1
|
Sylvester PA, Corbett JA, Tarakanova VL. T cell-extrinsic IL-1 signaling controls long-term gammaherpesvirus infection by suppressing viral reactivation. Virology 2022; 576:134-140. [PMID: 36244319 PMCID: PMC10069094 DOI: 10.1016/j.virol.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Gammaherpesviruses establish life-long infection in over 95% of adults and are associated with several cancers, including B cell lymphomas. Using the murine gammaherpesvirus 68 (MHV68) animal model, we previously showed a pro-viral role of Interleukin-1 (IL-1) signaling that supported viral reactivation during the establishment of chronic infection. Unexpectedly, in this study we found that the proviral effects of IL-1 signaling originally observed during the establishment of chronic gammaherpesvirus infection convert to antiviral effects during the long-term stage of infection. Specifically, IL-1 signaling promoted expansion of antiviral CD8+ T cells and control of viral reactivation in the peritoneal cavity of a long-term infected host. Using a novel mouse model of T cell-specific IL-1 signaling deficiency, we found that the antiviral effects of IL-1 signaling were T cell extrinsic. Our study highlights a dynamic nature of host factors that shape the parameters of chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- P A Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - J A Corbett
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - V L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Zipris D. Visceral Adipose Tissue: A New Target Organ in Virus-Induced Type 1 Diabetes. Front Immunol 2021; 12:702506. [PMID: 34421908 PMCID: PMC8371384 DOI: 10.3389/fimmu.2021.702506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing β-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering β-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop β-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering β-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.
Collapse
Affiliation(s)
- Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, United States
| |
Collapse
|
3
|
He X, Li W, Xie Y, Zhao Y. Long-term inhibition of dipeptidyl-peptidase 4 reduces islet infiltration and downregulates IL-1β and IL-12 in NOD mice. Int Immunopharmacol 2020; 88:106945. [PMID: 33182020 PMCID: PMC7510641 DOI: 10.1016/j.intimp.2020.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
DPP-4 inhibition reduced CD4+T cells infiltration and ameliorated insulitis. DPP-4 inhibition downregulated serum IL-1β and IL-12. LPS increased CD11b+ cells to infiltrate into islets.
Dipeptidyl-peptidase 4 (DPP-4) inhibitor (sitagliptin) is a novel anti-hyperglycemia drug in the treatment of type 2 diabetes. However, its potential in type 1 diabetes is still unclear. Recent studies show that increased infection, especially respiratory tract infection, is significantly associated with DPP-4 inhibitors. In this study, we aimed to explore the effects of long-term inhibition of DPP- 4 on innate immunity in type 1 diabetes. Forty mice were randomly divided into 4 groups (n = 10 in each group): control group, lipopolysaccharide (LPS) group, sitagliptin group and sitagliptin + LPS group. The concentrations of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α and IFN-γ were measured with Mesco Scale Discovery multiplexed-assay kit. Immunohistochemistry staining of pancreases was performed and insulitis scores for each islet were determined. The results showed that DPP-4 inhibition has no effect on incident rate of diabetes and metabolic parameters in NOD mice. Long-term inhibition of DPP-4 reduced CD4+T cells to infiltrate into islets and ameliorated insulitis in NOD mice. DPP-4 inhibition downregulated serum interleukin IL-1β and IL-12 in NOD mice. However, it had no significant effect on LPS-induced IL-1β, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in NOD mice. In conclusion, Long-term inhibition of DPP-4 exists anti-inflammatory effect in type 1 diabetes probably by reducing CD4+T cells to infiltrate into islets and downregulating L-1β and IL-12 in serum.
Collapse
Affiliation(s)
- Xinran He
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Yunliang Xie
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China.
