1
|
Yadav S, Prasannan A, Venkatachalam K, Binesh A. Exploring the mechanism and crosstalk between IL-6 and IL- 1β on M2 macrophages under metabolic stress conditions. Cytokine 2025; 186:156852. [PMID: 39765025 DOI: 10.1016/j.cyto.2024.156852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells. This is evident in obesity, diabetes, and chronic inflammation. Although many cytokines regulate macrophage polarization, interleukin-6 (IL-6) and interleukin-1β (IL-1β) are major players, but their effects on M2 macrophage behavior under metabolic stress remain unclear. This study describes the intricacies within M2 macrophages concerning IL-6 and IL-1β signaling when under metabolic stress. Though, more frequently than not, IL-6 is labelled as pro-inflammatory, it can also behave as an anti-inflammatory mediator. On the other hand, IL-1β is the main pro-inflammatory agent, particularly in metabolic disorders. The relationship between these cytokines and the macrophages is mediated through important pathways such as JAK/STAT and NFκB, which get perturbed by metabolic stress. Therefore, metabolic stress also alters the functional parameters of macrophages, including alterations in mitochondrial metabolism, glycolytic and oxidative metabolism. Phosphorylation alters the kinetics involved in energy consumption and affects their polarization and their function. However, it has been suggested that IL-6 and IL-1β may work in concert or competition when inducing M2 polarization and, importantly, implicate cytokine release, phagocytic activity, and tissue repair processes. In this review, we discuss the recent literature on the participation of IL-6 and IL-1β cytokines in macrophage polarization and how metabolic stress changes cytokine functions and synergistic relations. A better understanding of these cytokines would serve as an important step toward exploring alternative antiviral strategies directed against metabolic disturbance and, hence, approve further endeavors.
Collapse
Affiliation(s)
- Shawna Yadav
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Zeng X, Wu T, Xu Q, Li L, Yuan Y, Zhu M, Liu W, Fu F, Wu Z, Yao H, Liao G, Lu Y, Cheng J, Liu J, Shi Y, Chen Y. Inhibition of IRE-1α Alleviates Pyroptosis and Metabolic Dysfunction-Associated Steatohepatitis by Suppressing Gasdermin D. Liver Int 2025; 45:e16234. [PMID: 39777841 DOI: 10.1111/liv.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for cirrhosis and hepatocellular carcinoma, for which there is currently no effective treatment. This study aimed to investigate the regulatory mechanism between endoplasmic reticulum stress (ER stress) and pyroptosis in the liver under the context of MASH. METHODS AND RESULTS Pyroptosis was examined in both in vivo and in vitro ER stress models. The expression levels of nucleotide-binding oligomerisation domain-like receptor protein 3 (NLRP3), gasdermin D (GSDMD), caspase-1, IL-1β, and IL-18 tended to increase, and "ASC specks" colocalised with the swollen ER in living cells. However, in the pyroptotic model, increased ER stress was not observed. Moreover, the overexpression of inositol-requiring enzyme 1α (IRE-1α), one of the main ER stress sensors, led to increases in the levels of NLRP3 and GSDMD. However, after IRE-1α was blocked by chemical inhibitors or siRNAs, pyroptosis was also abrogated. These data showed that ER stress regulated pyroptosis through IRE-1α. Furthermore, the immunoprecipitation results clearly indicated that GSDMD efficiently bound to IRE-1α when ER stress was stimulated. In the MASH model, IRE-1α was specifically inhibited by pharmacological or genetic methods, which improved the pathology of MASH by alleviating ER stress and pyroptosis. In patients with MASH, both ER stress markers and pyroptosis markers including IRE-1α, glucose-regulated protein 78, GSDMD/GSDMD-N, p20, and NLRP3, are highly expressed in the liver. CONCLUSIONS This study revealed that ER stress may regulate pyroptosis through IRE-1α-GSDMD pathway, which accelerates the progression of MASH. These findings may offer new insights for the treatment of MASH.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Wu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Qing Xu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Lan Li
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Liu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Han Yao
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Younan Chen
- Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hao R, Gao X, Lu Q, Zhao T, Lu X, Zhang F, Pei Y, Lang J, Liu H, Song J, Zhang Z. CUMS induces depressive-like behaviors and cognition impairment by activating the ERS-NLRP3 signaling pathway in mice. J Affect Disord 2025; 369:547-558. [PMID: 39378914 DOI: 10.1016/j.jad.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Endoplasmic reticulum stress (ERS), as a primary defense mechanism against stress, is closely related to mental disorders, but its pathogenesis is still unclear. This research seeks to explore the influence of ERS-nucleotide-bound oligomerized domain-like receptor protein 3 (NLRP3) signaling on mice's depressive-like behaviors and cognitive impairment. DESIGN AND METHOD We carried out a study on 32 male C57BL/6J mice to investigate how chronic unpredictable mild stress (CUMS) can give rise to depressive-like behaviors and cognitive dysfunction, randomly dividing them into control, model, inhibitor, and agonist groups. We utilized ELISA to quantify dopamine (DA) and 5-hydroxytryptamine (5-HT) levels. Using Nissl and hematoxylin and eosin (H&E) staining, we assessed the number and morphology of hippocampal neurons and cells. Western blot and immunofluorescence staining detected the changes in ERS and inflammation-related pathways in the hippocampus. RESULTS CUMS could induce ERS and activate NLRP3 inflammasome, causing neuronal damage and histopathological changes, eventually leading to depressive-like behaviors and cognitive impairment in mice. The abnormal activation of NLRP3 inflammasome could be restored by ERS blocker 4-phenyl butyric acid (PBA), thus reducing neuronal damage, and ameliorating depressive-like behaviors and cognitive disorder in mice. CONCLUSION Our study demonstrates a previously unknown link between ERS and NLRP3 inflammasome in CUMS mice. The ERS-NLRP3 signaling pathway may be activated by CUMS, potentially resulting in mice exhibiting depressive-like behaviors and cognitive dysfunction. Theoretical foundations for elucidating the pathogenesis of depression, as well as its prevention and treatment, will be established through the results.
Collapse
Affiliation(s)
- Ran Hao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xiaolei Gao
- School of Nursing, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Qi Lu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China
| | - Tong Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xinxin Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Yanjiao Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Jiqing Lang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
4
|
Spector L, Subramanian N. Revealing the dance of NLRP3: spatiotemporal patterns in inflammasome activation. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00053. [PMID: 39816134 PMCID: PMC11731036 DOI: 10.1097/in9.0000000000000053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025]
Abstract
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential. Studies have implicated several organelles, including mitochondria, lysosomes, the endoplasmic reticulum (ER), the Golgi apparatus, endosomes, and the centrosome, in NLRP3 localization and inflammasome assembly. However, reports of conflict and many factors regulating interactions between NLRP3 and subcellular organelles remain unknown. This review synthesizes the current understanding of NLRP3 spatiotemporal dynamics, focusing on recent literature that elucidates the roles of subcellular localization and organelle stress in NLRP3 signaling and its crosstalk with other innate immune pathways converging at these organelles.
