1
|
Antoine T, Béduneau A, Chrétien C, Cornu R, Bonnefoy F, Moulari B, Perruche S, Pellequer Y. Clinically relevant cell culture model of inflammatory bowel diseases for identification of new therapeutic approaches. Int J Pharm 2024; 669:125062. [PMID: 39653295 DOI: 10.1016/j.ijpharm.2024.125062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Inflammatory Bowel Diseases (IDB) are chronic disorders characterized by gut inflammation, mucosal damage, increased epithelial permeability and altered mucus layer. No accurate in vitro model exists to simulate these characteristics. In this context, drug development for IBD or intestinal inflammation requires in vivo evaluations to verify treatments efficacy. A new model with altered mucus layer composition; altered epithelial permeability and pro-inflammatory crosstalk between immune and epithelial cells will be developed to enhance in vitro models for studying IBD treatments. The effects of dextran sulfate sodium and/or lipopolysaccharides on intestinal permeability, cytokines synthesis (IL-6, IL-8, TNF-α and IL-1β), mucins (MUC2, MUC5AC) and tight junction proteins expression (Claudin-1, ZO-1 and Occludin) were investigated in a tri-coculture model combining differentiated Caco-2/HT29-MTX cells and THP-1 cells. Two anti-inflammatory agents were evaluated to assess the model's therapeutic strategy applicability (corticoids and pro-resolving factors). Two in vitro models have been developed. The first model, characterized by increased permeability of the epithelial layer and subsequent secretion of inflammatory cytokines, can reproduce the different phases of inflammation, and enables the evaluation of preventive treatments. The second model simulates the acute phase of inflammation and allows for the assessment of curative treatments. Both models demonstrated reversibility when treated with betamethasone and pro-resolving factors. These in vitro models are valuable for selecting therapeutic agents prior to their application in in vivo models. They enable the assessment of agents' anti-inflammatory effects and their ability to permeate the inflamed epithelial layer and interact with immune cells.
Collapse
Affiliation(s)
- Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Claire Chrétien
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Raphaël Cornu
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Francis Bonnefoy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France.
| |
Collapse
|
2
|
Saldana-Morales FB, Kim DV, Tsai MT, Diehl GE. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2022; 13:1-14. [PMID: 33929291 PMCID: PMC8096330 DOI: 10.1080/19490976.2021.1916376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During both health and disease, a coordinated response between the epithelium, immune system, and enteric nervous system is required for proper intestinal function. While each system responds to a number of common stimuli, their coordinated responses support digestion as well as responses and recovery following injury or pathogenic infections. In this review, we discuss how individual responses to common signals work together to support these critical functions.
Collapse
Affiliation(s)
- Fatima B. Saldana-Morales
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Dasom V. Kim
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ming-Ting Tsai
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA,CONTACT Gretchen E. Diehl Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10021, USA. Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Yu LM, Mao LQ, Wu CY, Ye W, Wang X. Chlorogenic acid improves intestinal barrier function by downregulating CD14 to inhibit the NF-κB signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R. A Holistic Appraisal of Stromal Differentiation in Colorectal Cancer: Biology, Histopathology, Computation, and Genomics. Pathol Res Pract 2021; 220:153378. [PMID: 33690050 DOI: 10.1016/j.prp.2021.153378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Cancer comprises epithelial tumor cells and associated stroma, often times referred to as the "tumoral microenvironment". Cancer-associated fibroblasts (CAFs) are the most notable components of the tumor mesenchyme. CAFs promote the initiation of cancer through angiogenesis, invasion and metastasis. Histologically, the differentiation of stroma has been reported to correlate with prognostic outcomes in patients with colorectal cancer. This review summarizes our current understanding of the extracellular matrix (ECM) in colorectal carcinoma (CRC), showcasing the functions of CAFs and its role in stromal differentiation (SD). We also review current state-of-the-art biology, histopathology, computation, and genomics in the setting of the stroma. SD is distinctive morphologically, and is easily recognized by a surgical pathologist; we offer a lexicon and guide for discovering the essence of stroma, as well as an incipient vision of the future for computation and molecular genomics. We propose that the mesenchymal phenotype, which encompasses a cancer migratory/metastatic capacity, could occur through the process of SD. Looking forward, pathologists will need to invest time and energy into SD, embracing the concept and propagating its use. For patients with colorectal cancer, stroma is a brave new frontier, one not only rich in biologic diversity, but also potentially critical for therapeutic decision making.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States.
| | - Baidarbhi Chakraborty
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | | | - Taisia Vitkovski
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Rebecca Thomas
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| |
Collapse
|
5
|
Holani R, Babbar A, Blyth GAD, Lopes F, Jijon H, McKay DM, Hollenberg MD, Cobo ER. Cathelicidin-mediated lipopolysaccharide signaling via intracellular TLR4 in colonic epithelial cells evokes CXCL8 production. Gut Microbes 2020; 12:1785802. [PMID: 32658599 PMCID: PMC7524372 DOI: 10.1080/19490976.2020.1785802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the antimicrobial peptide cathelicidin has a physiological role in regulating gut inflammatory homeostasis. We determined that cathelicidin synergizes with LPS to facilitate its internalization and signaling via endosomic TLR4 in colonic epithelium, evoking synthesis of the human neutrophil chemoattractant, CXCL8 (or murine homolog, CXCL1). Interaction of cathelicidin with LPS in the control of CXCL8/CXCL1 synthesis was assessed in human colon epithelial cells, murine colonoids and cathelicidin-null mice (Camp-/- ). Mechanistically, human cathelicidin (LL-37), as an extracellular complex with LPS, interacted with lipid raft-associated GM1 gangliosides to internalize and activate intracellular TLR4. Two signaling pathways converged on CXCL8/CXCL1 production: (1) a p38MAPK-dependent pathway regulated by Src-EGFR kinases; and, (2) a p38MAPK-independent, NF-κB-dependent pathway, regulated by MEK1/2-MAPK. Increased cathelicidin-dependent CXCL8 secretion in the colonic mucosa activated human blood-derived neutrophils. These cathelicidin effects occurred in vitro at concentrations well below those needed for microbicidal function. The important immunomodulatory role of cathelicidins was evident in cathelicidin-null/Camp-/- mice, which had diminished colonic CXCL1 secretion, decreased neutrophil recruitment-activation and reduced bacterial clearance when challenged with the colitis-inducing murine pathogen, Citrobacter rodentium. We conclude that in addition to its known microbicidal action, cathelicidin has a unique pathogen-sensing role, facilitating LPS-mediated intestinal responses, including the production of CXCL8/CXCL1 that would contribute to an integrated tissue response to recruit neutrophils during colitis.
Collapse
Affiliation(s)
- Ravi Holani
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Anshu Babbar
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Graham A. D. Blyth
- Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Lopes
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Humberto Jijon
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Morley D. Hollenberg
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eduardo R. Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada,CONTACT Eduardo R. Cobo Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
6
|
Bruning EE, Coller JK, Wardill HR, Bowen JM. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease. J Cell Physiol 2020; 236:877-888. [PMID: 32730645 DOI: 10.1002/jcp.29976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle-associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site-specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site-specific TLR4 expression in inflammation and disease, particularly the impact of epithelial-specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell-specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site-specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases.
