1
|
Alberto-Silva C, da Silva BR, da Silva JCA, da Cunha e Silva FA, Kodama RT, da Silva WD, Costa MS, Portaro FCV. Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase. Pharmaceuticals (Basel) 2024; 17:931. [PMID: 39065782 PMCID: PMC11279908 DOI: 10.3390/ph17070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The proline-rich decapeptide 10c (Bj-PRO-10c; ENWPHPQIPP) from the Bothrops jararaca snake modulates argininosuccinate synthetase (AsS) activity to stimulate L-arginine metabolite production and neuroprotection in the SH-SY5Y cell line. The relationships between structure, interactions with AsS, and neuroprotection are little known. We evaluated the neuroprotective effects of Bj-PRO-10c and three other PROs (Bn-PRO-10a, METHODS Cell integrity, metabolic activity, reactive oxygen species (ROS) production, and arginase activity were examined after 4 h of PRO pre-treatment and 20 h of H2O2-induced damage. RESULTS Only Bn-PRO-10a-MK and Bn-PRO-10c restored cell integrity and arginase function under oxidative stress settings, but they did not reduce ROS or cell metabolism. The MK dipeptide in Bn-PRO-10a-MK and valine (V8) in Bn-PRO-10c are important to these effects when compared to Bn-PRO-10a. Bj-PRO-10c is not neuroprotective in PC12 cells, perhaps because of their limited NMDA-type glutamate receptor activity. The PROs interaction analysis on AsS activation can be rated as follows: Bj-PRO-10c > Bn-PRO-10c > Bn-PRO-10a-MK > Bn-PRO-10a. The structure of PROs and their correlations with enzyme activity revealed that histidine (H5) and glutamine (Q7) in Bj-PRO-10c potentiated their affinity for AsS. CONCLUSIONS Our investigation provides the first insights into the structure and molecular interactions of PROs with AsS, which could possibly further their neuropharmacological applications.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Julio Cezar Araujo da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Felipe Assumpção da Cunha e Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Roberto Tadashi Kodama
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (R.T.K.); (F.C.V.P.)
| | - Wilmar Dias da Silva
- Laboratory of Immunochemistry, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Maricilia Silva Costa
- Instituto de Pesquisa & Desenvolvimento—IP&D, Universidade do Vale do Paraíba—UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos 12244-390, SP, Brazil;
| | - Fernanda Calheta Vieira Portaro
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (R.T.K.); (F.C.V.P.)
| |
Collapse
|
2
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
3
|
Churchill CC, Peterson CD, Kitto KF, Pflepsen KR, Belur LR, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Adeno-associated virus-mediated gene transfer of arginine decarboxylase to the central nervous system prevents opioid analgesic tolerance. FRONTIERS IN PAIN RESEARCH 2024; 4:1269017. [PMID: 38405182 PMCID: PMC10884299 DOI: 10.3389/fpain.2023.1269017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic tolerance, dependence, and self-administration when given by both central and systemic routes of administration. Endogenous agmatine has been previously detected in the central nervous system. The presence of a biochemical pathway for agmatine synthesis offers the opportunity for site-specific overexpression of the presumptive synthetic enzyme for local therapeutic effects. In the present study, we evaluated the development of opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle control or intrathecally delivered adeno-associated viral vectors (AAV) carrying the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-hADC-treated mice were each further divided into two groups which received repeated delivery over three days of either saline or systemically-delivered morphine intended to induce opioid analgesic tolerance. Morphine analgesic dose-response curves were constructed in all subjects on day four using the warm water tail flick assay as the dependent measure. We observed that pre-treatment with AAV-hADC prevented the development of analgesic tolerance to morphine. Peripheral and central nervous system tissues were collected and analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC pre-treatment prevented the development of analgesic tolerance to a high dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2 analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here the effects of AAV-mediated gene transfer of human ADC (hADC) in models of opioid-induced analgesic tolerance. This study suggests that gene therapy may contribute to reducing opioid analgesic tolerance.