| |
Collapse
|
4
|
Needell JC, Brown MN, Zipris D. Involvement of adipose tissue inflammation and dysfunction in virus-induced type 1 diabetes. J Endocrinol 2018; 238:61-75. [PMID: 29743341 DOI: 10.1530/joe-18-0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The etiopathogenesis of type 1 diabetes (T1D) remains poorly understood. We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced T1D to better understand the role of the innate immune system in the mechanism of virus-induced disease. We observed that infection with KRV results in cell influx into visceral adipose tissue soon following infection prior to insulitis and hyperglycemia. In sharp contrast, subcutaneous adipose tissue is free of cellular infiltration, whereas β cell inflammation and diabetes are observed beginning on day 14 post infection. Immunofluorescence studies further demonstrate that KRV triggers CD68+ macrophage recruitment and the expression of KRV transcripts and proinflammatory cytokines and chemokines in visceral adipose tissue. Adipocytes from naive rats cultured in the presence of KRV express virus transcripts and upregulate cytokine and chemokine gene expression. KRV induces apoptosis in visceral adipose tissue in vivo, which is reflected by positive TUNEL staining and the expression of cleaved caspase-3. Moreover, KRV leads to an oxidative stress response and downregulates the expression of adipokines and genes associated with mediating insulin signaling. Activation of innate immunity with Poly I:C in the absence of KRV leads to CD68+ macrophage recruitment to visceral adipose tissue and a decrease in adipokine expression detected 5 days following Poly (I:C) treatment. Finally, proof-of-principle studies show that brief anti-inflammatory steroid therapy suppresses visceral adipose tissue inflammation and protects from virus-induced disease. Our studies provide evidence raising the hypothesis that visceral adipose tissue inflammation and dysfunction may be involved in early mechanisms triggering β cell autoimmunity.
Collapse
Affiliation(s)
- James C Needell
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado Denver, Aurora, Colorado, USA
| | - Madalyn N Brown
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado Denver, Aurora, Colorado, USA
| | - Danny Zipris
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
5
|
Arts RJW, Joosten LAB, Netea MG. The Potential Role of Trained Immunity in Autoimmune and Autoinflammatory Disorders. Front Immunol 2018. [PMID: 29515591 PMCID: PMC5826224 DOI: 10.3389/fimmu.2018.00298] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During induction of trained immunity, monocytes and macrophages undergo a functional and transcriptional reprogramming toward increased activation. Important rewiring of cellular metabolism of the myeloid cells takes place during induction of trained immunity, including a shift toward glycolysis induced through the mTOR pathway, as well as glutaminolysis and cholesterol synthesis. Subsequently, this leads to modulation of the function of epigenetic enzymes, resulting in important changes in chromatin architecture that enables increased gene transcription. However, in addition to the beneficial effects of trained immunity as a host defense mechanism, we hypothesize that trained immunity also plays a deleterious role in the induction and/or maintenance of autoimmune and autoinflammatory diseases if inappropriately activated.
Collapse
Affiliation(s)
- Rob J W Arts
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Activated Mast Cells Mediate Low-Grade Inflammation in Type 2 Diabetes: Interleukin-37 Could Be Beneficial. Can J Diabetes 2018; 42:568-573. [PMID: 29885882 DOI: 10.1016/j.jcjd.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) promote guest immune responses to parasites and play a critical role in allergic and inflammatory reactions. Once they have been activated, MCs release highly inflammatory compounds that can provoke serious pathologic signs that can lead to death. MCs generate a number of preformed, de novo synthesized compounds and inflammatory cytokine/chemokine synthesis in response to the high-affinity (Kd=10-10 M) immunoglobulin E receptor triggering. Circulating MC progenitors migrate into arterial intima and develop lesions, mediating inflammation. They are involved in several disorders, including metabolic diseases, such as type 2 diabetes mellitus, in which endothelial cells release several inflammatory compounds during acute and chronic vascular damage. Certain inflammatory cytokines, such as interleukin (IL)-1 and IL-33, not only are produced by MCs but also may activate them. These effects mediate systemic inflammatory responses in metabolic disorders. Proinflammatory cytokines, such as tumor necrosis factor, IL-33 and IL-6, secreted by MCs and other immune cells, contribute to insulin resistance by activating kinases. IL-37 (IL-1 family member 7), one of the latest cytokines discovered, binds the IL-18 receptor alpha (IL-18Rα) chain and suppresses innate and acquired immunity, with a therapeutic effect. It also inhibits cytokine levels, including IL-6, IL-18, IL-33, tumor necrosis factor and IL-1, and may improve insulin production and, therefore, the pathogenesis of diabetes, stroke and cardiovascular health. This describes a new concept of inhibition of and cure for inflammatory diseases. However, the safety, dosage and tolerability of this novel therapeutic agent, IL-37, still remains to be determined.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Despite immense research efforts, type 1 diabetes (T1D) remains an autoimmune disease without a known trigger or approved intervention. Over the last three decades, studies have primarily focused on delineating the role of the adaptive immune system in the mechanism of T1D. The discovery of Toll-like receptors in the 1990s has advanced the knowledge on the role of the innate immune system in host defense as well as mechanisms that regulate adaptive immunity including the function of autoreactive T cells. RECENT FINDINGS Recent investigations suggest that inflammation plays a key role in promoting a large number of autoimmune disorders including T1D. Data from the LEW1.WR1 rat model of virus-induced disease and the RIP-B7.1 mouse model of diabetes suggest that innate immune signaling plays a key role in triggering disease progression. There is also evidence that innate immunity may be involved in the course of T1D in humans; however, a small number of clinical trials have shown that interfering with the function of the innate immune system following disease onset exerts only a modest effect on β-cell function. The data implying that innate immune pathways are linked with mechanisms of islet autoimmunity hold great promise for the identification of novel disease pathways that may be harnessed for clinical intervention. Nevertheless, more work needs to be done to better understand mechanisms by which innate immunity triggers β-cell destruction and assess the therapeutic value in blocking innate immunity for diabetes prevention.