Collapse
Affiliation(s)
- Lauren Spector
- Institute for Systems Biology, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Naeha Subramanian
- Institute for Systems Biology, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Beltrão DCDA, Beltrão FEDL, Carvalhal G, Beltrão FLDL, Brito ADS, Silva HDS, Teixeira HMP, Rodrigues JL, de Figueiredo CAV, Costa RDS, Pordeus LCDM, Vieira GC, Ramos HE. The Thr92Ala polymorphism in the type 2 deiodinase gene is linked to depression in patients with COVID-19 after hospital discharge. Front Endocrinol (Lausanne) 2024; 15:1366500. [PMID: 38911040 PMCID: PMC11190161 DOI: 10.3389/fendo.2024.1366500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 06/25/2024] Open
Abstract
Background The Thr92Ala-DIO2 polymorphism has been associated with clinical outcomes in hospitalized patients with COVID-19 and neuropsychiatric diseases. This study examines the impact of the Thr92Ala-DIO2 polymorphism on neuropsychological symptoms, particularly depressive symptoms, in patients who have had moderate to severe SARS-CoV-2 infection and were later discharged. Methods Our prospective cohort study, conducted from June to August 2020, collected data from 273 patients hospitalized with COVID-19. This included thyroid function tests, inflammatory markers, hematologic indices, and genotyping of the Thr92Ala-DIO2 polymorphism. Post-discharge, we followed up with 68 patients over 30 to 45 days, dividing them into depressive (29 patients) and non-depressive (39 patients) groups based on their Beck Depression Inventory scores. Results We categorized 68 patients into three groups based on their genotypes: Thr/Thr (22 patients), Thr/Ala (41 patients), and Ala/Ala (5 patients). Depressive symptoms were less frequent in the Thr/Ala group (29.3%) compared to the Thr/Thr (59.1%) and Ala/Ala (60%) groups (p = 0.048). The Thr/Ala heterozygous genotype correlated with a lower risk of post-COVID-19 depression, as shown by univariate and multivariate logistic regression analyses. These analyses, adjusted for various factors, indicated a 70% to 81% reduction in risk. Conclusion Our findings appear to be the first to show that heterozygosity for Thr92Ala-DIO2 in patients with COVID-19 may protect against post-COVID-19 depression symptoms up to 2 months after the illness.
Collapse
Affiliation(s)
- Daniele Carvalhal de Almeida Beltrão
- Postgraduate Program in Cognitive Neuroscience and Behavior, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Department of Internal Medicine, University Centre of João Pessoa (UNIPE), João Pessoa, Paraíba, Brazil
| | - Fabyan Esberard de Lima Beltrão
- Department of Internal Medicine, University Centre of João Pessoa (UNIPE), João Pessoa, Paraíba, Brazil
- Department of Internal Medicine, Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Giulia Carvalhal
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | | | - Amanda da Silva Brito
- Department of Internal Medicine, Royal Portuguese Hospital of Beneficence, Recife, Pernambuco, Brazil
| | - Hatilla dos Santos Silva
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Juliana Lopes Rodrigues
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Ryan dos Santos Costa
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Liana Clebia De Morais Pordeus
- Postgraduate Program in Cognitive Neuroscience and Behavior, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Giciane Carvalho Vieira
- Postgraduate Program in Cognitive Neuroscience and Behavior, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Helton Estrela Ramos
- Post-Graduate Program in Medicine and Health, Medical School of Medicine, Federal University of Bahia, Salvador, Brazil
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health and Science Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Cheng Q, He F, Zhao W, Xu X, Shang Y, Huang W. Histone acetylation regulates ORMDL3 expression-mediated NLRP3 inflammasome overexpression during RSV-allergic exacerbation mice. J Cell Physiol 2023; 238:2904-2923. [PMID: 37877592 DOI: 10.1002/jcp.31141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Whether respiratory syncytial virus (RSV) infection in early life may induce orosomucoid 1-like protein 3 (ORMDL3) and lead to NOD-like receptor protein 3 (NLRP3) inflammasome overexpression in asthma, which could be alleviated by the inhibition of HAT p300. First, we explored the relationship between RSV, ORMDL3, and recurrent wheezing in the future through clinical data of infants with RSV-induced bronchiolitis. Then, we used bronchial epithelium transformed with Ad12-SV40 2B (BEAS-2B) and an asthmatic mouse model of repeated RSV infection and OVA sensitization and challenge (rRSV + OVA) in early life to assess the effects of ORMDL3 on NLRP3 inflammasome and that of histone acetylation on ORMDL3 regulation. ORMDL3 overexpression is the independent risk factor of recurrent wheezing in RSV-bronchiolitis follow-up. In BEAS-2B, ORMDL3-induced NLRP3 inflammasome expression. BEAS-2B infected by RSV resulted in overexpression of ORMDL3 and NLRP3 inflammasome and histone hyperacetylation, while ORMDL3-small interfering RNA and C646 interfered could decrease NLRP3 inflammasome. ORMDL3 overexpression in mouse lung increased NLRP3 inflammasome. The expression of ORMDL3 and NLRP3 inflammasome significantly increased, with histone hyperacetylation in the lung in rRSV + OVA mice. p300 and acetylH3 bound to ORMDL3 promoter. In C646 + rRSV + OVA mice, C646 alleviated lung inflammation and overexpression of ORMDL3 and NLRP3 inflammasome. RSV activated ORMDL3 overexpression through histone hyperacetylation and induced NLRP3 inflammasome expression.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fanghan He
- Department of Pediatric Respiratory, Xi'an Children's Hospital, Xi'an, China
| | - Wenqi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianhong Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Katsuyama Y, Okano Y, Masaki H. A decrease of mitochondrial ubiquitin ligase increases the secretion of matrix metalloproteinase-1 by dermal fibroblasts through the induction of ER stress. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:582-588. [PMID: 37337400 DOI: 10.1111/phpp.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND We previously reported that the level of mitochondrial ubiquitin ligase (MITOL) protein in fibroblasts was decreased by UVA and that the knock-down (KD) of MITOL increased the secretion of matrix metalloprotease-1 (MMP-1) by fibroblasts. A recent study reported that MITOL suppresses endoplasmic reticulum (ER) stress by stabilizing the interaction between ER and mitochondria (MT) through the ubiquitination of mitofusin 2. These facts suggest that a decrease of MITOL would increase the secretion of MMP-1 through ER stress, but the detailed mechanism of that process in dermal fibroblasts remains unclear. Thus, this study was conducted to clarify the involvement of ER stress in the oversecretion of MMP-1 induced by the decreased MT quality caused by MITOL-KD. METHODS MITOL-KD normal human dermal fibroblast (NHDFs) were prepared by treating them with MITOL-small interfering RNA, after which their MMP-1 protein levels were measured. ER stress in NHDFs was evaluated by measuring the mRNA levels of spliced X-box binding protein 1 (sXBP1) and the protein levels of inositol-requiring enzyme 1α (IRE1α). RESULTS MITOL-KD NHDFs enhanced the secretion of MMP-1 via interleukin-6 (IL-6) elicited by the activation of nuclear factor-kappa B (NF-κB). The secretion of MMP-1 could be abrogated by a neutralizing IL-6 antibody and by JSH23, which is an inhibitor of NF-κB activation. Furthermore, MITOL-KD NHDFs as well as UVA-irradiated NHDFs showed increased ER stress levels. In addition, tunicamycin, which is an inducer of ER stress, also increased MMP-1 secretion. CONCLUSION These results suggested that the decrease of MITOL caused the oversecretion of MMP-1 via NF-κB-IL-6 signaling through the activation of ER stress in fibroblasts.