Collapse
Affiliation(s)
- Elise E Bruning
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Hannah R Wardill
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Department of Paediatric Oncology/Haematology, The University of Groningen (University Medical Centre Groningen), Groningen, The Netherlands
| | - Joanne M Bowen
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Lama A, Provensi G, Amoriello R, Pirozzi C, Rani B, Mollica MP, Raso GM, Ballerini C, Meli R, Passani MB. The anti-inflammatory and immune-modulatory effects of OEA limit DSS-induced colitis in mice. Biomed Pharmacother 2020; 129:110368. [PMID: 32559625 DOI: 10.1016/j.biopha.2020.110368] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acid ethanolamides acting on proliferator-activated receptor (PPAR)-α are among the endogenous lipid molecules that attenuate inflammatory processes and pain sensitivity. Whereas these properties are well-known for palmitoylethanolamide (PEA), the efficacy of oleoylethanolamide (OEA, first described as a satiety hormone synthesized in the jejunum) has been overlooked. In this study, we aimed to evaluate the effect of OEA administration in a mouse model of colitis. C57BL/6J mice were exposed to 2.5% dextran sodium sulphate (DSS) in drinking water for 5 days. Daily i.p. administration of 10 mg/kg OEA started 3 days before DSS and lasted for 12 days. The DSS-untreated control group received only ultrapure water. DSS mice treated with OEA had a significant improvement of disease score. OEA restored mRNA transcription of PPAR-α, of tight junctions and protective factors of colon integrity disrupted by DSS. The improvement correlated with significant decrease of colonic and systemic levels of pro-inflammatory cytokines compared to the DSS group. OEA antiinflammatory effects were mediated by the selective targeting of the TLR4 axis causing a downstream inhibition of nuclear factor kappa B (NF-κB)- MyD88-dependent and NLRP3 inflammation pathways. OEA treatment also inhibited DSS-induced increase of inflammatory cytokines levels in the mesenteric lymph nodes. CONCLUSIONS AND IMPLICATIONS: These results underscore the validity of OEA as a potent protective and anti-inflammatory agent in ulcerative colitis that may be exploited to broaden the pharmacological strategies against inflammatory bowel disease.
Collapse
Affiliation(s)
- Adriano Lama
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze (I), Italy
| | - Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze (I), Italy
| | - Claudio Pirozzi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | - Barbara Rani
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Maria Pina Mollica
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze (I), Italy
| | - Rosaria Meli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli (I), Italy.
| | | |
Collapse
|
8
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
9
|
Muthukuru M. Commentary: Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Front Immunol 2020; 10:2932. [PMID: 31921186 PMCID: PMC6931266 DOI: 10.3389/fimmu.2019.02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manoj Muthukuru
- Health Sciences Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Pfanzagl B, Zevallos VF, Schuppan D, Pfragner R, Jensen-Jarolim E. Histamine causes influx via T-type voltage-gated calcium channels in an enterochromaffin tumor cell line: potential therapeutic target in adverse food reactions. Am J Physiol Gastrointest Liver Physiol 2019; 316:G291-G303. [PMID: 30540489 DOI: 10.1152/ajpgi.00261.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The P-STS human ileal neuroendocrine tumor cells, as a model for gut enterochromaffin cells, are strongly and synergistically activated by histamine plus acetylcholine (ACh), presumably via histamine 4 receptors, and weakly activated by histamine alone. Sensing these signals, enterochromaffin cells could participate in intestinal intolerance or allergic reactions to food constituents associated with elevated histamine levels. In this study we aimed to analyze the underlying molecular mechanisms. Inhibition by mepyramine and mibefradil indicated that histamine alone caused a rise in intracellular calcium concentration ([Ca2+]i) via histamine 1 receptors involving T-type voltage-gated calcium channels (VGCCs). Sensitivity to histamine was enhanced by pretreatment with the inflammatory cytokine tumor necrosis factor-α (TNF-α). In accordance with the relief it offers some inflammatory bowel disease patients, otilonium bromide, a gut-impermeable inhibitor of T-type (and L-type) VGCCs and muscarinic ACh receptors, efficiently inhibited the [Ca2+]i responses induced by histamine plus ACh or by histamine alone in P-STS cells. It will take clinical studies to show whether otilonium bromide has promise for the treatment of adverse food reactions. The cells did not react to the nutrient constituents glutamate, capsaicin, cinnamaldehyde, or amylase-trypsin inhibitors and the transient receptor potential channel vanilloid 4 agonist GSK-1016790A. The bacterial product butyrate evoked a rise in [Ca2+]i only when added together with ACh. Lipopolysaccharide had no effect on [Ca2+]i despite the presence of Toll-like receptor 4 protein. Our results indicate that inflammatory conditions with elevated levels of TNF-α might enhance histamine-induced serotonin release from intestinal neuroendocrine cells. NEW & NOTEWORTHY We show that histamine synergistically enhances the intracellular calcium response to the physiological agonist acetylcholine in human ileal enterochromaffin tumor cells. This synergistic activation and cell activation by histamine alone largely depend on T-type voltage-gated calcium channels and are inhibited by the antispasmodic otilonium bromide. The cells showed no response to wheat amylase-trypsin inhibitors, suggesting that enterochromaffin cells are not directly involved in nongluten wheat sensitivity.
Collapse
Affiliation(s)
- Beatrix Pfanzagl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna , Vienna , Austria
| | - Victor F Zevallos
- Division of Molecular and Translational Medicine, Department of Medicine I, Johannes Gutenberg University , Mainz , Germany
| | - Detlef Schuppan
- Division of Molecular and Translational Medicine, Department of Medicine I, Johannes Gutenberg University , Mainz , Germany
| | - Roswitha Pfragner
- Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz , Graz , Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna , Vienna , Austria.,The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna , Vienna , Austria
| |
Collapse
|
11
|
Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, Dong Y, Liu Y, Nan Z, Wang Y, Yu T, Liu X. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol 2019; 68:204-212. [PMID: 30654310 DOI: 10.1016/j.intimp.2018.12.043] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
Accumulating evidence indicates that microRNA-146a (miR-146a), a well-known anti-inflammatory miRNA, acts as a negative feedback regulator of the innate immune response, but its role in modulation of inflammatory bowel disease (IBD) remains unclear and the issue related to the stability of exogenous miR-146a in blood is up in the air. In this study, extracellular vesicles (EVs) from cultured medium of bone-marrow mesenchymal stem cells (BMSCs) transfected with recombinant lentiviruses can serve as a stable delivery system and overexpress miR-146a, which significantly inhibited TNF receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1) expression in TNBS-induced colitis of rats. Moreover, the increased phosphorylation levels of NF-κB p65 and IκBα were down-regulated by the administration of EVs containing miR-146a. Coupled with the associated influence of over-expressed miR-146a on phosphorylated proteins above, the production of inflammation factors such as tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and Interleukin-1β is apparently suppressed by this non-coding RNA. Collectively, these data elucidated that EVs containing miR-146a ameliorates experimental colitis caused 2,4,6‑trinitrobenzenesulfonic acid (TNBS) by targeting TRAF6 and IRAK1.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changzheng Ai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Nan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Ponce de León-Rodríguez MDC, Guyot JP, Laurent-Babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit Rev Food Sci Nutr 2018; 59:3648-3666. [DOI: 10.1080/10408398.2018.1506734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jean-Pierre Guyot
- NUTRIPASS—University of Montpellier, IRD, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
13
|
Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients 2018; 10:nu10020203. [PMID: 29438282 PMCID: PMC5852779 DOI: 10.3390/nu10020203] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) are powerful molecular regulators by which the immune system may "sense" the environment and protect the host from pathogens or endogenous threats. In mammalian cells, several TLRs were identified with a tissue and cell type-specific distribution. Understanding the functions of specific TLRs is crucial for the development and discovery of compounds useful to maintaining or re-establishing homeostasis in the gastrointestinal tract (GIT). Due to their relevance in regulating the inflammatory response in the GIT, we will focus here on TLR2, TLR4, and TLR5. In particular, we describe (a) the molecular pathways activated by the stimulation of these receptors with their known bacterial ligands; (b) the non-bacterial ligands known to interact directly with TLR2 and TLR4 and their soluble forms. The scope of this minireview is to highlight the importance of bacterial and non-bacterial compounds in affecting the gut immune functions via the activation of the TLRs.