Collapse
Affiliation(s)
- James C Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, 80231, USA.
| |
Collapse
|
8
|
Needell JC, Ir D, Robertson CE, Kroehl ME, Frank DN, Zipris D. Maternal treatment with short-chain fatty acids modulates the intestinal microbiota and immunity and ameliorates type 1 diabetes in the offspring. PLoS One 2017; 12:e0183786. [PMID: 28886045 PMCID: PMC5590848 DOI: 10.1371/journal.pone.0183786] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/13/2017] [Indexed: 02/06/2023] Open
Abstract
We recently hypothesized that the intestinal microbiota and the innate immune system play key roles in the mechanism of Kilham Rat Virus-induced type 1 diabetes in the LEW1.WR1 rat. We used this animal model to test the hypothesis that maternal therapy with short-chain fatty acids can modulate the intestinal microbiota and reverse virus-induced proinflammatory responses and type 1 diabetes in rat offspring. We observed that administration of short-chain fatty acids to rat breeders via drinking water prior to pregnancy and further treatment of the offspring with short-chain fatty acids after weaning led to disease amelioration. In contrast, rats that were administered short-chain fatty acids beginning at weaning were not protected from type 1 diabetes. Short-chain fatty acid therapy exerted a profound effect on the intestinal microbiome in the offspring reflected by a reduction and an increase in the abundances of Firmicutes and Bacteroidetes taxa, respectively, on day 5 post-infection, and reversed virus-induced alterations in certain bacterial taxa. Principal component analysis and permutation multivariate analysis of variance tests further revealed that short-chain fatty acids induce a distinct intestinal microbiota compared with uninfected animals or rats that receive the virus only. Short-chain fatty acids downregulated Kilham Rat Virus-induced proinflammatory responses in the intestine. Finally, short-chain fatty acids altered the B and T cell compartments in Peyer’s patches. These data demonstrate that short-chain fatty acids can reshape the intestinal microbiota and prevent virus-induced islet autoimmunity and may therefore represent a useful therapeutic strategy for disease prevention.
Collapse
Affiliation(s)
- James C. Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- University of Colorado Microbiome Research Consortium (MiRC), Aurora, Colorado, United States of America
| | - Miranda E. Kroehl
- Department of Biostatistics and Informatics, Colorado School of Public Health and University of Colorado Denver, Aurora, Colorado, United States of America
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- University of Colorado Microbiome Research Consortium (MiRC), Aurora, Colorado, United States of America
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Needell JC, Dinarello CA, Ir D, Robertson CE, Ryan SM, Kroehl ME, Frank DN, Zipris D. Implication of the intestinal microbiome as a potential surrogate marker of immune responsiveness to experimental therapies in autoimmune diabetes. PLoS One 2017; 12:e0173968. [PMID: 28301545 PMCID: PMC5354421 DOI: 10.1371/journal.pone.0173968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/01/2017] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune proinflammatory disease with no effective intervention. A major obstacle in developing new immunotherapies for T1D is the lack of means for monitoring immune responsiveness to experimental therapies. The LEW1.WR1 rat develops autoimmunity following infection with the parvovirus Kilham rat virus (KRV) via mechanisms linked with activation of proinflammatory pathways and alterations in the gut bacterial composition. We used this animal to test the hypothesis that intervention with agents that block innate immunity and diabetes is associated with a shift in the gut microbiota. We observed that infection with KRV results in the induction of proinflammatory gene activation in both the spleen and pancreatic lymph nodes. Furthermore, administering animals the histone deacetylase inhibitor ITF-2357 and IL-1 receptor antagonist (Anakinra) induced differential STAT-1 and the p40 unit of IL-12/IL-23 gene expression. Sequencing of bacterial 16S rRNA genes demonstrated that both ITF-2357 and Anakinra alter microbial diversity. ITF-2357 and Anakinra modulated the abundance of 23 and 8 bacterial taxa in KRV-infected animals, respectively, of which 5 overlapped between the two agents. Lastly, principal component analysis implied that ITF-2357 and Anakinra induce distinct gut microbiomes compared with those from untreated animals or rats provided KRV only. Together, the data suggest that ITF-2357 and Anakinra differentially influence the innate immune system and the intestinal microbiota and highlight the potential use of the gut microbiome as a surrogate means of assessing anti-inflammatory immune effects in type 1 diabetes.