Collapse
Affiliation(s)
- Caroline C. Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Cristina D. Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey R. Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Lalitha R. Belur
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - George L. Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Dermatology, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Clements BM, Peterson CD, Kitto KF, Caye LD, Wilcox GL, Fairbanks CA. Biodistribution of Agmatine to Brain and Spinal Cord after Systemic Delivery. J Pharmacol Exp Ther 2023; 387:328-336. [PMID: 37770201 PMCID: PMC10658908 DOI: 10.1124/jpet.123.001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Agmatine, an endogenous polyamine, has been shown to reduce chronic pain behaviors in animal models and in patients. This reduction is due to inhibition of the GluN2B subunit of the N-methyl-D-aspartate receptor (NMDAR) in the central nervous system (CNS). The mechanism of action requires central activity, but the extent to which agmatine crosses biologic barriers such as the blood-brain barrier (BBB) and intestinal epithelium is incompletely understood. Determination of agmatine distribution is limited by analytical protocols with low sensitivity and/or inefficient preparation. This study validated a novel bioanalytical protocol using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for quantification of agmatine in rat biologic matrices. These protocols were then used to determine the plasma pharmacokinetics of agmatine and the extent of distribution to the CNS. Precision and accuracy of the protocol met US Food and Drug Administration (FDA) standards in surrogate matrix as well as in corrected concentrations in appropriate matrices. The protocol also adequately withstood stability and dilution conditions. Upon application of this protocol to pharmacokinetic study, intravenous agmatine showed a half-life in plasma ranging between 18.9 and 14.9 minutes. Oral administration led to a prolonged plasma half-life (74.4-117 minutes), suggesting flip-flop kinetics, with bioavailability determined to be 29%-35%. Intravenous administration led to a rapid increase in agmatine concentration in brain but a delayed distribution and lower concentrations in spinal cord. However, half-life of agmatine in both tissues is substantially longer than in plasma. These data suggest that agmatine adequately crosses biologic barriers in rat and that brain and spinal cord pharmacokinetics can be functionally distinct. SIGNIFICANCE STATEMENT: Agmatine has been shown to be an effective nonopioid therapy for chronic pain, a significantly unmet medical necessity. Here, using a novel bioanalytical protocol for quantification of agmatine, we present the plasma pharmacokinetics and the first report of agmatine oral bioavailability as well as variable pharmacokinetics across different central nervous system tissues. These data provide a distributional rationale for the pharmacological effects of agmatine as well as new evidence for kinetic differences between brain and spinal cord.
Collapse
Affiliation(s)
- Benjamin M Clements
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Cristina D Peterson
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Kelley F Kitto
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Lukas D Caye
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
5
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
6
|
HUANG H, WANG B, CHEN S, FANG J, WANG X, CHEN L, JIANG Y, ZHANG H, CHEN J, LIN Z. Chinese Tuina remodels the synaptic structure in neuropathic pain rats by downregulating the expression of N-methyl D-aspartate receptor subtype 2B and postsynaptic density protein-95 in the spinal cord dorsal horn. J TRADIT CHIN MED 2023; 43:715-724. [PMID: 37454256 PMCID: PMC10626369 DOI: 10.19852/j.cnki.jtcm.20221214.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/08/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investigate whether the Chinese massage system, Tuina, exerts analgesic effects in a rat model of chronic constriction injury (CCI) by remodeling the synaptic structure in the spinal cord dorsal horn (SCDH). METHODS Sixty-nine male Sprague-Dawley rats were randomly and evenly divided into the normal group, sham group, CCI group, CCI + Tuina group, CCI + MK-801 [an -methyl D-aspartate receptor subtype 2B (NR2B) antagonist] group, and CCI + MK-801 + Tuina group. The neuropathic pain model was established using CCI with right sciatic nerve ligation. Tuina was administered 4 d after CCI surgery, using pressing manipulation for 10 min, once daily. Motor function was observed with the inclined plate test, and pain behaviors were observed by the Von Frey test and acetone spray test. At 19 d after surgery, the L3-L5 spinal cord segments were removed. Glutamate, interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels were detected by enzyme-linked immunosorbent assay. The protein expression levels of NR2B and postsynaptic density protein-95 (PSD-95) were detected by Western blot, and the synaptic structure was observed by transmission electron microscopy (TEM). RESULTS CCI reduced motor function and caused mechanical and cold allodynia in rats, increased glutamate concentration and TNF-α and IL-1β levels, and increased expression of synapse-related proteins NR2B and PSD-95 in the SCDH. TEM revealed that the synaptic structure of SCDH neurons was altered. Most of these disease-induced changes were reversed by Tuina and intrathecal injection of MK-801 ( < 0.05 or < 0.01). For the majority of experiments, no significant differences were found between the CCI + MK-801 and CCI + MK-801 + Tuina groups. CONCLUSIONS Chinese Tuina can alleviate pain by remodeling the synaptic structure, and NR2B and PSD-95 receptors in the SCDH may be among its targets.
