to be withdrawn because of worrisome creatine phosphokinase (CPK) elevations, and further studies are required to define its safety profile. Non-medical interventions include brain sensitization and biofeedback techniques. These methods have recently had encouraging results, albeit preliminary. Case reports of non-conventional techniques, such as hypnosis, were also reported. Summary CNP is a common complication of SCI and is a prevalent disorder with significant morbidity and disability. Conventional medical treatment is limited in efficacy. Recent studies identified baclofen and ziconotide as possible new therapies, alongside non-medical interventions. Further research into the pathophysiology is required to identify further therapy candidates. A multidisciplinary approach, including psychosocial support, medical and non-medical interventions, is likely needed to achieve therapeutic effects in this difficult to treat syndrome.
Collapse
Affiliation(s)
- Omar Viswanath
- Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - James Burns
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ali Welschmeyer
- Georgetown University School of Medicine, Washington, DC, USA
| | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Hisham Kassem
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Manuel G Sanchez
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Treniece N Eubanks
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Anh L Ngo
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
21
|
Li HL, Huang Y, Zhou YL, Teng RH, Zhou SZ, Lin JP, Yang Y, Zhu SM, Xu H, Yao YX. C-X-C Motif Chemokine 10 Contributes to the Development of Neuropathic Pain by Increasing the Permeability of the Blood-Spinal Cord Barrier. Front Immunol 2020; 11:477. [PMID: 32265928 PMCID: PMC7098954 DOI: 10.3389/fimmu.2020.00477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Neuropathic pain is among the most debilitating forms of chronic pain. Studies have suggested that chronic pain pathogenesis involves neuroimmune interactions and blood-spinal cord barrier (BSCB) disruption. However, the underlying mechanisms are poorly understood. We modeled neuropathic pain in rats by inducing chronic constriction injury (CCI) of the sciatic nerve and analyzed the effects on C-X-C motif chemokine 10 (CXCL10)/CXCR3 activation, BSCB permeability, and immune cell migration from the circulation into the spinal cord. We detected CXCR3 expression in spinal neurons and observed that CCI induced CXCL10/CXCR3 activation, BSCB disruption, and mechanical hyperalgesia. CCI-induced BSCB disruption enabled circulating T cells to migrate into the spinal parenchyma. Intrathecal administration of an anti-CXCL10 antibody not only attenuated CCI-induced hyperalgesia, but also reduced BSCB permeability, suggesting that CXCL10 acts as a key regulator of BSCB integrity. Moreover, T cell migration may play a critical role in the neuroimmune interactions involved in the pathogenesis of CCI-induced neuropathic pain. Our results highlight CXCL10 as a new potential drug target for the treatment of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Hao-Ling Li
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Huang
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Anesthesia, The Central Hospital of Lishui City, Lishui, China
| | - Ya-Lan Zhou
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Run-Hua Teng
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Zhuan Zhou
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jia-Piao Lin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yang
- Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Mei Zhu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Xu
- Department of Anesthesia, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Herzberg D, Strobel P, Ramirez-Reveco A, Werner M, Bustamante H. Chronic Inflammatory Lameness Increases Cytokine Concentration in the Spinal Cord of Dairy Cows. Front Vet Sci 2020; 7:125. [PMID: 32185190 PMCID: PMC7058553 DOI: 10.3389/fvets.2020.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lameness in dairy cows is an extremely painful multifactorial condition that affects the welfare of animals and economically impacts the dairy industry worldwide. The aim of this study was to determine the profile of cytokines in the spinal cord dorsal horn of dairy cows with painful chronic inflammatory lameness. Concentrations of 10 cytokines were measured in the spinal cord of seven adult dairy cows with chronic lameness and seven adult dairy cows with no lameness. In all cows lameness was evaluated using a mobility scoring system and registered accordingly. Immediately after euthanasia the spinal cord was removed and 20 cm of lumbar segments (L2–L5) were obtained. After dorsal horn removal and processing, cytokine quantification of tumor necrosis factor-alpha (TNF-α), interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-10 (CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-alpha (IFN-α), interferon-gamma (IFN-γ), interleukin-21 (IL-21), interleukin-36ra (IL-36ra), and macrophage inflammatory protein-1 beta (MIP-1β) was performed using a multiplex array. Lame cows had higher concentrations of TNF-α, IL-1-α, IL-13, CXCL10, CXCL9, IFN-α, and IFN-γ in their dorsal horn compared to non-lame cows, while IL-21 concentration was decreased. No differences in IL-36ra and MIP-1β concentrations between lame and non-lame cows were observed. Painful chronic inflammation of the hoof in dairy cows leads to a marked increase in cytokine concentration in the dorsal horn of the spinal cord, which could represent a state of neuroinflammation of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Daniel Herzberg
- Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Strobel
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Ramirez-Reveco
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Marianne Werner
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Faculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
23
|
Sun RM, Wei J, Wang SS, Xu GY, Jiang GQ. Upregulation of lncRNA-NONRATT021203.2 in the dorsal root ganglion contributes to cancer-induced pain via CXCL9 in rats. Biochem Biophys Res Commun 2020; 524:983-989. [PMID: 32061390 DOI: 10.1016/j.bbrc.2020.01.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Cancer-induced pain (CIP) is a kind of chronic pain that occurs during cancer progression over time. However, the mechanisms are largely unknown, and clinical treatment remains challenging. LncRNAs have been reported to play critical roles in various biological processes, including chronic pain. The aim of our study was to investigate whether lncRNAs participate in the development of CIP by regulating the expression levels of some molecules related to pain modulation. The CIP model was established by injecting Walker 256 mammary gland tumor cells into the tibial canal of rats. In this study, we found that lncRNA-NONRATT021203.2 was increased in the CIP rats and that lncRNA-NONRATT021203.2-siRNA could relieve hyperalgesia in these rats. For elucidation of the underlying mechanism, we showed that lncRNA-NONRATT021203.2 could target C-X-C motif chemokine ligand 9 (CXCL9), which was increased in the CIP rats, and that CXCL9-siRNA could relieve hyperalgesia. At the same time, silencing lncRNA-NONRATT021203.2 expression decreased the mRNA and protein levels of CXCL9. Immunofluorescence analysis showed that CXCL9 was mainly expressed in the CGRP-positive and IB4-positive DRG neurons. Further research showed that lncRNA-NONRATT021203.2 and CXCL9 were colocalized in the DRG neurons. Our data suggested that lncRNA-NONRATT021203.2 participated in the CIP in rats and likely mediates the upregulation of CXCL9. The present study provided us with a new potential target for the clinical treatment of cancer-induced pain.
