1
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2025; 203:624-634. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
2
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Huang L, Cao C, Lin X, Lu L, Lin X, Liu HC, Odle J, See MT, Zhang L, Wu W, Luo X, Liao X. Zinc alleviates thermal stress-induced damage to the integrity and barrier function of cultured chicken embryonic primary jejunal epithelial cells via the MAPK and PI3K/AKT/mTOR signaling pathways. Poult Sci 2024; 103:103696. [PMID: 38593549 PMCID: PMC11016803 DOI: 10.1016/j.psj.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 μmol Zn/L was more effective than 100 μmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 μmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 μmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Yao W, Wang T, Huang L, Bao Z, Wen S, Huang F. Embelin alleviates weaned piglets intestinal inflammation and barrier dysfunction via PCAF/NF-κB signaling pathway in intestinal epithelial cells. J Anim Sci Biotechnol 2022; 13:139. [PMID: 36514139 PMCID: PMC9749222 DOI: 10.1186/s40104-022-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intestinal barrier plays key roles in maintaining intestinal homeostasis. Inflammation damage can severely destroy the intestinal integrity of mammals. This study was conducted to investigate the protective effects of embelin and its molecular mechanisms on intestinal inflammation in a porcine model. One hundred sixty 21-day-old castrated weaned pigs (Duroc × Landrace × Yorkshire, average initial body weight was 7.05 ± 0.28 kg, equal numbers of castrated males and females) were allotted to four groups and fed with a basal diet or a basal diet containing 200, 400, or 600 mg embelin/kg for 28 d. The growth performance, intestinal inflammatory cytokines, morphology of jejunum and ileum, tight junctions in the intestinal mucosa of piglets were tested. IPEC-1 cells with overexpression of P300/CBP associating factor (PCAF) were treated with embelin, the activity of PCAF and acetylation of nuclear factor-κB (NF-κB) were analyzed to determine the effect of embelin on PCAF/NF-κB pathway in vitro. RESULTS The results showed that embelin decreased (P < 0.05) serum D-lactate and diamine oxidase (DAO) levels, and enhanced the expression of ZO-1, occludin and claudin-1 protein in jejunum and ileum. Moreover, the expression levels of critical inflammation molecules (interleukin-1β, interleukin-6, tumor necrosis factor-α, and NF-κB) were down-regulated (P < 0.05) by embelin in jejunal and ileal mucosa. Meanwhile, the activity of PCAF were down-regulated (P < 0.05) by embelin. Importantly, transfection of PCAF siRNAs to IPEC-1 cell decreased NF-κB activities; embelin treatment downregulated (P < 0.05) the acetylation and activities of NF-κB by 31.7%-74.6% in IPEC-1 cells with overexpression of PCAF. CONCLUSIONS These results suggested that embelin ameliorates intestinal inflammation in weaned pigs, which might be mediated by suppressing the PCAF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
6
|
Ro KS, Jong SI, Sin JI, Ryu UR, Jong CJ, Kim JH, Kim KC. Supplementation of Pinus densiflora bark extract-chitosan composite improves growth performance, nutrient digestibility, intestinal health in weaned piglets. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Dietary zinc restriction affects the expression of genes related to immunity and stress response in the small intestine of pigs. J Nutr Sci 2022; 11:e104. [PMID: 36452400 PMCID: PMC9705703 DOI: 10.1017/jns.2022.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc (Zn) is an essential mineral and its deficiency manifests in non-specific clinical signs that require long time to develop. The response of swine intestine to Zn restriction was evaluated to identify early changes that can be indicative of Zn deficiency. Twenty-seven pigs (body weight = 77⋅5 ± 2⋅5 kg) were assigned to one of three diets: diet without added Zn (Zn-restricted diet, ZnR), and ZnR-supplemented with either 50 (Zn50) or 100 mg of Zn/kg of diet (Zn100) of Zn supplied by ZnCl2. After 32 d consuming the diets, serum Zn concentration in ZnR pigs was below the range of 0⋅59-1⋅37 μg/ml considered sufficient, thereby confirming subclinical Zn deficiency. Pigs showed no obvious health or growth changes. RNA-seq analysis followed by qPCR showed decreased expression of metallothionein-1 (MT1) (P < 0⋅05) and increased expression of Zn transporter ZIP4 (P < 0⋅05) in jejunum and ileum of ZnR pigs compared with Zn-supplemented pigs. Ingenuity pathway analysis revealed that Zn50 and Zn100 induced changes in genes related to nucleotide excision repair and integrin signalling pathways. The top gene network in the ZnR group compared with Zn100 was related to lipid and drug metabolism; and compared with Zn50, was related to cellular proliferation, assembly and organisation. Dietary Zn concentrations resulted in differences in genes related to immune pathways. Our analysis showed that small intestine presents changes associated with Zn deficiency after 32 d of Zn restriction, suggesting that the intestine could be a sentinel organ for Zn deficiency.