Collapse
Affiliation(s)
| | | | - Hitoshi Masaki
- CIEL CO., LTD, Sagamihara, Japan
- Research Institute for Human Health Science, Konan University, Kobe, Japan
| |
Collapse
|
8
|
de Carvalho Ribeiro M, Iracheta-Vellve A, Babuta M, Calenda CD, Copeland C, Zhuang Y, Lowe PP, Hawryluk D, Catalano D, Cho Y, Barton B, Dasarathy S, McClain C, McCullough AJ, Mitchell MC, Nagy LE, Radaeva S, Lien E, Golenbock DT, Szabo G. Alcohol-induced extracellular ASC specks perpetuate liver inflammation and damage in alcohol-associated hepatitis even after alcohol cessation. Hepatology 2023; 78:225-242. [PMID: 36862512 DOI: 10.1097/hep.0000000000000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023]
Abstract
BACKGROUND AIMS Prolonged systemic inflammation contributes to poor clinical outcomes in severe alcohol-associated hepatitis (AH) even after the cessation of alcohol use. However, mechanisms leading to this persistent inflammation remain to be understood. APPROACH RESULTS We show that while chronic alcohol induces nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the liver, alcohol binge results not only in NLRP3 inflammasome activation but also in increased circulating extracellular apoptosis-associated speck-like protein containing a caspase recruitment domain (ex-ASC) specks and hepatic ASC aggregates both in patients with AH and in mouse models of AH. These ex-ASC specks persist in circulation even after the cessation of alcohol use. Administration of alcohol-induced-ex-ASC specks in vivo in alcohol-naive mice results in sustained inflammation in the liver and circulation and causes liver damage. Consistent with the key role of ex-ASC specks in mediating liver injury and inflammation, alcohol binge failed to induce liver damage or IL-1β release in ASC-deficient mice. Our data show that alcohol induces ex-ASC specks in liver macrophages and hepatocytes, and these ex-ASC specks can trigger IL-1β release in alcohol-naive monocytes, a process that can be prevented by the NLRP3 inhibitor, MCC950. In vivo administration of MCC950 reduced hepatic and ex-ASC specks, caspase-1 activation, IL-1β production, and steatohepatitis in a murine model of AH. CONCLUSIONS Our study demonstrates the central role of NLRP3 and ASC in alcohol-induced liver inflammation and unravels the critical role of ex-ASC specks in the propagation of systemic and liver inflammation in AH. Our data also identify NLRP3 as a potential therapeutic target in AH.
Collapse
Affiliation(s)
- Marcelle de Carvalho Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Monte Rosa Therapeutics, Boston, Massachusetts, 02210, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Calenda
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick P Lowe
- Brigham and Women's General Hospital, Boston, Massachusetts, USA
| | - Danielle Hawryluk
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Craig McClain
- Division of Gastroenterology, University of Louisville, Louisville, Kentucky, USA
| | - Arthur J McCullough
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mack C Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Egil Lien
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Douglas T Golenbock
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Massachusetts, USA
| |
Collapse
|
9
|
LncRNA MHRT Prevents Angiotensin II-Induced Myocardial Oxidative Stress and NLRP3 Inflammasome via Nrf2 Activation. Antioxidants (Basel) 2023; 12:antiox12030672. [PMID: 36978920 PMCID: PMC10044972 DOI: 10.3390/antiox12030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The development of angiotensin II (Ang II)-induced cardiomyopathies is reportedly mediated via oxidative stress and inflammation. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defense, and reactive oxygen species (ROS) can activate the NLRP3 inflammasome. MHRT is a newly discovered lncRNA exhibiting cardioprotective effects, demonstrated by inhibiting myocardial hypertrophy via Brg1 and myocardial apoptosis via Nrf2 upregulation. However, the underlying mechanism of MHRT remains unclear. We explored the potential protective effects of MHRT against Ang II-induced myocardial oxidative stress and NLRP3-mediated inflammation by targeting Nrf2. Chronic Ang II administration induced NLRP3 inflammasome activation (increased NLRP3, caspase-1 and interleukin-1β expression), oxidative stress (increased 3-nitrotyrosine and 4-hydroxy-2-nonenal), cardiac dysfunction and decreased MHRT and Nrf2 expression. Lentivirus-mediated MHRT overexpression inhibited Ang II (100 nM)-induced oxidative stress and NLRP3 inflammasome activation in AC16 human cardiomyocyte cells. Mechanistically, MHRT overexpression upregulated the expression and function of Nrf2, as determined by the increased transcription of downstream genes HO-1 and CAT, subsequently decreasing intracellular ROS accumulation and inhibiting the expression of thioredoxin-interacting protein (NLRP3 activator) and its direct binding to NLRP3. Accordingly, MHRT could protect against Ang II-induced myocardial injury by decreasing oxidative stress and NLRP3 inflammasome activation via Nrf2 activation.
Collapse
|
10
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
11
|
Singh S, Sharma A, Ahmad S, Guru B, Gulzar F, Kumar P, Ahmad I, Tamrakar AK. Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis. Inflammation 2023; 46:217-233. [PMID: 35941320 DOI: 10.1007/s10753-022-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
High fructose flux enhances hepatocellular triglyceride accumulation (hepatic steatosis), which is a prime trigger in the emergence of hepatic ailments. Nevertheless, the pathophysiology underlying the process is not completely understood. Emerging evidences have revealed the inputs from multiple cues including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in the development of hepatic steatosis. Here, we substantiated the role of NLRP3 inflammasome and its convergence with oxidative and ER stress leading to hepatic steatosis under high fructose diet feeding. Male SD rats were fed on 60% high fructose diet (HFrD) for 10 weeks and treated with antioxidant quercetin or NLRP3 inflammasome inhibitor glyburide during the last 6 weeks, followed by metabolic characterization and analysis of hepatic parameters. HFrD-induced hepatic steatosis was associated with the activation of NLRP3 inflammasome, pro-inflammatory response, oxidative, and ER stress in liver. Treatment with quercetin abrogated HFrD-induced oxidative stress, along with attenuation of NLRP3 activation in the liver. On the other hand, inhibition of NLRP3 signaling by glyburide suppressed HFrD-induced oxidative and ER stress. Both glyburide or quercetin treatment significantly attenuated hepatic steatosis, associated with mitigated expression of the lipogenic markers in liver. Our findings verified the association of NLRP3 inflammasome with oxidative and ER stress in fructose-induced lipogenic response and indicate that in addition to be a target of oxidative/ER stress, NLRP3 can act as a trigger for oxidative/ER stress to activate a vicious cycle where these cues act in a complex manner to propagate inflammatory response, leading to hepatic steatosis.
Collapse
Affiliation(s)
- Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhavimani Guru
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
14
|
Wang X, Xin H, Xing M, Gu X, Hao Y. Acute Endoplasmic Reticulum Stress Induces Inflammation Reaction, Complement System Activation, and Lipid Metabolism Disorder of Piglet Livers: A Proteomic Approach. Front Physiol 2022; 13:857853. [PMID: 35492579 PMCID: PMC9043290 DOI: 10.3389/fphys.2022.857853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) is closely associated with the occurrence and development of many liver diseases. ERS models mostly include experimental animals such as rats and mice. However, pigs are more similar to humans with regards to digestion and metabolism, especially liver construction, yet few reports on ERS in pigs exist. In order to explore changes in the liver under ERS, we used tunicamycin (TM), which can cause liver jaundice and damage liver function, to establish acute ERS models in piglets using a low TM dosage (LD, 0.1 mg/kg body weight (bw)), high TM dosage (HD, 0.3 mg/kg bw), or vehicle for 48 h. We found that both LD- and HD-induced ERS, as verified by the ERS-linked proteins. Furthermore, the concentrations of the proinflammatory cytokines, namely, TNF-α and IL-6 were elevated in TM-treated piglet livers, and the plasma levels of IL-6 and CRP were also higher, indicating the occurrence of inflammation in TM-treated piglets. The complement system was activated in TM-treated piglets, as indicated by increased levels of complement factors and activation products C3, C5a, and AP50. In order to gain insights into the global changes in liver proteins under ERS, we performed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis on the livers of HD- and vehicle-treated piglets. Proteomic analysis identified 311 differentially expressed proteins (DEPs) between the two groups, and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the DEPs were mainly enriched in signaling pathways such as metabolic pathways, protein processing in the endoplasmic reticulum, and complement and coagulation cascades. Many proteins involved in protein folding, lipid transport, and oxidation were upregulated. Proteins involved in lipid synthesis were downregulated to alleviate liver steatosis, and most complement factors were upregulated to protect the body, and Pearson correlation analysis found that most of the DEPs in the complement and coagulation pathway were significantly correlated with plasma CRP, IL6 and AP50. Our results revealed that TM can activate ERS, marked by liver injury and steatosis, inflammatory reactions, and complement activation in piglets.