Collapse
Affiliation(s)
- Rong-Mao Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Shu-Sheng Wang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, PR China; Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China.
| |
Collapse
|
24
|
Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes. Sci Rep 2020; 10:1567. [PMID: 32005854 PMCID: PMC6994676 DOI: 10.1038/s41598-020-58131-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent cytokine that prompts the proliferation of bone marrow-derived macrophages and granulocytes. In addition to its effects as a growth factor, GM-CSF plays an important role in chronic inflammatory autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Reports have identified monocytes as the primary target of GM-CSF; however, its effect on monocyte activation has been under-estimated. Here, using flow cytometry and ELISA we show that GM-CSF induces an inflammatory profile in human monocytes, which includes an upregulated expression of HLA-DR and CD86 molecules and increased production of TNF-α and IL-1β. Conversely, blockage of endogenous GM-CSF with antibody treatment not only inhibited the inflammatory profile of these cells, but also induced an immunomodulatory one, as shown by increased IL-10 production by monocytes. Further analysis with qPCR, flow cytometry and ELISA experiments revealed that GM-CSF blockage in monocytes stimulated production of the chemokine CXCL-11, which suppressed T cell proliferation. Blockade of CXCL-11 abrogated anti-GM-CSF treatment and induced inflammatory monocytes. Our findings show that anti-GM-CSF treatment induces modulatory monocytes that act in a CXCL-11-dependent manner, a mechanism that can be used in the development of novel approaches to treat chronic inflammatory autoimmune diseases.
Collapse
|
25
|
Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis. DISEASE MARKERS 2019; 2019:3521746. [PMID: 30881521 PMCID: PMC6387694 DOI: 10.1155/2019/3521746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023]
Abstract
Introduction The neurobiological mechanisms underlying the chemotherapy-induced neuropathic pain are only partially understood. Among them, microglia activation was identified as the key component of neuropathic pain. The aim of this study was to identify differentially expressed genes (DEGs) and pathways associated with vincristine-induced neuropathic pain by using bioinformatics analysis and observe the effects of oxycodone on these DEG expressions in a vincristine-induced microglia activation model. Methods Based on microarray profile GSE53897, we identified DEGs between vincristine-induced neuropathic pain rats and the control group. Using the ToppGene database, the prioritization DEGs were screened and performed by gene ontology (GO) and signaling pathway enrichment. A protein-protein interaction (PPI) network was used to explore the relationship among DEGs. Then, we built the vincristine-induced microglia activation model and detected several DEG expressions by real-time polymerase chain reaction (PCR) and western blotting. Meanwhile, the effects of different concentrations of oxycodone on inflammatory response in primary microglia induced by vincristine were observed. Results A total of 38 genes were differentially expressed between normal and vincristine-treated rats. GO and pathway enrichment analysis showed that prioritization DEGs are involved in cAMP metabolic process, inflammatory response, regulation of cell proliferation, and chemokine pathway. The in vitro studies showed that vincristine had dose-dependent cytotoxic effects in microglia. Compared to the control group, vincristine (0.001 μg/ml) could lead to inflammation in primary microglia induced by vincristine and upregulated the CXCL10, CXCL9, SFRP2, and PF4 mRNA and made an obvious reduction in IRF7 mRNA. At protein levels, oxycodone (50, 100 ng/ml) decreased the expression of CXCL10 and CXCL9 in activated microglia. Conclusion Our study obtained several DEG expressions and signaling pathways in the vincristine-induced neuropathic pain rat model by bioinformatics analysis. Oxycodone could alleviate the vincristine-induced inflammatory signaling in primary microglia and downregulate some DEGs. Further molecular mechanisms need to be explored in the future.
Collapse
|