Collapse
|
14
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
15
|
Feki S, Bouzid D, Abida O, Chtourou L, Elloumi N, Toumi A, Hachicha H, Amouri A, Tahri N, Masmoudi H. Genetic association and phenotypic correlation of TLR4 but not NOD2 variants with Tunisian inflammatory bowel disease. J Dig Dis 2017; 18:625-633. [PMID: 29055077 DOI: 10.1111/1751-2980.12552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The common association between NOD2/CARD15 and TLR4 gene variants with inflammatory bowel disease (IBD) has not been replicated in all studies. We studied the polymorphism of these two genes in Tunisian patients with IBD. METHODS Polymorphisms of NOD2 (R702W, G908R and L1007fs) and TLR4 (Asp299Gly and Thr399Ile) genes were analyzed in 106 patients with IBD (68 with ulcerative colitis [UC], 38 with Crohn's disease [CD]) and 160 healthy controls using polymerase chain reaction-restriction fragment length polymorphism. Genotypes and phenotypes were correlated. RESULTS The mutated allele of TLR4-Thr399Ile was strongly associated with IBD (9.4% in IBD, 7.4% in UC and 13.2% in CD vs 2.5% in controls; P = 0.0004, 0.014 and 0.00006, respectively). Heterozygous genotypes were significantly more frequent in patients with IBD (17.0%), UC (14.7%) and CD (21.1%) than in controls (5.0%) (P = 0.0012, 0.012 and 0.001, respectively). Interestingly, the wild genotype was found to be protective (odds ratio 0.24). The mutated allele of TLR4-Asp299Gly was more frequent in controls (6.8%) than in patients with IBD (2.9%). A phenotypic correlation of Asp299Gly-AG genotype with arthritis in UC patients was detected (P = 0.003). Regarding the NOD2 gene, the common variations studied were not polymorphic and there was no genetic association with IBD. CONCLUSION The TLR4-Thr399Ile variant was strongly associated with susceptibility to IBD, whereas TLR4-Asp299Gly seems to play a role in the clinical expression of UC. The rarity and non-association of NOD2 mutations with IBD may reveal a genetic characteristic of the population in our region.
Collapse
Affiliation(s)
- Sawsan Feki
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Dorra Bouzid
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Olfa Abida
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Lassaad Chtourou
- Department of Gastroenterology, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Nesrine Elloumi
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Amina Toumi
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Hend Hachicha
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Ali Amouri
- Department of Gastroenterology, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Nabil Tahri
- Department of Gastroenterology, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Department of Immunology, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
16
|
Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep 2017; 21:1160-1168. [DOI: 10.1016/j.celrep.2017.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
|
17
|
Feyzi A, Delkhosh A, Nasrabadi HT, Cheraghi O, khakpour M, Barekati-Mowahed M, Soltani S, Mohammadi SM, Kazemi M, Hassanpour M, Rezabakhsh A, Maleki‐Dizaji N, Rahbarghazi R, Namdarian R. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria. Biomed Pharmacother 2017; 89:454-461. [DOI: 10.1016/j.biopha.2017.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/31/2017] [Indexed: 11/28/2022] Open
|
18
|
Common NOD2/CARD15 and TLR4 Polymorphisms Are Associated with Crohn's Disease Phenotypes in Southeastern Brazilians. Dig Dis Sci 2016; 61:2636-47. [PMID: 27107867 DOI: 10.1007/s10620-016-4172-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
AIM To investigate whether variants in NOD2/CARD15 and TLR4 are associated with CD and ulcerative colitis (UC) in a genetically admixed population of Rio de Janeiro, where IBD has continued to rise. METHODS We recruited 67 consecutive patients with CD, 61 patients with UC, and 86 healthy and ethnically matched individuals as controls. DNA was extracted from buccal brush samples and genotyped by PCR with restriction enzymes for G908R and L1007finsC NOD2/CARD15 single-nucleotide polymorphisms (SNPs) and for T399I and D299G TLR4 SNPs. Clinical data were registered for subsequent analysis with multivariate models. RESULTS NOD2/CARD15 G908R and L1007finsC SNPs were found in one and three patients, respectively, with CD. NOD2/CARD15 G908R and L1007finsC SNPs were not found in any patients with UC, but were found in three and three controls, respectively. With regard to the TLR4 gene, no significant difference was detected among the groups. Overall, none of the SNPs investigated determined a differential risk for a specific diagnosis. Genotype-phenotype associations were found in only CD, where L1007finsC was associated with colonic localization; however, TLR4 T399I SNP was associated with male gender, and D299G SNP was associated with colonic involvement, chronic corticosteroid use, and the need for anti-TNF-alpha therapy. CONCLUSION Variants of NOD2/CARD15 and TLR4 do not confer susceptibility to IBD, but appear to determine CD phenotypes in this southeastern Brazilian population.
Collapse
|
19
|
Pellino G, Pallante P, Selvaggi F. Novel biomarkers of fibrosis in Crohn’s disease. World J Gastrointest Pathophysiol 2016; 7:266-275. [PMID: 27574564 PMCID: PMC4981766 DOI: 10.4291/wjgp.v7.i3.266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Fibrosis represents a major challenge in Crohn’s disease (CD), and many CD patients will develop fibrotic strictures requiring treatment throughout their lifetime. There is no drug that can reverse intestinal fibrosis, and so endoscopic balloon dilatation and surgery are the only effective treatments. Since patients may need repeated treatments, it is important to obtain the diagnosis at an early stage before strictures become symptomatic with extensive fibrosis. Several markers of fibrosis have been proposed, but most need further validation. Biomarkers can be measured either in biological samples obtained from the serum or bowel of CD patients, or using imaging tools and tests. The ideal tool should be easily obtained, cost-effective, and reliable. Even more challenging is fibrosis occurring in ulcerative colitis. Despite the important burden of intestinal fibrosis, including its detrimental effect on outcomes and quality of life in CD patients, it has received less attention than fibrosis occurring in other organs. A common mechanism that acts via a specific signaling pathway could underlie both intestinal fibrosis and cancer. A comprehensive overview of recently introduced biomarkers of fibrosis in CD is presented, along with a discussion of the controversial areas remaining in this field.
Collapse
|
20
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
21
|
Ignacio A, Morales CI, Câmara NOS, Almeida RR. Innate Sensing of the Gut Microbiota: Modulation of Inflammatory and Autoimmune Diseases. Front Immunol 2016; 7:54. [PMID: 26925061 PMCID: PMC4759259 DOI: 10.3389/fimmu.2016.00054] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian gastrointestinal tract harbors a diverse microbial community with which dynamic interactions have been established over millennia of coevolution. Commensal bacteria and their products are sensed by innate receptors expressed in gut epithelia and in gut-associated immune cells, thereby promoting the proper development of mucosal immune system and host homeostasis. Many studies have demonstrated that host–microbiota interactions play a key role during local and systemic immunity. Therefore, this review will focus on how innate sensing of the gut microbiota and their metabolites through inflammasome and toll-like receptors impact the modulation of a distinct set of inflammatory and autoimmune diseases. We believe that a better understanding of the fine-tuning that governs host–microbiota interactions will further improve common prophylactic and therapeutic applications.