Collapse
Affiliation(s)
- Hongye HUANG
- 1 College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Bingqian WANG
- 4 Peking University International Hospital, Beijing 102206, China
| | - Shuijin CHEN
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Jiayu FANG
- 1 College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaohua WANG
- 1 College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lechun CHEN
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Yu JIANG
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Huanzhen ZHANG
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Jincheng CHEN
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Zhigang LIN
- 2 Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
- 3 Fujian Provincial Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| |
Collapse
|
7
|
Lopez MF, Davis EC, Cucinello-Ragland JA, Regunathan S, Edwards S, Becker HC. Agmatine reduces alcohol drinking and produces antinociceptive effects in rodent models of alcohol use disorder. Alcohol 2023; 109:23-33. [PMID: 36709008 PMCID: PMC10175169 DOI: 10.1016/j.alcohol.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder characterized by an escalation of drinking and the emergence of negative affective states over time. Within this framework, alcohol may be used in excessive amounts to alleviate withdrawal-related symptoms, such as hyperalgesia. Future effective therapeutics for AUD may need to exhibit the ability to reduce drinking as well as to alleviate co-morbid conditions such as pain, and to take mechanistic sex differences into consideration. Agmatine is an endogenous neuromodulator that has been previously implicated in the regulation of reward and pain processing. In the current set of studies, we examined the ability of agmatine to reduce escalated ethanol drinking in complementary models of AUD where adult male and female mice and rats were made dependent via chronic, intermittent ethanol vapor exposure (CIE). We also examined the ability of agmatine to modify thermal and mechanical sensitivity in alcohol-dependent male and female rats. Agmatine reduced alcohol drinking in a dose-dependent fashion, with somewhat greater selectivity in alcohol-dependent female mice (versus non-dependent female mice), but equivalent efficacy across male mice and both groups of male and female rats. In mice and female rats, this efficacy did not extend to sucrose drinking, indicating some selectivity for ethanol reinforcement. Female rats made dependent on alcohol demonstrated significant hyperalgesia symptoms, and agmatine produced dose-dependent antinociceptive effects across both sexes. While additional mechanistic studies into agmatine are necessary, these findings support the broad-based efficacy of agmatine to treat co-morbid excessive drinking and pain symptoms in the context of AUD.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Erin C Davis
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Jessica A Cucinello-Ragland
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Soundar Regunathan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Scott Edwards
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
8
|
Peterson CD, Waataja JJ, Kitto KF, Erb SJ, Verma H, Schuster DJ, Churchill CC, Riedl MS, Belur LR, Wolf DA, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Long-term reversal of chronic pain behavior in rodents through elevation of spinal agmatine. Mol Ther 2023; 31:1123-1135. [PMID: 36710491 PMCID: PMC10124077 DOI: 10.1016/j.ymthe.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Jonathan J Waataja
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Samuel J Erb
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Harsha Verma
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel J Schuster
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Caroline C Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel A Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Xu J, Gao W, He T, Yao L, Wu H, Chen Z, Lai Y, Chen Y, Zhang J. The hyperthermic response to intra-preoptic area administration of agmatine in male rats. J Therm Biol 2023; 113:103529. [PMID: 37055134 DOI: 10.1016/j.jtherbio.2023.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.
Collapse
|
10
|
Astrocytic connexin 43 deletion ameliorates SNI-induced neuropathic pain by reducing microglia activation. Biochem Biophys Res Commun 2023; 638:192-199. [PMID: 36462493 DOI: 10.1016/j.bbrc.2022.11.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Neuropathic pain (NP) is a chronic disease caused by damage to the peripheral or central nervous system. Connexin 43 (Cx43), the primary connexin expressed by astrocytes, has been reported to be significantly increased in NP. However, the roles and mechanisms of Cx43 in the development and maintenance of NP remain largely unknown, while microglia activation has been commonly regarded as a key factor of NP. In the present study, we found that Cx43 deletion significantly ameliorated spared nerve injury (SNI)-induced NP and suppressed SNI induced c-Fos expression in the spinal cord. Notably, Cx43 deletion led to much less SNI-induced microglia activation in the spinal cord. These results suggest that astrocyte Cx43 may play a significant role in regulating microglial activation and NP.