Collapse
Affiliation(s)
- James C. Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Charles A. Dinarello
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- University of Colorado Microbiome Research Consortium (MiRC), Aurora, Colorado, United States of America
| | - Sarah M. Ryan
- Department of Biostatistics and Informatics, Colorado School of Public Health and University of Colorado Denver, Aurora, Colorado, United States of America
| | - Miranda E. Kroehl
- Department of Biostatistics and Informatics, Colorado School of Public Health and University of Colorado Denver, Aurora, Colorado, United States of America
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- University of Colorado Microbiome Research Consortium (MiRC), Aurora, Colorado, United States of America
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
10
|
Qaisar N, Lin S, Ryan G, Yang C, Oikemus SR, Brodsky MH, Bortell R, Mordes JP, Wang JP. A Critical Role for the Type I Interferon Receptor in Virus-Induced Autoimmune Diabetes in Rats. Diabetes 2017; 66:145-157. [PMID: 27999109 PMCID: PMC5204313 DOI: 10.2337/db16-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human type 1 diabetes, characterized by immune-mediated damage of insulin-producing β-cells of pancreatic islets, may involve viral infection. Essential components of the innate immune antiviral response, including type I interferon (IFN) and IFN receptor-mediated signaling pathways, are candidates for determining susceptibility to human type 1 diabetes. Numerous aspects of human type 1 diabetes pathogenesis are recapitulated in the LEW.1WR1 rat model. Diabetes can be induced in LEW.1WR1 weanling rats challenged with virus or with the viral mimetic polyinosinic:polycytidylic acid (poly I:C). We hypothesized that disrupting the cognate type I IFN receptor (type I IFN α/β receptor [IFNAR]) to interrupt IFN signaling would prevent or delay the development of virus-induced diabetes. We generated IFNAR1 subunit-deficient LEW.1WR1 rats using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) genome editing and confirmed functional disruption of the Ifnar1 gene. IFNAR1 deficiency significantly delayed the onset and frequency of diabetes and greatly reduced the intensity of insulitis after poly I:C treatment. The occurrence of Kilham rat virus-induced diabetes was also diminished in IFNAR1-deficient animals. These findings firmly establish that alterations in innate immunity influence the course of autoimmune diabetes and support the use of targeted strategies to limit or prevent the development of type 1 diabetes.
Collapse
Affiliation(s)
- Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Suvana Lin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Glennice Ryan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Chaoxing Yang
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Sarah R Oikemus
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Michael H Brodsky
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Rita Bortell
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
11
|
Abstract
The gastrointestinal system represents one of the largest interfaces between the human internal microenvironment and the external world. This system harbors trillions of commensal bacteria that reside in symbiosis with the host. Intestinal bacteria play a crucial role in maintaining systemic and intestinal immune and metabolic homeostasis because of their effect on nutrient absorption and immune development and function. Recently, altered gut bacterial composition (dysbiosis) was hypothesized to be involved in mechanisms through which islet autoimmunity is triggered. Evidence from animal models indicates that alterations in the gut bacterial composition precede disease onset, thus implicating a causal role for the gut microbiome in islet destruction. However, it remains unclear whether dysbiosis is directly linked to the mechanisms of human type 1 diabetes (T1D). In this review, we discuss data implicating the gut microbiota in disease progression with an emphasis on our recent studies performed in humans and in rodent models of T1D.