Collapse
Affiliation(s)
- Aline Ignacio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Camila Ideli Morales
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil; Renal Pathophysiology Laboratory, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
22
|
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49:69-83. [DOI: 10.3109/08916934.2015.1134511] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere 2015; 1:mSphere00028-15. [PMID: 27303676 PMCID: PMC4863622 DOI: 10.1128/msphere.00028-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins. The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins.
Collapse
|
24
|
Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol 2015; 35:189-218. [PMID: 26606737 DOI: 10.3109/08830185.2015.1087518] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cross-talk between enteral microbiota and human host is essential for the development and maintenance of the human gastrointestinal and systemic immune systems. The presence of lipopolysaccharides (LPS) lysed from the cell membrane of Gram-negative bacteria in the gut lumen is thought to promote the development of a balanced gut immune response whilst the entry of the same LPS into systemic circulation may lead to a deleterious pro-inflammatory systemic immune response. Recent data suggest that chronically low levels of circulating LPS may be associated with the development of metabolic diseases such as insulin resistance, type 2 diabetes, atherosclerosis and cardiovascular disease. This review focuses on the cross-talk between enteral commensal bacteria and the human immune system via LPS. We explain the structural characterisation of the LPS molecule and its function in the bacteria. We then examine how LPS is recognised by various elements of the human immune system and the signalling pathways that are activated by the structure of the LPS molecule and the effect of various concentrations. Further, we discuss the sequelae of this signalling in the gut-associated and systemic immune systems i.e. the neutralisation of LPS and the development of tolerance to LPS.
Collapse
Affiliation(s)
- Anne Gnauck
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Roger G Lentle
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Marlena C Kruger
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| |
Collapse
|
25
|
Abstract
The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a "love-hate relationship." Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park; Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
26
|
Koyama D, Maruoka S, Gon Y, Shintani Y, Sekiyama T, Hiranuma H, Shikano S, Kuroda K, Takeshita I, Tsuboi E, Soda K, Hashimoto S. Myeloid differentiation-2 is a potential biomarker for the amplification process of allergic airway sensitization in mice. Allergol Int 2015; 64 Suppl:S37-45. [PMID: 26344079 DOI: 10.1016/j.alit.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Allergic sensitization is a key step in the pathogenesis of asthma. However, little is known about the molecules that are critical regulators for establishing allergic sensitization of the airway. Thus, we conducted global gene expression profiling to identify candidate genes and signaling pathways involved in house dust mite (HDM)-induced allergic sensitization in the murine airway. METHODS We sensitized and challenged mice with HDM or saline as a control through the airway on days 1 and 8. We evaluated eosinophilia in bronchoalveolar lavage fluid (BALF), airway inflammation, and mucus production on days 7 and 14. We extracted total RNA from lung tissues of HDM- and saline-sensitized mice on days 7 and 14. Microarray analyses were performed to identify up-regulated genes in the lungs of HDM-sensitized mice compared to the control mice. Data analyses were performed using GeneSpring software and gene networks were generated using Ingenuity Pathways Analysis (IPA). RESULTS We identified 50 HDM-mediated, stepwise up-regulated genes in response to allergic sensitization and amplification of allergic airway inflammation. The highest expressed gene was myeloid differentiation-2 (MD-2), a lipopolysaccharide (LPS)-binding component of Toll-like receptor (TLR) 4 signaling complex. MD-2 protein was expressed in lung vascular endothelial cells and was increased in the serum of HDM-sensitized mice, but not in the control mice. CONCLUSIONS Our data suggest MD-2 is a critical regulator of the establishment of allergic airway sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of allergic sensitization and allergic inflammation.
Collapse
Affiliation(s)
- Daisuke Koyama
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Yoshitaka Shintani
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadataka Sekiyama
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisato Hiranuma
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sotaro Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ikuko Takeshita
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Eriko Tsuboi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Green BB, McKay SD, Kerr DE. Age dependent changes in the LPS induced transcriptome of bovine dermal fibroblasts occurs without major changes in the methylome. BMC Genomics 2015; 16:30. [PMID: 25623529 PMCID: PMC4312471 DOI: 10.1186/s12864-015-1223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 11/15/2022] Open
Abstract
Background By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We now expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and also investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness. Results Age-dependent differences in IL-8 production by fibroblasts in response to LPS exposure for 24 h were abolished by pretreatment of cultures with a DNA demethylation agent, 5-aza-2′deoxycytidine (AZA). RNA-Seq analysis of fibroblasts collected from the same individuals at either 5 or 16 months of age and exposed in parallel to LPS for 0, 2, and 8 h revealed a robust response to LPS that was much greater in the cultures from older animals. Pro-inflammatory genes including IL-8, IL-6, TNF-α, and CCL20 (among many other immune associated genes), were more highly expressed (FDR < 0.05) in the 16-month old cultures following LPS exposure. Methylated CpG island recovery assay sequencing (MIRA-Seq) revealed numerous methylation peaks spread across the genome, combined with an overall hypomethylation of gene promoter regions, and a remarkable similarity, except for 20 regions along the genome, between the fibroblasts collected at the two ages from the same animals. Conclusions The fibroblast pro-inflammatory response to LPS increases dramatically from 5 to 16 months of age within individual animals. A better understanding of the mechanisms underlying this process could illuminate the physiological processes by which the innate immune response develops and possibly individual variation in innate immune response arises. In addition, although relatively unchanged by age, our data presents a general overview of the bovine fibroblast methylome as a guide for future studies in cattle epigenetics utilizing this cell type. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin B Green
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| | - Stephanie D McKay
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| | - David E Kerr
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
28
|
Abstract
The innate immune system is a key factor in understanding the pathogenesis of inflammatory bowel disease (IBD) and in the hopes of improving its treatment. NOD2, a pattern recognition receptor, was one of the first major susceptibility genes identified in Crohn's disease (CD). This discovery has been followed by genome-wide association studies that have identified other genes involved in innate immune responses. Most notably, polymorphisms in the interleukin (IL)-23 receptor have also been linked to IBD - both CD and ulcerative colitis. At the core of the innate immune defects associated with IBD is a lack of generating a robust response to control invasive commensal or pathogenic bacteria. The defect sometimes lies in a failure of the epithelium to express antimicrobial peptides or in defective control of intracellular bacteria by phagocytic cells such as dendritic cells, macrophages, or neutrophils. The recent identification of innate lymphoid cells that express the IL-23 receptor and generate both proinflammatory and protective or regulatory responses to commensal or pathogenic bacteria provides another layer of complexity to the interplay of host protection and dysregulated inflammation. Although inhibition of tumor necrosis factor has been highly successful as a strategy in treating IBD, we must better understand the nuanced role of other innate cytokines before we may incorporate these in the treatment of IBD.