Collapse
Affiliation(s)
| | | | | | | | - Yue Hao
- *Correspondence: Xianhong Gu, ; Yue Hao,
| |
Collapse
|
15
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
16
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
17
|
Li Y, Fu Y, Sun J, Shen J, Liu F, Ning B, Lu Z, Wei L, Jiang X. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114595. [PMID: 34517060 DOI: 10.1016/j.jep.2021.114595] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone IIA (Tan), extracted from Salvia miltiorrhiza Bunge, is a perennial herbal plant widely used as a folk remedy in Asian countries. Several studies have proved that Tanshinone IIA possesses many biological activities, such as anti-inflammatory, free-radical scavenging abilities, antioxidant properties, liver protection, and anti-cancer properties. AIM OF THE STUDY The objective of the present study was to examine the anti-inflammatory effects of Tan. MATERIALS AND METHODS The in vitro infection model of Mycobacterium tuberculosis-infected macrophages with the H37Ra strain was established. Murine macrophage Raw 264.7 and human monocyte THP-1 were used for the experiments. Cell viability was determined by the MTT assay. Western blot and lactate dehydrogenase (LDH) activity assays were used to detect the effects of Tan on cell pyroptosis and the level of NLRP3 inflammasome activation. Western blot, Co-immunoprecipitation and Immunofluorescence assays were used to observe the effect of Tan on the expression level of TXNIP. Immunofluorescence assays were applied to explore the effect of Tan on mtROS. Western blot and agarose gel electrophoresis were adopted to observe the effect of Tan on endoplasmic reticulum stress. The siRNA technique was applied to knockdown the expression levels of PERK/peIF2α, IRE1α and ATF6, and Western blot assay was employed to explore the NLRP3 inflammasome activation and possible molecular regulation mechanism of Tan. RESULTS This study demonstrated that Tan decreased Mtb-induced cell pyroptosis by measuring GSDMD-N and LDH release provoked by NLRP3 inflammasome activation. Additionally, Tan inhibited endoplasmic reticulum stress (ERS), mitochondrial damage, and TXNIP protein expression, all of which acted as upstream signals of NLRP3 inflammasome activation in Mtb-infected macrophages. Significantly, NLRP3 inflammasome activation was suppressed by knocking down ERS pathway proteins, which further clarified that Tan partly targeted ERS to exert anti-inflammatory and immunoregulatory actions. CONCLUSION This research confirms Tan's anti-inflammatory and immunoregulatory mechanisms in Mtb-infected macrophages by downregulating NLRP3 inflammasome activation-mediated pyroptosis provoked by ERS. Tan may function as an adjuvant drug to treat TB by adjusting host immune responses.
Collapse
Affiliation(s)
- Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jingjing Shen
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fanglin Liu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Bangzuo Ning
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Zhenhui Lu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Luyao Wei
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
18
|
Lu B, Xie J, Fu D, Chen X, Zhao M, Gui M, Yao L, Zhou X, Li J. Huoxue Qianyang Qutan recipe attenuates cardiac fibrosis by inhibiting the NLRP3 inflammasome signalling pathway in obese hypertensive rats. PHARMACEUTICAL BIOLOGY 2021; 59:1045-1057. [PMID: 34362291 PMCID: PMC8354174 DOI: 10.1080/13880209.2021.1953541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT HuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive. OBJECTIVE To determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis. MATERIALS AND METHODS OBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee's index were measured. Heart tissues were examined by histology. HQQR's effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3. RESULTS HQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee's index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1β (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1β pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling. CONCLUSION HQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyi Zhao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|
20
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Kapetanaki S, Kumawat AK, Persson K, Demirel I. The Fibrotic Effects of TMAO on Human Renal Fibroblasts Is Mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222111864. [PMID: 34769294 PMCID: PMC8584593 DOI: 10.3390/ijms222111864] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-β1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO’s fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO’s effects and to identify novel therapeutic targets in the context of chronic kidney disease.
Collapse
Affiliation(s)
- Stefania Kapetanaki
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Nephrology Department, Karolinska University Hospital, 171 76 Solna, Sweden
- Nephrology Department, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Correspondence: ; Tel.: +46-1930-3000
| | - Ashok Kumar Kumawat
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Cardiovascular Research Center, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
22
|
The Crucial Role of NLRP3 Inflammasome in Viral Infection-Associated Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms221910447. [PMID: 34638790 PMCID: PMC8509020 DOI: 10.3390/ijms221910447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most common fibrosing interstitial lung diseases (ILD), is a chronic-age-related respiratory disease that rises from repeated micro-injury of the alveolar epithelium. Environmental influences, intrinsic factors, genetic and epigenetic risk factors that lead to chronic inflammation might be implicated in the development of IPF. The exact triggers that initiate the fibrotic response in IPF remain enigmatic, but there is now increasing evidence supporting the role of chronic exposure of viral infection. During viral infection, activation of the NLRP3 inflammasome by integrating multiple cellular and molecular signaling implicates robust inflammation, fibroblast proliferation, activation of myofibroblast, matrix deposition, and aberrant epithelial-mesenchymal function. Overall, the crosstalk of the NLRP3 inflammasome and viruses can activate immune responses and inflammasome-associated molecules in the development, progression, and exacerbation of IPF.