Collapse
Affiliation(s)
- James C Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO, 80045, USA
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, Mandrup-Poulsen T, Hessner MJ. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 2016; 46:1030-46. [PMID: 26692253 PMCID: PMC4828314 DOI: 10.1002/eji.201546005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/10/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023]
Abstract
It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xujing Wang
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carla J. Greenbaum
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Cabrera SM, Henschel AM, Hessner MJ. Innate inflammation in type 1 diabetes. Transl Res 2016; 167:214-27. [PMID: 25980926 PMCID: PMC4626442 DOI: 10.1016/j.trsl.2015.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyperpermeability, or viral exposures. Special focus is put on the temporal measurement of plasma-induced transcriptional signatures of recent-onset T1D patients and their siblings as well as in the biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Abstract
The innate immune system includes several classes of pattern recognition receptors (PRRs), including membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the extracellular and intracellular space. Intracellular NLRs constitute inflammasomes, which activate and release caspase-1, IL-1β, and IL-18 thereby initiating an inflammatory response. Systemic and local low-grade inflammation and release of proinflammatory cytokines are implicated in the development and progression of diabetes mellitus and diabetic nephropathy. TLR2, TLR4, and the NLRP3 inflammasome can induce the production of various proinflammatory cytokines and are critically involved in inflammatory responses in pancreatic islets, and in adipose, liver and kidney tissues. This Review describes how innate immune system-driven inflammatory processes can lead to apoptosis, tissue fibrosis, and organ dysfunction resulting in insulin resistance, impaired insulin secretion, and renal failure. We propose that careful targeting of TLR2, TLR4, and NLRP3 signalling pathways could be beneficial for the treatment of diabetes mellitus and diabetic nephropathy.
Collapse
|
15
|
Gottlieb PA, Alkanani AK, Michels AW, Lewis EC, Shapiro L, Dinarello CA, Zipris D. α1-Antitrypsin therapy downregulates toll-like receptor-induced IL-1β responses in monocytes and myeloid dendritic cells and may improve islet function in recently diagnosed patients with type 1 diabetes. J Clin Endocrinol Metab 2014; 99:E1418-26. [PMID: 24527714 PMCID: PMC4121034 DOI: 10.1210/jc.2013-3864] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Recent studies have implicated proinflammatory responses in the mechanism of type 1 diabetes (T1D). OBJECTIVE Our objective was to evaluate the safety and effects of therapy with the anti-inflammatory serum protein α1-antitrypsin (AAT) on islet function and innate immunity in recent-onset patients. DESIGN AND SETTING This was an open-label phase I trial at the Barbara Davis Center for Childhood Diabetes, University of Colorado Denver. PATIENTS Twelve recently diagnosed subjects with T1D with detectable C-peptides were included in the study. INTERVENTION Eight consecutive weekly infusions of 80 mg/kg of AAT were given. MAIN OUTCOME MEASURES PATIENTS were monitored for adverse effects of AAT therapy, C-peptide responses to a mixed-meal tolerance test, and toll-like receptor (TLR)-induced cellular IL-1β in monocytes and myeloid dendritic cells (mDCs). RESULTS No adverse effects were detected. AAT led to increased, unchanged, or moderately reduced levels of C-peptide responses compared with baseline in 5 patients. The total content of TLR4-induced cellular IL-1β in monocytes at 12 months after AAT therapy was 3-fold reduced compared with baseline (P < .05). Furthermore, at baseline, 82% of monocytes produced IL-1β, but at 12 months after therapy, the level decreased to 42%. Similar reductions were observed using TLR7/8 and TLR3 agonists in monocytes and mDCs. Unexpectedly, the reduction in cellular IL-1β was observed only 9 and 12 months after treatment but not in untreated diabetics. Improved β-cell function in the 5 AAT-treated individuals correlated with lower frequencies of monocytes and mDCs producing IL-1β compared with subjects without improvement of islet function (P < .04 and P < .02, respectively). CONCLUSIONS We hypothesize that AAT may have a beneficial effect on T1D in recently diagnosed patients that is associated with downmodulation of IL-1β.
Collapse
Affiliation(s)
- Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes (P.A.G., A.K.A., A.W.M., D.Z.) and Division of Infectious Diseases (C.A.D.), University of Colorado Denver, Aurora, Colorado 80045; Department of Clinical Biochemistry and Pharmacology (E.C.L.), Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; and Department of Medicine (L.S.), Division of Infectious Diseases, Veterans Affairs Medical Center and University of Colorado Denver, Denver, Colorado 80202
| | | | | | | | | | | | | |
Collapse
|