Collapse
Affiliation(s)
- Julie M Davies
- Miller School of Medicine, University of Miami , Miami Fl , USA
| | | |
Collapse
|
29
|
Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef Microbes 2014; 5:33-43. [PMID: 24533976 DOI: 10.3920/bm2013.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- M Remely
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090 Vienna, Austria
| | - E Aumueller
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090 Vienna, Austria
| | - D Jahn
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090 Vienna, Austria
| | - B Hippe
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090 Vienna, Austria
| | - H Brath
- Diabetes Outpatient Clinic, Health Center South, Wienerbergstrasse 13, 1010 Vienna, Austria
| | - A G Haslberger
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
30
|
Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Lawrance IC. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 2014; 8:1147-65. [PMID: 24731838 DOI: 10.1016/j.crohns.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 02/08/2023]
Abstract
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of intestinal fibrosis in the disease course of inflammatory bowel disease (IBD). The objective was to better understand the pathophysiological mechanisms of intestinal fibrosis, to identify useful markers and imaging modalities of fibrosis in order to assess its presence and progression, and, finally, to point out possible approaches for the prevention and the treatment of fibrosis. The results of this workshop are presented in three separate manuscripts. This first section describes the most important mechanisms that contribute to the initiation and progression of intestinal fibrosis in IBD including the cellular and molecular mediators, the extracellular matrix molecules and matrix metalloproteinases/tissue inhibitors of metalloproteinases-system, the microbiota products, the role of fat, genetic and epigenetic factors, as well as the currently available experimental models. Furthermore, it identifies unanswered questions in the field of intestinal fibrosis and provides a framework for future research.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy.
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hopsital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium; Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, WA, Australia; University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, WA, Australia
| |
Collapse
|
31
|
Hyun J, Romero L, Riveron R, Flores C, Kanagavelu S, Chung KD, Alonso A, Sotolongo J, Ruiz J, Manukyan A, Chun S, Singh G, Salas P, Targan SR, Fukata M. Human intestinal epithelial cells express interleukin-10 through Toll-like receptor 4-mediated epithelial-macrophage crosstalk. J Innate Immun 2014; 7:87-101. [PMID: 25171731 DOI: 10.1159/000365417] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
In the intestine, interaction between epithelial cells and macrophages (MΦs) create a unique immunoregulatory microenvironment necessary to maintain local immune and tissue homeostasis. Human intestinal epithelial cells (IECs) have been shown to express interleukin (IL)-10, which keeps epithelial integrity. We have demonstrated that bacterial signaling through Toll-like receptor (TLR) 4 induces 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) synthesis in intestinal MΦs by cyclooxygenase (Cox)-2 expression. Here, we show that TLR4 signaling generates crosstalk between IECs and MΦs that enhances IL-10 expression in IECs. Direct stimulation of TLR4 leads to the expression of IL-10 in IECs, while the presence of MΦs in a Transwell system induces another peak in IL-10 expression in IECs at a later time point. The second peak of the IL-10 expression is two times greater than the first peak. This late induction of IL-10 depends on the nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ that is accumulated in IECs by TLR4-mediated inhibition of the ubiquitin-proteasomal pathway. TLR4 signaling in MΦs in turn synthesizes 15d-PGJ2 through p38 and ERK activation and Cox-2 induction, which activates PPARγ in IECs. These results suggest that TLR4 signaling maintains IL-10 production in IECs by generating epithelial-MΦs crosstalk, which is an important mechanism in the maintenance of intestinal homeostasis mediated through host-bacterial interactions.
Collapse
Affiliation(s)
- Jinhee Hyun
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fla., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McClure R, Massari P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front Immunol 2014; 5:386. [PMID: 25161655 PMCID: PMC4129373 DOI: 10.3389/fimmu.2014.00386] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Microbiology, Boston University School of Medicine , Boston, MA , USA
| | - Paola Massari
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
33
|
Yesudhas D, Gosu V, Anwar MA, Choi S. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol 2014; 5:334. [PMID: 25076949 PMCID: PMC4097957 DOI: 10.3389/fimmu.2014.00334] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) signaling has been implicated in the inflammatory responses in intestinal epithelial cells (IECs). Such inflammatory signals mediate complex interactions between commensal bacteria and TLRs and are required for IEC proliferation, immune response, repair, and homeostasis. The upregulation of certain TLRs in colorectal cancer (CRC) tissues suggests that TLRs may play an essential role in the prognosis of chronic and inflammatory diseases that ultimately culminate in CRC. Here, we provide a comprehensive review of the literature on the involvement of the TLR pathway in the initiation, progression, and metastasis of CRC, as well as inherited genetic variation and epigenetic regulation. The differential expression of TLRs in epithelial cells has also been discussed. In particular, we emphasize the physiological role of TLR4 in CRC development and pathogenesis, and propose novel and promising approaches for CRC therapeutics with the aid of TLR ligands.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Vijayakumar Gosu
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| |
Collapse
|
34
|
Ingested soluble CD14 contributes to the functional pool of circulating sCD14 in mice. Immunobiology 2014; 219:537-46. [PMID: 24703105 DOI: 10.1016/j.imbio.2014.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/21/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Soluble CD14 (sCD14) is a pattern recognition receptor and Toll-like co-receptor observed in human milk (5-26μg/mL) and other bodily fluids such as blood (3μg/mL). The most well defined role of sCD14 is to recognize lipopolysaccharide of Gram-negative bacteria and signal an immune response through Toll-like receptor 4 (TLR4). Previous research has shown ingested sCD14 to transfer from the gastrointestinal tract and into the blood stream in neonatal rats. The contribution of human milk sCD14 to circulating levels in the infant and the functionality of the protein, however, remained unknown. Using CD14(-/-) mouse pups fostered to wild type (WT) mothers expressing sCD14 in their milk, we show herein that ingestion of sCD14 resulted in blood sCD14 levels up 0.16±0.09μg/mL. This represents almost one-third (26.7%) of the circulating sCD14 observed in WT pups fostered to WT mothers (0.60±0.14μg/mL). We also demonstrate that ingested-sCD14 transferred to the blood remains functional in its ability to recognize lipopolysaccharide as demonstrated by a significant increase in immune response (IL-6 and TNF-α) in CD14(-/-) pups fostered to WT mothers in comparison to control animals (P=0.002 and P=0.007, respectively). Using human intestinal cells (Caco-2), we also observed a significant decrease in sCD14 transcytosis when TLR4 was knocked down (P<0.001), suggesting sCD14 transfer involves TLR4. The bioavailability of human milk sCD14 established in this report confirms the importance of human milk proteins for the infant and demonstrates the need to improve infant formulas which are lacking in immune proteins such as sCD14.
Collapse
|
35
|
Kamba A, Lee IA, Mizoguchi E. Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL-40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer. Curr Mol Med 2014; 13:1110-21. [PMID: 23170831 DOI: 10.2174/1566524011313070006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/02/2012] [Accepted: 11/19/2012] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory disorders in the small and large intestines. Several studies have proved that persistent and disregulated host/microbial interactions are required for the development of IBD. It is well known that chronic IBD is strongly associated with an increased risk of developing colorectal cancer by 0.5-1% annually, 8-10 years after the initial diagnosis. To detect the tiny dysplasia or early stage of cancer in chronic IBD patients, a tremendous amount of effort is currently directed for improving colonoscopic technology and noninvasive serological marker development. However, there is only a limited amount of data available to understand the exact mechanism of how long term chronic colitis is connected to the development of colorectal tumors. Recently, our group has identified significantly increased expression of chitinase 3-like 1 (CHI3L1) molecule in non-dysplastic mucosa from patients with IBD and remote dysplasia/cancer, compared to patients with IBD without dysplasia or healthy controls. CHI3L1 seems to contribute to the proliferation, migration, and neoplastic progression of colonic epithelial cells (CECs) under inflammatory conditions. Furthermore, the TLR4-mediated intracellular signaling cascade is likely to interact with CHI3L1 signaling in CECs. In this review article, we have concisely summarized the cellular and molecular mechanisms underlining the development of IBD and colitis-associated cancer, with particular focus on the TLR4- and CHI3L1-signaling pathways in CECs.