Collapse
|
23
|
Pushkarev VV, Sokolova LK, Kovzun OI, Pushkarev VM, Tronko MD. The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasomes in the Development of Atherosclerosis. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Pei G, Dorhoi A. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. Int J Mol Sci 2021; 22:ijms22136714. [PMID: 34201509 PMCID: PMC8268748 DOI: 10.3390/ijms22136714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| |
Collapse
|
25
|
Liddle DM, Hutchinson AL, Monk JM, Power KA, Robinson LE. Dietary ω-3 polyunsaturated fatty acids modulate CD4 + T-cell subset markers, adipocyte antigen-presentation potential, and NLRP3 inflammasome activity in a coculture model of obese adipose tissue. Nutrition 2021; 91-92:111388. [PMID: 34298481 DOI: 10.1016/j.nut.2021.111388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic low-grade inflammation in obesity is partly driven by inflammatory cross talk between adipocytes and interferon-γ-secreting CD4+ T-helper (Th)1 cells, a process we have shown may be mitigated by long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs). Our objective was to study pivotal mediators of interactions between Th1 cells and adipocytes as potential mechanisms underlying the antiinflammatory effects of LC ω-3 PUFAs. METHODS Using an in vitro model, 3T3-L1 adipocytes were cocultured with purified splenic CD4+ T cells from C57BL/6 mice consuming one of two isocaloric high-fat (HF) diets (60% kcal fat), containing either 41.2% kcal from lard + 18.7% kcal from corn oil (control, HF) or 41.2% kcal from lard + 13.4% kcal from corn oil + 5.3% kcal from fish oil (HF+FO). Cocultures were stimulated for 48 h with lipopolysaccharide (10 ng/mL). RESULTS Compared with HF cocultures, HF+FO reduced Th1-cell markers (including secreted interferon-γ) and increased Th2-cell markers, consistent with reduced expression of genes related to major histocompatibility complex II (P < 0.05). HF+FO also blunted markers of priming and activity of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome (P < 0.05). In confirmatory work, 3T3-L1 adipocyte pretreatment with the LC ω-3 PUFA docosahexaenoic acid (100 μM, 24 h) blunted interferon-γ-induced (5 ng/mL, 24 h) expression of genes related to major histocompatibility complex II and priming and activity markers of the NLRP3 inflammasome compared with control (P < 0.05). CONCLUSIONS Inflammatory interactions between CD4+ T cells and adipocytes may provide a target for LC ω-3 PUFAs to mitigate obesity-associated inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
26
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
27
|
Ren J, Wei W, Tan L, Yang Q, Lu Q, Ding H, Yue Y, Tian Y, Hao L, Wang M, Li J. Inhibition of regulator of G protein signaling 10, aggravates rheumatoid arthritis progression by promoting NF-κB signaling pathway. Mol Immunol 2021; 134:236-246. [PMID: 33836352 DOI: 10.1016/j.molimm.2021.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy, with evidence pointing to an immune-mediated etiology that propagates chronic inflammation. Although targeted immune therapeutics and aggressive treatment strategies have substantially improved, a complete understanding of the associated pathological mechanisms of the disease remains elusive. This study aimed at investigating whether regulator of G protein signaling 10 (RGS10) could affect rheumatoid arthritis (RA) pathology by regulating the immune response. A DBA/J1 mouse model of RA was established and evaluated for disease severity. RGS10 expression was inhibited by adeno-associated virus in vivo. Moreover, small interfering RNA was used to downregulate RGS10 expression in raw 264.7 cells in vitro. Results showed that RGS10 inhibition augmented RA severity, and attenuated the increase in expression of inflammatory factors. Furthermore, activated NF-κB signaling pathways were detected following RGS10 inhibition. These results revealed that RGS10 inhibition directly aggravated the RA pathological process by activating the NF-κB signaling pathway. Therefore, RGS10 is a promising novel therapeutic target for RA treatment with a potential clinical impact.
Collapse
Affiliation(s)
- Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Ye Tian
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| |
Collapse
|
28
|
Chong WC, Shastri MD, Peterson GM, Patel RP, Pathinayake PS, Dua K, Hansbro NG, Hsu AC, Wark PA, Shukla SD, Johansen MD, Schroder K, Hansbro PM. The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders. Clin Transl Immunology 2021; 10:e1247. [PMID: 33614031 PMCID: PMC7878118 DOI: 10.1002/cti2.1247] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome-induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress- and inflammasome-related inflammatory disorders.
Collapse
Affiliation(s)
- Wai Chin Chong
- Department of Molecular and Translational ScienceMonash UniversityClaytonVICAustralia
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVICAustralia
| | - Madhur D Shastri
- School of Pharmacy and PharmacologyUniversity of TasmaniaHobartTASAustralia
| | - Gregory M Peterson
- School of Pharmacy and PharmacologyUniversity of TasmaniaHobartTASAustralia
| | - Rahul P Patel
- School of Pharmacy and PharmacologyUniversity of TasmaniaHobartTASAustralia
| | - Prabuddha S Pathinayake
- Priority Research Centre for Healthy LungsHunter Medical Research InstituteThe University of NewcastleCallaghanNSWAustralia
| | - Kamal Dua
- Discipline of PharmacyGraduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Nicole G Hansbro
- Centre for InflammationCentenary InstituteFaculty of ScienceSchool of Life SciencesUniversity of TechnologySydneyNSWAustralia
| | - Alan C Hsu
- Priority Research Centre for Healthy LungsHunter Medical Research InstituteThe University of NewcastleCallaghanNSWAustralia
| | - Peter A Wark
- Priority Research Centre for Healthy LungsHunter Medical Research InstituteThe University of NewcastleCallaghanNSWAustralia
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy LungsHunter Medical Research InstituteThe University of NewcastleCallaghanNSWAustralia
| | - Matt D Johansen
- Centre for InflammationCentenary InstituteFaculty of ScienceSchool of Life SciencesUniversity of TechnologySydneyNSWAustralia
| | - Kate Schroder
- Institute for Molecular BioscienceUniversity of QueenslandSt LuciaQLDAustralia
| | - Philip M Hansbro
- Priority Research Centre for Healthy LungsHunter Medical Research InstituteThe University of NewcastleCallaghanNSWAustralia
- Centre for InflammationCentenary InstituteFaculty of ScienceSchool of Life SciencesUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
29
|
Huang S, Liu H, Lin Y, Liu M, Li Y, Mao H, Zhang Z, Zhang Y, Ye P, Ding L, Zhu Z, Yang X, Chen C, Zhu X, Huang X, Guo W, Xu P, Lu L. Berberine Protects Against NLRP3 Inflammasome via Ameliorating Autophagic Impairment in MPTP-Induced Parkinson's Disease Model. Front Pharmacol 2021; 11:618787. [PMID: 33584302 PMCID: PMC7872967 DOI: 10.3389/fphar.2020.618787] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome was reported to be regulated by autophagy and activated during inflammatory procession of Parkinson’s disease (PD). Berberine (BBR) is well-studied to play an important role in promoting anti-inflammatory response to mediate the autophagy activity. However, the effect of Berberine on NLRP3 inflammasome in PD and its potential mechanisms remain unclear. Hence, in this study, we investigated the effects of BBR on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, by evaluating their behavioral changes, dopaminergic (DA) neurons loss, neuroinflammation, NLRP3 inflammasome and autophagic activity. BBR was also applied in BV2 cells treated with 1-methyl-4-pehnyl-pyridine (MPP+). The autophagy inhibitor 3-Methyladenine (3-MA) was administrated to block autophagy activity both in vivo and in vitro. In our in vivo studies, compared to MPTP group, mice in MPTP + BBR group showed significant amelioration of behavioral disorders, mitigation of neurotoxicity and NLRP3-associated neuroinflammation, enhancement of the autophagic process in substantia nigra (SN). In vitro, compared to MPP+ group, BBR significantly decreased the level of NLRP3 inflammasome including the expressions of NLRP3, PYD and CARD domain containing (PYCARD), cleaved caspase 1 (CASP1), and mature interleukin 1 beta (IL1B), via enhancing autophagic activity. Furthermore, BBR treatment increased the formation of autophagosomes in MPP+-treated BV2 cells. Taken together, our data indicated that BBR prevents NLRP3 inflammasome activation and restores autophagic activity to protect DA neurons against degeneration in vivo and in vitro, suggesting that BBR may be a potential therapeutic to treat PD.
Collapse
Affiliation(s)
- Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Muchang Liu
- Department of Medical Affair, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanhua Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhang
- Department of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziting Zhu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Huang
- Department of Neurology, The affiliated Houjie Hospital, Guangdong Medical University, Dongguan, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
31
|
Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 2020; 64:101142. [PMID: 32814129 DOI: 10.1016/j.arr.2020.101142] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
We propose in this review that hormesis, a concept profoundly and systematically addressed by Mark Mattson, has to be considered a sort of comprehensive "contact point" capable of unifying several conceptualizations of the aging process, including those focused on the stress response, oxidative stress and chronic inflammation/inflammaging. A major strength of hormesis and inflammaging is that they have a strong evolutionary basis. Moreover, both hormesis and inflammaging frame the aging process within a lifelong perspective of adaptation to different types of stresses. Such adaptation perspective also suggests that the aging process is malleable, and predicts that effective anti-aging strategies should mimic what evolution did in the course of million years and that we have to learn how to exploit the great potential inherent in the hormetic/inflammatory responses. To this regard, new topics such as the production of mitokines to cope with mitochondrial dysfunction are emerging as possible anti-aging target. This approach opens theoretically the door to the possibility of modulating the individual aging rate and trajectory by adopting the most effective scientifically-based lifestyle regarding fundamentally nutrition and physical activity. In this scenario Mark Mattson's lesson and personal example will permanently enlighten the aging field and the quest for a healthy aging and longevity.