Collapse
|
11
|
Farokhi MR, Taherifard E, SoukhakLari R, Moezi L, Pirsalami F, Savardashtaki A, Moosavi M. The memory modulatory effect of agmatine in passive avoidance task coincides with alterations of hippocampal CaMKII-α and ERK signaling in mice. Eur J Pharmacol 2022; 923:174928. [PMID: 35398030 DOI: 10.1016/j.ejphar.2022.174928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
Agmatine is a polyamine suggested to act as a supposed neurotransmitter in the brain. Evidence has indicated that acute agmatine administration might modulate memory. The present study aimed to investigate the effect of repeated agmatine treatment on passive avoidance memory, hippocampal calcium-calmodulin-dependent protein kinase II-alpha (CaMKII-α), and Extracellular Signal-Regulated Kinase (ERK) signaling pathways in naive mice. Adult male NMRI mice were treated with agmatine (10, 20, 30, 40, and 80 mg/kg/ip) or saline for 11 days. Acquisition and retention tests of passive avoidance memory were performed on days 10 and 11, respectively. Following the memory retention test, the hippocampi were assessed for the levels of CaMKII-α and ERK using the western blotting technique. The results revealed the dose-dependent effect of agmatine on the passive avoidance memory. Accordingly, the memory was impaired in lower doses, but was improved in higher ones. Agmatine in none of the doses affected the nociception of the mice in tail-flick test. Furthermore, agmatine increased the phosphorylation of CaMKII-α and ERK in the hippocampus at memory enhancing doses, while ERK phosphorylation decreased following the impairing doses of agmatine. Thus, the dose-dependent effect of agmatine on memory might be related to its modulatory effect on CaMKII-α and ERK signal transduction, eventually regulating the memory process.
Collapse
Affiliation(s)
- Majid Reza Farokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roksana SoukhakLari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moezi
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Stepanenko YD, Sibarov DA, Shestakova NN, Antonov SM. Tricyclic Antidepressant Structure-Related Alterations in Calcium-Dependent Inhibition and Open-Channel Block of NMDA Receptors. Front Pharmacol 2022; 12:815368. [PMID: 35237149 PMCID: PMC8882908 DOI: 10.3389/fphar.2021.815368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are an essential target for the analgetic action of tricyclic antidepressants (TCAs). Their therapeutic blood concentrations achieve 0.5–1.5 μM, which, however, are insufficient to cause in vitro the open-channel block known as the only effect of TCAs on NMDARs. Whereas structures of amitriptyline (ATL), desipramine (DES), and clomipramine (CLO) are rather similar these compounds manifest different therapeutic profiles and side effects. To study structure-activity relationships of DES and CLO on NMDARs, we measured IC50s as a function of extracellular calcium ([Ca2+]) and membrane voltage (Vm) of NMDAR currents recorded in cortical neurons. Here two components of TCA action on NMDARs are described, which could be characterized as the Ca2+-dependent inhibition and the open-channel block. DES demonstrated a profound Ca2+-dependent inhibition of NMDARs, while the CLO effect was weak. DES IC50 exhibited an e-fold change with a [Ca2+] shift of 0.59 mM, which is consistent with ATL. The Ca2+ dependence of NMDAR inhibition by DES disappeared in BAPTA loaded neurons, suggesting that Ca2+ acts from the inside. Since CLO differs from DES and ATL by the presence of Cl-atom in the structure, most likely, this is the atom which is responsible for the loss of pronounced [Ca2+] dependence. As for the NMDAR open-channel block, both DES and CLO were about 5-folds more potent than ATL due to their slow rates of dissociation either from open and closed states. DES demonstrated stronger Vm-dependence than CLO, suggesting a deeper location of the DES binding site within the ion pore. Because DES and CLO differ from ATL by the nitrogen-containing tricycle, presumably this moiety of the molecules determines their high-affinity binding with the NMDAR channel, while the aliphatic chain mono-methyl amino-group of DES allows a deep permeation in the channel. Thus, different structure-activity relationships of the Ca2+-dependent inhibition and Vm-dependent open-channel block of NMDARs by DES and CLO suggest that these processes are independent and most likely may represent an action on different molecular targets. The proposed model of TCA action on NMDARs predicts well the experimental values of IC50s at physiological [Ca2+] and within a wide range of Vms.
Collapse
|