Collapse
Affiliation(s)
- A Kamba
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
36
|
Ward TL, Spencer WJ, Davis LDR, Harrold J, Mack DR, Altosaar I. Ingested soluble CD14 from milk is transferred intact into the blood of newborn rats. Pediatr Res 2014; 75:252-8. [PMID: 24232637 PMCID: PMC4965269 DOI: 10.1038/pr.2013.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Milk acts as an edible immune system that is transferred from mother to newborn. Soluble Cluster of Differentiation 14 (sCD14) is a protein found in significant quantities in human milk (~8-29 µg/ml). At a 10-fold lower concentration in the blood (~3 µg/ml), the most notable role of sCD14 is to sequester lipopolysaccharides of Gram-negative bacteria from immune cells. METHODS To explore the pharmacodynamics of this milk protein and its biological fate, the biodistribution of radiolabeled sCD14 ((14)C, (125)I) was monitored in 10-d-old rat pups. RESULTS Up to 3.4 ± 2.2% of the radiolabeled sCD14 administered was observed, intact, in the pup blood for up to 8 h post-ingestion. Additionally, 30.3 ± 13.0% of the radiolabeled sCD14 administered was observed degraded in the stomach at 8 h post-ingestion. A reservoir of intact, administered sCD14 (3.2 ± 0.3%), however, remained in the stomach at 8 h post-ingestion. Intact sCD14 was observed in the small intestine at 5.5 ± 1.6% of the dose fed at 8 h post-ingestion. CONCLUSION The presence of intact sCD14 in the blood and the gastrointestinal tract of newborns post-ingestion has implications in the development of allergies, obesity, and other inflammation-related pathogeneses later in life.
Collapse
Affiliation(s)
- Tonya L. Ward
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - William J. Spencer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura D. R. Davis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - JoAnn Harrold
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada,Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - David R. Mack
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada,Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Green BB, Kerr DE. Epigenetic contribution to individual variation in response to lipopolysaccharide in bovine dermal fibroblasts. Vet Immunol Immunopathol 2013; 157:49-58. [PMID: 24268632 DOI: 10.1016/j.vetimm.2013.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022]
Abstract
The innate immune signaling pathway plays a crucial role in the recognition and early response to pathogens associated with disease. Genetic analysis has been unable to completely account for individual variability in the strength of the innate immune response. The aim of this study was to determine the role of the epigenetic markers (DNA methylation or histone acetylation) in controlling bovine gene expression in relation to the response to lipopolysaccharide (LPS). To determine the impact epigenetics may have in controlling innate immunity, dermal fibroblasts from fifteen dairy heifers having previously displayed a differential response to LPS were exposed to 5-aza-2'-deoxycytidine (AZA) and trichostatin A (TSA); de-methylating and hyper-acetylating agents, respectively. The AZA-TSA exposure resulted in a loss of variability between individuals' response to LPS as measured by fibroblast IL-8 protein production. Transcriptomic analysis by microarray was used to elucidate the role of epigenetics in innate immune signaling at 2, 4, and 8h post-LPS exposure. A subset of genes displayed altered expression due to AZA-TSA alone, suggesting an epigenetic regulatory element modifying expression under normal conditions. Treatment with AZA-TSA also led to increased expression of IL-8 (7.0-fold), IL-6 (2.5-fold), TNF-α (1.6-fold), and serum amyloid A 3 (SAA3) (11.3-fold) among other genes compared to control cultures for at least one of the measured times following LPS exposure. These data support the conclusion that epigenetic regulation significantly alters LPS-induced responses and constitutive cytokine gene expression.
Collapse
Affiliation(s)
- Benjamin B Green
- Terrill Hall, University of Vermont, 570 Main Street, Burlington 05405, United States
| | - David E Kerr
- Terrill Hall, University of Vermont, 570 Main Street, Burlington 05405, United States.
| |
Collapse
|
38
|
Abstract
Intestinal epithelial cells were once thought to be inert, non-responsive cells that simply acted as a physical barrier that prevents the contents of the intestinal lumen from accessing the underlying tissue. However, it is now clear that these cells express a full repertoire of Toll- and Nod-like receptors, and that their activation by components of the microbiota is vital for the development of a functional epithelium, maintenance of barrier integrity, and defense against pathogenic organisms. Additionally, mounting evidence suggests that epithelial sensing of bacteria plays a significant role in the management of the numbers and types of microbes present in the gut microbiota via the production of antimicrobial peptides and other microbe-modulatory products. This is a critical process, as it is now becoming apparent that alterations in the composition of the microbiota can predispose an individual to a wide variety of chronic diseases. In this review, we will discuss the bacterial pattern recognition receptors that are known to be expressed by the intestinal epithelium, and how each of them individually contributes to these vital protective functions. Moreover, we will review what is known about the communication between epithelial cells and various classes of underlying leukocytes, and discuss how they interact with the microbiota to form a three-part relationship that maintains homeostasis in the gut.
Collapse
|
39
|
Lallès JP. Long term effects of pre- and early postnatal nutrition and environment on the gut. J Anim Sci 2013; 90 Suppl 4:421-9. [PMID: 23365399 DOI: 10.2527/jas.53904] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Developmental Origins of Health and Disease hypothesis formulated in the early 1990 s has stimulated research on long-term effects of early nutrition and environment over the last decades. Long-term is understood in this review as physiologically relevant periods such as after weaning, around sexual maturity, and in adulthood, as opposed to early developmental periods. The small and large intestines as targets for the study of long-term effects have received little attention until recent years and the stomach has been considered very rarely. Data have accumulated for laboratory animal models but they are still scarce in the swine species. Following the epidemics of metabolic diseases and obesity in western countries, experimental evidence has been published showing that nutritional factors, including energy, fat and fatty acids, protein, and micronutrients impact various facets of gut function. These include alterations in intestinal digestive, absorptive, secretory, barrier, and defense systems, often in a way potentially detrimental to the host. Environmental factors with long-term influence include stress (e.g., maternal deprivation, neonatal gut irritation), chemical pollutants (e.g., bisphenol A), and gut microbiota disturbances (e.g., by antibiotics). Examples of such long-term effects on the gut are provided in both laboratory animals and pigs together with underlying physiological mechanisms whenever available. Experimental evidence for the involvement of underlying epigenetic modifications (e.g., genomic DNA methylation) in long-term studies has just started to emerge with regard to the gastrointestinal tract. Also, interactions between the microbiota and the host are being considered pivotal in the early programming of gut functions. Finally, suggestions for future research are provided in order to better understand and then control early programming as an attempt to optimize vital functions of the gastrointestinal tract throughout adult life.