Collapse
|
32
|
Costa DL, Amaral EP, Andrade BB, Sher A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants (Basel) 2020; 9:antiox9121205. [PMID: 33266044 PMCID: PMC7761188 DOI: 10.3390/antiox9121205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
Collapse
Affiliation(s)
- Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3315-3061
| | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| | - Bruno B. Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Bahia, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador 41770-235, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| |
Collapse
|
33
|
Li W, Zhang D, Yuan W, Wang C, Huang Q, Luo J. Humanin Ameliorates Free Fatty Acid-Induced Endothelial Inflammation by Suppressing the NLRP3 Inflammasome. ACS OMEGA 2020; 5:22039-22045. [PMID: 32923762 PMCID: PMC7482084 DOI: 10.1021/acsomega.0c01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Cardiovascular disease (CVD) has been considered as a major risk factor of death in recent decades. In CVDs, the NLRP3 inflammasome is important for inflammatory response and vascular damage. Therefore, safe and effective treatments to decrease NLRP3 inflammasome activation are required. Increased levels of free fatty acid (FFA) have been associated with the progression of CVD. Humanin, a kind of mitochondrial-derived peptide, has shown its beneficial effects in different types of cells. However, the roles of humanin in the NLRP3 inflammasome induced by FFA are still unknown. Here, we investigated the molecular mechanisms whereby humanin was found to exert protective effects in human aortic endothelial cells (HAECs) against FFA-caused endothelial injury. Here, treatment with humanin inhibited FFA-induced lactate dehydrogenase release, thereby demonstrating a protective capacity against cell death. Humanin also suppressed oxidative stress by downregulating the expression of reactive oxygen species and NOX2. Notably, humanin reduced NLRP3 and p10 and rescued FFA-induced dysfunction of adenosine monophosphate-activated protein kinase. Consequently, humanin inhibited the expression of IL-1β and IL-18. These results conclude that humanin might be a promising therapeutic agent for CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- . Phone: +86-19979702109. Fax: +86-797-5889810
| |
Collapse
|
34
|
Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, Wang Y, Xu H, Ni W, Zhou K. Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement. Front Pharmacol 2020; 11:1076. [PMID: 32903577 PMCID: PMC7438740 DOI: 10.3389/fphar.2020.01076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) is the main complication after the repair of a complex thoracoabdominal aortic aneurysm. Many clinical treatments are not ideal due to the complex pathophysiological process of this injury. Baicalein (BA), a component derived from the roots of the herb Scutellaria baicalensis, may contribute to the successful treatment of ischemia/reperfusion injury. Purpose In the present study, the effects of BA on spinal cord ischemia-reperfusion injury and the underlying mechanisms were assessed. Materials and Methods Spinal cord ischemia was induced in C57BL/6 mice by blocking the aortic arch. Fifty-five mice were then randomly divided into four groups: Sham, SCIR+Vehicle, SCIR+BA, and SCIR+BA +3MA groups. At 0 and 24 h pre-SCIRI and at 24 h and 7 days post-SCIRI, evaluations with the Basso mouse scale (BMS) were performed. On postoperative 24 h, the spinal cord was harvested to assess pyroptosis, endoplasmic reticulum stress mediated apoptosis and autophagy. Results BA enhanced the functional recovery of spinal cord ischemia-reperfusion injury. In addition, BA attenuated pyroptosis, alleviated endoplasmic reticulum stress-mediated apoptosis, and activated autophagy. However, the effects of BA on the functional recovery of SCIRI, pyroptosis and endoplasmic reticulum stress-mediated apoptosis were reversed by the inhibition of autophagy. Conclusions In general, our findings revealed that BA enhances the functional recovery of spinal cord ischemia-reperfusion injury by dampening pyroptosis and alleviating endoplasmic reticulum stress-mediated apoptosis, which are mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yijia Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yongli Wang
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
35
|
Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl Microbiol Biotechnol 2020; 104:6129-6140. [PMID: 32447438 DOI: 10.1007/s00253-020-10614-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum stress (ERS) is a protective response to restore protein homeostasis by activating the unfolded protein response (UPR). However, UPR can trigger cell death under severe and/or persistently high ERS. The NLRP3 inflammasome is a complex of multiple proteins that activates the secretion of the proinflammatory cytokine IL-1β in a caspase-1-dependent manner to participate in the regulation of inflammation. The NLRP3 inflammasome involvement in ERS-induced inflammation has not been completely described. The intersection of ERS with multiple inflammatory pathways can initiate and aggravate chronic diseases. Accumulating evidence suggests that ERS-induced activation of NLRP3 inflammasome is the pathological basis of various inflammatory diseases. In this review, we have discussed the networks between ERS and NLRP3 inflammasome, with the view to identifying novel therapeutic targets in inflammatory diseases. KEY POINTS: • Endoplasmic reticulum stress (ERS) is an important factor for the activation of the NLRP3 inflammasomes that results in pathological processes. • ERS can activate the NLRP3 inflammasome to induce inflammatory responses via oxidative stress, calcium homeostasis, and NF-κB activation. • The interactions between ERS and NLRP3 inflammasome are associated with inflammation, which represent a potential therapeutic opportunity of inflammatory diseases.
Collapse
|
36
|
Rusinek K, Sołek P, Tabęcka-Łonczyńska A, Koziorowski M, Mytych J. Focus on the Role of Klotho Protein in Neuro-Immune Interactions in HT-22 Cells Upon LPS Stimulation. Cells 2020; 9:E1231. [PMID: 32429346 PMCID: PMC7290853 DOI: 10.3390/cells9051231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is defined as the activation of the brain's innate immune system in response to an inflammatory challenge and is considered to be a prominent feature of neurodegenerative diseases. The contribution of overactivated neuroglial cells to neuroinflammation and neurodegenerative disorders is well documented, however, the role of hippocampal neurons in the neuroinflammatory process remains fragmentary. In this study, we show for the first time, that klotho acts as a signal transducer between pro-survival and pro-apoptotic crosstalk mediated by ER stress in HT-22 hippocampal neuronal cells during LPS challenge. In control HT-22 cells, LPS treatment results in activation of the IRE1α-p38 MAPK pathway leading to increased secretion of anti-inflammatory IL-10, and thus, providing adaptation mechanism. On the other hand, in klotho-deficient HT-22 cells, LPS induces oxi-nitrosative stress and genomic instability associated with telomere dysfunctions leading to p53/p21-mediated cell cycle arrest and, in consequence, to ER stress, inflammation as well as of apoptotic cell death. Therefore, these results indicate that klotho serves as a part of the cellular defense mechanism engaged in the protection of neuronal cells against LPS-mediated neuroinflammation, emerging issues linked with neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (K.R.); (P.S.); (A.T.-Ł.); (M.K.)