Collapse
Affiliation(s)
- J P Lallès
- Institut National de la Recherche Agronomique, UR1341 ADNC, Department of Nutrition & Digestive, Nervous and Behavioral Adaptations, F-35590 Saint-Gilles, France.
| |
Collapse
|
40
|
Ismail Y, Lee H, Riordan SM, Grimm MC, Zhang L. The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS One 2013; 8:e56888. [PMID: 23437263 PMCID: PMC3577652 DOI: 10.1371/journal.pone.0056888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 01/18/2013] [Indexed: 01/02/2023] Open
Abstract
Campylobacter concisus, a Gram-negative bacterium that colonizes the human oral cavity, has been shown to be associated with inflammatory bowel diseases (IBD). The effects of different C. concisus strains on intestinal epithelial expression of Toll like receptors (TLR) have not been investigated. This study examined the effects of C. concisus strains isolated from patients with IBD and controls on expression of TLR4, its co-receptor myeloid differentiation factor (MD)-2; TLR2, TLR5, cyclooxygenase-2 (COX-2) and interleukin (IL)-8 in HT-29 cells.Fourteen oral and enteric C. concisus strains isolated from patients with IBD and healthy controls were co-incubated with HT-29 cells. Expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells in response to C. concisus infection was examined by Western blot, flow cytometry analysis and immunofluorescent staining visualized by confocal microscope. Production of IL-8 was evaluated by enzyme-linked immunosorbent assay.Both oral and enteric C. concisus strains upregulated expression of TLR4 in HT-29 cells. The levels of glycosylated TLR4 (Gly-TLR4) and surface TLR4 induced by C. concisus strains isolated from patients with IBD were significantly higher than those induced by C. concisus strains isolated from the healthy controls. Four C. concisus strains isolated from patients with IBD induced more than two-fold increase of surface expression of MD-2. C. concisus did not affect expression of TLR2 and TLR5. All C. concisus strains induced production of IL-8 and COX-2 in HT-29 cells.This study shows that some C. concisus strains, most from patients with IBD, upregulate surface expression of TLR4 and MD-2 in HT-29 cells. These data suggest that a potential role of specific C. concisus strains in modulating the intestinal epithelial responses to bacterial LPS needs to be investigated.
Collapse
Affiliation(s)
- Yazan Ismail
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| | - Hoyul Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Sydney, New South Whales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Whales, Australia
| | - Michael C. Grimm
- St George Clinical School, University of New South Wales, Sydney, New South Whales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| |
Collapse
|
41
|
Ehsan N, Murad S, Ashiq T, Mansoor MU, Gul S, Khalid S, Younas M. Significant correlation of TLR4 expression with the clinicopathological features of invasive ductal carcinoma of the breast. Tumour Biol 2013; 34:1053-9. [PMID: 23338716 DOI: 10.1007/s13277-013-0645-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/02/2013] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 4 belongs to the family of pattern recognition receptors and is therefore an important part of innate immunity. Since the last decade, Toll-like receptors (TLRs) have gained much interest in cancer research due to their role in tumor progression. However, there is scarcity of data evaluating TLR4 expression in different cell populations of tumor in relation to clinicopathological parameters of invasive ductal carcinoma of the breast. Therefore, we investigated TLR4 expression in 50 primary invasive ductal carcinoma and 17 lymph node sections through immunohistochemistry. Significant association of TLR4 expression with local metastasis and absence of necrosis was observed. The incidence of lymph node metastasis was higher in patients with high TLR4 expression in the tumor cells. We also observed an interesting inverse relationship of TLR4 with necrosis. In endothelial and lymphocytic population constituting breast tumors, a significant association of TLR4 expression was seen with the tumor grade. Therefore, we conclude that TLR4 expression is of biological interest both as a prognostic marker as well as a possible therapeutic target.
Collapse
Affiliation(s)
- Naureen Ehsan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, H-12 Campus, Hucknall Road, Islamabad, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Deuring JJ, de Haar C, Kuipers EJ, Peppelenbosch MP, van der Woude CJ. The cell biology of the intestinal epithelium and its relation to inflammatory bowel disease. Int J Biochem Cell Biol 2013; 45:798-806. [PMID: 23291352 DOI: 10.1016/j.biocel.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 12/14/2022]
Abstract
The epithelial layer of our intestines must meet two opposing requirements. On one hand it must allow for efficient uptake of nutrients and fluids, on the other hand it is a vital defence barrier between the milieu interior and the milieu exterior. In contrast to the lung that by virtue of cilia movement is kept virtually sterile, the gut epithelium is confronted by a stupendous microbiological load and a substantial xenobiotic challenge. The efficiency by which our intestinal epithelium manages to deal with the challenge of efficient nutrient absorption while simultaneously fulfilling its barrier function is testimony to what the forces of evolution can accomplish. Importantly, our understanding as to how our gut epithelial compartment manages this balancing act is now rapidly emerging, answering one of the oldest questions in cell biology. Importantly, when aberrations in this balance occur, for instance as a consequence genetic polymorphisms, increased propensity to develop chronic inflammation and inflammatory bowel disease is the result. Thus the knowledge on intestinal cell biology and biochemistry is not only of academic interest but may also aid design of novel avenues for the rational treatment of mucosal disease.
Collapse
Affiliation(s)
- J Jasper Deuring
- Erasmus MC - University Medical Centre Rotterdam, Department Gastroenterology and Hepatology, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Maeda S, Ohno K, Uchida K, Nakashima K, Fukushima K, Tsukamoto A, Nakajima M, Fujino Y, Tsujimoto H. Decreased immunoglobulin A concentrations in feces, duodenum, and peripheral blood mononuclear cells of dogs with inflammatory bowel disease. J Vet Intern Med 2012; 27:47-55. [PMID: 23216572 DOI: 10.1111/jvim.12023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/20/2012] [Accepted: 10/24/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although immunoglobulin A (IgA) plays a key role in regulating gut homeostasis, its role in canine inflammatory bowel disease (IBD) is unknown. HYPOTHESIS IgA expression may be altered in dogs with IBD, unlike that observed in healthy dogs and dogs with other gastrointestinal diseases. ANIMALS Thirty-seven dogs with IBD, 10 dogs with intestinal lymphoma, and 20 healthy dogs. METHODS Prospective study. IgA and IgG concentrations in serum, feces, and duodenal samples were measured by ELISA. IgA(+) cells in duodenal lamina propria and IgA(+) CD21(+) peripheral blood mononuclear cells (PBMCs) were examined by immunohistochemistry and flow cytometry, respectively. Duodenal expression of the IgA-inducing cytokine transforming growth factor β (TGF-β), B cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL) was quantified by real-time RT-PCR. RESULTS Compared to healthy dogs, dogs with IBD had significantly decreased concentrations of IgA in fecal and duodenal samples. The number of IgA(+) CD21(+) PBMCs and IgA(+) cells in duodenal lamina propria was significantly lower in dogs with IBD than in healthy dogs or dogs with intestinal lymphoma. Duodenal BAFF and APRIL mRNA expression was significantly higher in IBD dogs than in the healthy controls. Duodenal TGF-β mRNA expression was significantly lower in dogs with IBD than in healthy dogs and dogs with intestinal lymphoma. CONCLUSIONS AND CLINICAL IMPORTANCE IBD dogs have decreased IgA concentrations in feces and duodenum and fewer IgA(+) PBMCs, which might contribute to development of chronic enteritis in dogs with IBD.
Collapse
Affiliation(s)
- S Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Ulcerative colitis is an idiopathic, chronic inflammatory disorder of the colonic mucosa, which starts in the rectum and generally extends proximally in a continuous manner through part of, or the entire, colon; however, some patients with proctitis or left-sided colitis might have a caecal patch of inflammation. Bloody diarrhoea is the characteristic symptom of the disease. The clinical course is unpredictable, marked by alternating periods of exacerbation and remission. In this Seminar we discuss the epidemiology, pathophysiology, diagnostic approach, natural history, medical and surgical management, and main disease-related complications of ulcerative colitis, and briefly outline novel treatment options. Enhanced understanding of how the interaction between environmental factors, genetics, and the immune system results in mucosal inflammation has increased knowledge of disease pathophysiology. We provide practical therapeutic algorithms that are easily applicable in daily clinical practice, emphasising present controversies in treatment management and novel therapies.