| |
Collapse
|
37
|
Zhou Y, Tong Z, Jiang S, Zheng W, Zhao J, Zhou X. The Roles of Endoplasmic Reticulum in NLRP3 Inflammasome Activation. Cells 2020; 9:cells9051219. [PMID: 32423023 PMCID: PMC7291288 DOI: 10.3390/cells9051219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
The NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3) inflammasome senses pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and activates caspase-1, which provokes release of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 as well as pyroptosis to engage in innate immune defense. The endoplasmic reticulum (ER) is a large and dynamic endomembrane compartment, critical to cellular function of organelle networks. Recent studies have unveiled the pivotal roles of the ER in NLRP3 inflammasome activation. ER–mitochondria contact sites provide a location for NLRP3 activation, its association with ligands released from or residing in mitochondria, and rapid Ca2+ mobilization from ER stores to mitochondria. ER-stress signaling plays a critical role in NLRP3 inflammasome activation. Lipid perturbation and cholesterol trafficking to the ER activate the NLRP3 inflammasome. These findings emphasize the importance of the ER in initiation and regulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yang Zhou
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| | - Zhizi Tong
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Songhong Jiang
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Wenyan Zheng
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Jianjun Zhao
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
38
|
Liu Y, Zou GJ, Tu BX, Hu ZL, Luo C, Cui YH, Xu Y, Li F, Dai RP, Bi FF, Li CQ. Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress. Neurotox Res 2020; 38:370-384. [PMID: 32378057 DOI: 10.1007/s12640-020-00201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Xiang Ya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China.
| |
Collapse
|
39
|
Zhang X, Jin J, Xie A. Laquinimod inhibits MMP+ induced NLRP3 inflammasome activation in human neuronal cells. Immunopharmacol Immunotoxicol 2020; 42:264-271. [PMID: 32249647 DOI: 10.1080/08923973.2020.1746967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: Nod-like receptor protein 3 (NLRP3) inflammasome plays anessentialrole in neuroinflammation in the Parkinson's disease (PD) progression. Laquinimodis an immunomodulator that is clinically used for the treatment of multiple sclerosis. This study aims to investigate whether laquinimod possessesa protective effect against MPP+-induced NLRP3 activation.Materials and methods: In a variety of tests on human SH-SY5Y neuronal cells, 1-methyl-4-phenyl Pyridine (MPP+) was used to mimic the microenvironment of PD. Activation of NLRP3 inflammasome was measured by western blot analysis and enzyme linked immunosorbent assay (ELISA).Results: Laquinimod had a significant protective impact against MPP+-induced neurotoxicity. Our results demonstrate that laquinimod prevented MPP+-induced reduction of cell proliferation, the release of lactate dehydrogenase (LDH), and apoptosis. Importantly, treatment with laquinimod significantly inhibited the activation of the NLRP3 inflammasome by reducing the levels of its components, including NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase 1 (P10). Consistently, laquinimod prevented MPP+-induced secretions of interleukin 1β (IL-1β) and interleukin-18 (IL-18). Additionally, laquinimod also reduced the expression of other related factors, such as intracellular reactive oxygen species (ROS), NADPH oxidase 4 (NOX-4), thioredoxin-interacting protein (TxNIP). Furthermore, laquinimod prevented the reduction of sirtuin 1 (SIRT1) from MPP+ stimulation. Inhibition of SIRT1 abolished the protective effects of laquinimod against the activation of the NLRP3 inflammasome, suggesting the involvement of SIRT1 in this process.Conclusion: These findings suggest that laquinimod treatment might be a possible therapeutic strategy for neuroinflammation in PD.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianing Jin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Fujita Y, Matsuoka N, Temmoku J, Furuya MY, Asano T, Sato S, Kobayashi H, Watanabe H, Suzuki E, Urano T, Kozuru H, Yatsuhashi H, Koga T, Kawakami A, Migita K. Hydroxychloroquine inhibits IL-1β production from amyloid-stimulated human neutrophils. Arthritis Res Ther 2019; 21:250. [PMID: 31775905 PMCID: PMC6880583 DOI: 10.1186/s13075-019-2040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hydroxychloroquine (HCQ) is used for the treatment of patients with rheumatic diseases. We tested the hypothesis that HCQ affects the NLRP3 inflammasome, which is involved in autoinflammation. METHODS Human neutrophils were stimulated with serum amyloid A (SAA) in vitro and measured for IL-1β and caspase-1 (p20) secretion by ELISA. Pro-IL-1β mRNA expression in human neutrophils was quantified by real-time RT-PCR. RESULTS SAA stimulation induced significant production of IL-1β in human neutrophils. SAA stimulation also induced NF-κB activation, pro-IL-1β mRNA expression, and NLRP3 protein expression in human neutrophils. HCQ pretreatment significantly inhibited the SAA-induced IL-1β production in human neutrophils, but did not affect the SAA-induced NF-κB activation, pro-IL-1β mRNA expression, and NLRP3 protein expression. Furthermore, SAA stimulation induced cleaved caspase-1 (p20) secretion from human neutrophils, and this release was suppressed by HCQ pretreatment. CONCLUSIONS Treatment with HCQ was associated with impaired production of IL-1β in SAA-stimulated human neutrophils without affecting the priming process of the NLRP3 inflammasome such as pro-IL-1β or NLRP3 induction. These findings suggest that HCQ affects the NLRP3 activation process, resulting in the impaired IL-1β production in human neutrophils, as representative innate immune cells.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Makiko Yashiro Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, 2-5-20 Nishinouchi, Koriyama, Fukushima, 963-8558, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1 Omura, Nagasaki, 856-8562, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1 Omura, Nagasaki, 856-8562, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan. .,Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1 Omura, Nagasaki, 856-8562, Japan.
| |
Collapse
|
41
|
Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys 2019; 678:108186. [PMID: 31704095 DOI: 10.1016/j.abb.2019.108186] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes heme degradation to generate biliverdin-IXα, carbon monoxide (CO), and iron. The HO-1/CO system confers cytoprotection in animal models of organ injury and disease, via modulation of inflammation and apoptosis. Recent studies have uncovered novel anti-inflammatory targets of HO-1/CO including regulation of the autophagy and inflammasome pathways. Autophagy is a lysosome-dependent program for the turnover of cellular organelles such as mitochondria, proteins, and pathogens; which may downregulate inflammatory processes. Therapeutic modulation of autophagy by CO has been demonstrated in models of sepsis. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome regulates the maturation of pro-inflammatory cytokines. CO can regulate NLRP3 inflammasome activation and associated pro-inflammatory cytokines production and promote the resolution of inflammation by upregulating the synthesis of specialized pro-resolving mediators (SPMs). Mitochondria may represent a proximal target of HO-1/CO action. HO-1 may localize to mitochondria in response to stress, while CO can moderate mitochondrial dysfunction and regulate mitochondrial autophagy (mitophagy) and biogenesis. The interplay between mitochondrial autophagy, mitochondrial dysfunction, and the regulation and resolution of inflammation may make important contributions to the protection afforded by HO-1/CO in cellular and organ injury models. Recent studies have continued to explore the potential of CO for clinical applications.
Collapse
|
42
|
Liddle DM, Monk JM, Hutchinson AL, Ma DWL, Robinson LE. CD8 + T cell/adipocyte inflammatory cross talk and ensuing M1 macrophage polarization are reduced by fish-oil-derived n-3 polyunsaturated fatty acids, in part by a TNF-α-dependent mechanism. J Nutr Biochem 2019; 76:108243. [PMID: 31760229 DOI: 10.1016/j.jnutbio.2019.108243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Obese visceral adipose tissue (AT) inflammation is driven by adipokine-mediated cross talk between CD8+ T cells and adipocytes, a process mitigated by long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) but underlying mechanisms and ensuing effects on macrophage polarization status are unknown. Using an in vitro co-culture model that recapitulates the degree of CD8+ T cell infiltration reported in obese AT, 3T3-L1 adipocytes were co-cultured for 24 h with purified splenic CD8+ T cells from C57Bl/6 mice consuming either a 10% w/w safflower oil (control, CON) or 7% w/w safflower oil + 3% w/w fish oil (FO) diet for 4 weeks (n=8-10/diet). Co-cultured cells were in direct contact or in a contact-independent condition separated by a Transwell permeable membrane and stimulated with lipopolysaccharide (10 ng/ml) to mimic in vivo obese endotoxin levels. In contact-dependent co-cultures, FO reduced inflammatory (IL-6, TNFα, IFN-γ) and macrophage chemotactic (CCL2, CCL7, CCL3) mRNA expression and/or secreted protein, NF-κB p65 activation, ROS accumulation, NLRP3 inflammasome priming (Nlrp3, Il1β mRNA) and activation (caspase-1 activity) compared to CON (P<.05). The anti-inflammatory action of FO was reproduced by the addition of a TNF-α neutralizing antibody (1 μg/ml) to CON co-cultures (CON/anti-TNF-α), albeit to a lesser degree. Conditioned media from FO and CON/anti-TNF-α co-cultures, in turn, reduced RAW 264.7 macrophage mRNA expression of M1 polarization markers (iNos, Cd11c, Ccr2) and associated inflammatory cytokines (Il6, Tnfα, Il1β) compared to CON. These data suggest that inflammatory CD8+ T cell/adipocyte cross talk is partially attributable to TNF-α signaling, which can be mitigated by LC n-3 PUFA.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
43
|
ER Stress Activates the NLRP3 Inflammasome: A Novel Mechanism of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3462530. [PMID: 31687078 PMCID: PMC6800950 DOI: 10.1155/2019/3462530] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.
Collapse
|
44
|
Theofani E, Semitekolou M, Morianos I, Samitas K, Xanthou G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med 2019; 8:jcm8101615. [PMID: 31590215 PMCID: PMC6833007 DOI: 10.3390/jcm8101615] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Severe asthma (SA) is a chronic lung disease characterized by recurring symptoms of reversible airflow obstruction, airway hyper-responsiveness (AHR), and inflammation that is resistant to currently employed treatments. The nucleotide-binding oligomerization domain-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome is an intracellular sensor that detects microbial motifs and endogenous danger signals and represents a key component of innate immune responses in the airways. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18 as well as pyroptosis. Accumulating evidence proposes that NLRP3 activation is critically involved in asthma pathogenesis. In fact, although NLRP3 facilitates the clearance of pathogens in the airways, persistent NLRP3 activation by inhaled irritants and/or innocuous environmental allergens can lead to overt pulmonary inflammation and exacerbation of asthma manifestations. Notably, administration of NLRP3 inhibitors in asthma models restrains AHR and pulmonary inflammation. Here, we provide an overview of the pathophysiology of SA, present molecular mechanisms underlying aberrant inflammatory responses in the airways, summarize recent studies pertinent to the biology and functions of NLRP3, and discuss the role of NLRP3 in the pathogenesis of asthma. Finally, we contemplate the potential of targeting NLRP3 as a novel therapeutic approach for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Konstantinos Samitas
- 7th Respiratory Clinic and Asthma Center, 'Sotiria' Athens Chest Hospital, 11527 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
45
|
Sokolova M, Ranheim T, Louwe MC, Halvorsen B, Yndestad A, Aukrust P. NLRP3 Inflammasome: A Novel Player in Metabolically Induced Inflammation-Potential Influence on the Myocardium. J Cardiovasc Pharmacol 2019; 74:276-284. [PMID: 31584530 DOI: 10.1097/fjc.0000000000000704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems are evolutionarily conserved throughout species. As a result, the immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interaction between metabolic disturbances and the immune system has been most extensively studied in disorders related to obesity such as insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease. Metabolically induced inflammation seems also to play a role in the development and progression of atherosclerosis including its complications such as myocardial infarction (MI) and post-MI remodeling. There are several lines of evidence suggesting that NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a sensor of metabolic stress linking metabolic disturbances to inflammation. Here, we will discuss the role of the NLRP3 inflammasome in the pathogenesis of obesity and diabetes, 2 important risk factors for atherosclerosis and MI. We will also discuss the role of NLRP3 inflammasome in the interaction between metabolic disturbances and myocardial inflammation during MI and during metabolically induced myocardial remodeling.
Collapse
Affiliation(s)
- Marina Sokolova
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
46
|
Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. J Cell Physiol 2019; 234:14773-14782. [PMID: 30746697 DOI: 10.1002/jcp.28275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
When endoplasmic reticulum (ER) homeostasis is disrupted, known as ER stress (ERS), the ER generates an adaptive signaling pathway called the unfolded protein response to maintain the homeostasis of this organelle. However, if homeostasis is not restored, the ER initiates death signaling pathways, which contribute to the pathogenesis of various disorders. The activation of inflammatory mechanisms is also emerging as a crucial component of cardiovascular and metabolic disorders. Furthermore, the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has attracted more attention than others and is the best-characterized member of the NLR family of inflammasomes to date. ERS intersects with many different inflammatory pathways, particularly the NLRP3 inflammasome. In this review, we focus on the interactions between ERS and the NLRP3 inflammasome. The pharmacologic and nonpharmaceutical manipulation of these two processes may offer novel opportunities for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wei Hu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
47
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Szekanecz Z, Szamosi S, Kovács GE, Kocsis E, Benkő S. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Arch Biochem Biophys 2019; 670:82-93. [DOI: 10.1016/j.abb.2019.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
49
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
50
|
Menikdiwela KR, Ramalingam L, Allen L, Scoggin S, Kalupahana NS, Moustaid-Moussa N. Angiotensin II Increases Endoplasmic Reticulum Stress in Adipose Tissue and Adipocytes. Sci Rep 2019; 9:8481. [PMID: 31186446 PMCID: PMC6560092 DOI: 10.1038/s41598-019-44834-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/15/2019] [Indexed: 01/23/2023] Open
Abstract
The Renin Angiotensin System (RAS), a key regulator of blood pressure has been linked to metabolic disorders. We have previously reported that adipose overexpression of angiotensinogen in mice (Agt-Tg) induces obesity, in part mediated by adipose tissue inflammation, through yet unidentified mechanisms. Hence, we hypothesize that adipose tissue enrichment of angiotensinogen leads to activation of inflammatory cascades and endoplasmic reticulum (ER) stress, thereby, contributing to obesity. We used wild type (Wt), Agt-Tg and Agt-knockout (KO) mice along with 3T3-L1 and human adipocytes treated with RAS, ER stress and inflammation inhibitors. ER stress and pro-inflammation markers were significantly higher in Agt-Tg compared to Wt mice and captopril significantly reduced their expression. Furthermore, in vitro treatment with Ang II significantly induced ER stress and inflammation, whereas angiotensin II receptor inhibitor, telmisartan reduced RAS effects. Moreover, miR-30 family had significantly lower expression in Agt-Tg group. MiR-708-5p and -143-3p were upregulated when RAS was overexpressed, and RAS antagonists reduced miR-143-3p and -708-5p in both mouse adipose tissue and adipocytes. Activation of RAS by Ang II treatment, increased inflammation and ER stress in adipocytes mainly via AT1 receptor, possibly mediated by miR-30 family, -708-5p and/or -143-3p. Hence, RAS and mediating microRNAs could be used as potential targets to reduce RAS induced obesity and related comorbid diseases.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - London Allen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.,Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA. .,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|