Collapse
Affiliation(s)
- Ingrid Ordás
- Division of Gastroenterology, University of California, San Diego, CA 92093-0956, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To briefly summarize some of the principles of epigenetics and assess their potential relevance for the disease pathogenesis of inflammatory bowel diseases (IBDs). To review the results of recent IBD-related epigenetic studies, discuss main challenges as well as highlight the opportunities for future research in this field. RECENT FINDINGS Evidence is accumulating for a major role of epigenetic mechanisms in the disease pathogenesis of several immune-mediated diseases. Recent findings indicate that epigenetics may mediate some of the effects of environment, genetic predisposition and intestinal microbiota on IBD pathogenesis. SUMMARY Epigenetics is a rapidly expanding and hugely promising area of research. At best, it may provide a unifying molecular mechanism to explain complex immune-mediated diseases such as IBD. Future research studies must be carefully designed, performed and analysed taking into account the basic principles of epigenetics in order to ensure the true potential of this field is realized in the understanding of IBD.
Collapse
|
46
|
Fossum C, Hjertner B, Olofsson KM, Lindberg R, Ahooghalandari P, Camargo MM, Bröjer J, Edner A, Nostell K. Expression of tlr4, md2 and cd14 in equine blood leukocytes during endotoxin infusion and in intestinal tissues from healthy horses. Vet Immunol Immunopathol 2012; 150:141-8. [PMID: 23036528 DOI: 10.1016/j.vetimm.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022]
Abstract
The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hand remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material.
Collapse
Affiliation(s)
- C Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, SE-751 23 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ghadimi D, Helwig U, Schrezenmeir J, Heller KJ, de Vrese M. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol 2012; 92:895-911. [PMID: 22730546 DOI: 10.1189/jlb.0611286] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of IBD is characterized by a complex interaction between genes and the environment. Genetic and environmental differences are attributed to the heterogeneity of the disease pathway and to the epigenetic modifications that lead to altered gene expression in the diseased tissues. The epigenetic machinery consists of short interfering RNA, histone modifications, and DNA methylation. We evaluated the effects of Bifidobacterium breve (DSMZ 20213) and LGG (ATCC 53103), as representatives of commensal probiotics on the expression of IL-17 and IL-23, which play an important role in IBD, and on the epigenetic machinery in a 3D coculture model composed of human intestinal HT-29/B6 or T84 cells and PBMCs. The cells were treated with LPS in the presence or absence of bacteria for 48 h, and the expression of IL-17, IL-23, and CD40 at the mRNA and protein levels was assessed using TaqMan qRT-PCR and ELISA, respectively. Western blotting was used to assess the expression of the MyD88, the degradation of IRAK-1 and IκBα, the expression of the NF-κB p50/p65 subunits, the p-p38 MAPK and p-MEK1, as well as histone modifications. NF-κB activity was assessed by NF-κB-dependent luciferase reporter gene assays. The accumulation of Ac-H4 and DNA methylation was quantitatively assessed using colorimetric assays. B. breve and LGG diminished the LPS-induced expression of IL-17, IL-23, CD40, and histone acetylation, while slightly enhancing DNA methylation. These effects were paralleled by a decrease in the nuclear translocation of NF-κB, as demonstrated by a decrease in the expression of MyD88, degradation of IRAK-1 and IκBα expression of the nuclear NF-κB p50/p65 subunits, p-p38 MAPK and p-MEK1, and NF-κB-dependent luciferase reporter gene activity in LPS-stimulated cells. B. breve and LGG may exert their anti-inflammatory effects in the gut by down-regulating the expression of the IBD-causing factors (IL-23/IL-17/CD40) associated with epigenetic processes involving the inhibition of histone acetylation and the optimal enhancement of DNA methylation, reflected in the limited access of NF-κB to gene promoters and reduced NF-κB-mediated transcriptional activation. We describe a new regulatory mechanism in which commensal probiotics inhibit the NF-κB-mediated transcriptional activation of IBD-causing factors (IL-23/IL-17/CD40), thereby simultaneously reducing histone acetylation and enhancing DNA methylation.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Kiel, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Anti-microbial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease.
Collapse
Affiliation(s)
- Melissa A Kinnebrew
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
49
|
Colonic epithelial response to injury requires Myd88 signaling in myeloid cells. Mucosal Immunol 2012; 5:194-206. [PMID: 22258450 PMCID: PMC3791628 DOI: 10.1038/mi.2011.65] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proper colonic injury response requires myeloid-derived cells and Toll-like receptor/Myd88 signaling. However, the precise role of Myd88 signaling specifically in myeloid-derived cells that occurs during tissue damage is unclear. Therefore, we created a mouse line with Myd88 expression restricted to myeloid lineages (Myd88(-/-); LysM(Cre/+); ROSA26(Myd88/+); herein Mlcr). In these mice, Myd88 was appropriately expressed and mediated responses to bacterial ligand exposure in targeted cells. Importantly, the severe colonic epithelial phenotype observed in dextran sodium sulfate-injured Myd88(-/-) mice was rescued by the genetic modification of Mlcr mice. During injury, myeloid cell activation and enrichment of Ptsg2-expressing stromal cells occurred within the mesenchyme that surrounded the crypt bases of Mlcr and Myd88(+/-) mice but not Myd88(-/-) mice. Interestingly, these cellular changes to the crypt base mesenchyme also occurred, but to a lesser extent in uninjured Mlcr mice. These results show that Myd88 expression in myeloid cells was sufficient to rescue intestinal injury responses, and surprisingly, these cells appear to require an additional Myd88-dependent signal from a non-myeloid cell type during homeostasis.
Collapse
|
50
|
Exogenous MD-2 confers lipopolysaccharide responsiveness to human corneal epithelial cells with intracellular expression of TLR4 and CD14. Inflammation 2012; 34:371-8. [PMID: 20700758 DOI: 10.1007/s10753-010-9244-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the present study, we aimed to investigate the responsiveness of human corneal epithelial cells (HCECs) to lipopolysaccharide (LPS) in vitro and to elucidate the underlying molecular mechanism(s) controlling the LPS responsiveness. The expression and subcellular localization of toll-like receptor 4 (TLR4) and CD14 and the expression of myeloid differentiation (MD)-2 were studied in SDHCEC1 cells, one HCEC cell line. Upon exposure to different concentrations of LPS, cell responses were evaluated by examining nuclear factor-kappaB (NF-κB) activation and the production of interleukin (IL)-8. The influence of soluble MD-2 on LPS responsiveness were assessed in SDHCEC1 cells pretreated with MD-2-containing conditioned medium before LPS challenge. SDHCEC1 cells expressed both TLR4 and CD14 intracellularly and had no detectable expression of MD-2 transcripts. Unresponsiveness to LPS at doses of up to 1,000 ng/ml was observed in SDHCEC1 cells, which was evidenced by no evident NF-κB activation and IL-8 production. The addition of MD-2 conditioned medium significantly induced NF-κB activation and enhanced the production of IL-8 as compared with the treatment with the control medium (p < 0.05). Meanwhile, the total mRNA amounts of TLR4 and CD14 and the surface expression of the two proteins were significantly (p < 0.05) increased by the pretreatment with MD-2 conditioned medium. LPS hyporesponsiveness of HCECs is largely due to deficient LPS receptor complex formation caused by lack of MD-2 expression. Exogenous MD-2 is capable of restoring the LPS responsiveness, at least partially, through promoting the surface expression of TLR4 and CD14.
Collapse
|