Collapse
|
8
|
Wan Y, Zhang B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022; 12:biom12070900. [PMID: 35883455 PMCID: PMC9313088 DOI: 10.3390/biom12070900] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc is an essential trace element for living organisms, and zinc homeostasis is essential for the maintenance of the normal physiological functions of cells and organisms. The intestine is the main location for zinc absorption and excretion, while zinc and zinc homeostasis is also of great significance to the structure and function of the intestinal mucosal barrier. Zinc excess or deficiency and zinc homeostatic imbalance are all associated with many intestinal diseases, such as IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), and CRC (colorectal cancer). In this review, we describe the role of zinc and zinc homeostasis in the intestinal mucosal barrier and the relevance of zinc homeostasis to gastrointestinal diseases.
Collapse
|
9
|
Oligosaccharide and Flavanoid Mediated Prebiotic Interventions to Treat Gut Dysbiosis Associated Cognitive Decline. J Neuroimmune Pharmacol 2022; 17:94-110. [PMID: 35043295 DOI: 10.1007/s11481-021-10041-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Oligosaccharides are potential prebiotic which maintains gut microbiota and improves gut health. The association of gut and brain is named as gut-brain-axis. Gut dysbiosis disrupts gut-brain-axis and effectively contributes to psychiatric disorders. In the present study, Xylo-oligosaccharide (XOS) and Quercetin were used as therapeutic interventions against gut dysbiosis mediated cognitive decline. Gut dysbiosis was established in mice through administration of Ampicillin Sodium, orally for 14 days. XOS and quercetin were administered separately or in combination along with antibiotic. Gene expression studies using mice faecal samples showed both XOS and quercetin could revive Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were reduced due to antibiotic treatment. FITC-dextran concentration in serum revealed XOS and quercetin protected intestinal barrier integrity against antibiotic associated damage. This was verified by histopathological studies showing restored intestinal architecture. Moreover, intestinal inflammation which increased after antibiotic treated animals was reduced upon XOS and quercetin treatment. Behavioural studies demonstrated that gut dysbiosis reduced fear conditioning, spatial and recognition memory which were reversed upon XOS and quercetin treatment. XOS and quercetin also reduced inflammation and acetylcholine esterase which were heightened in antibiotic treated animal brain. They also reduced oxidative stress, pro-inflammatory cytokines and chemokines and protected hippocampal neurons. In conclusion, XOS and quercetin effectively reduced antibiotic associated gut dysbiosis and prevented gut dysbiosis associated cognitive decline in mice.
Collapse
|
10
|
Chang Y, Mei J, Yang T, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Wu F, Jia G. Effect of Dietary Zinc Methionine Supplementation on Growth Performance, Immune Function and Intestinal Health of Cherry Valley Ducks Challenged With Avian Pathogenic Escherichia coli. Front Microbiol 2022; 13:849067. [PMID: 35602082 PMCID: PMC9115567 DOI: 10.3389/fmicb.2022.849067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate the effects of supplemental zinc methionine (Zn-Met) on growth performance, immune function, and intestinal health of meat ducks challenged with avian pathogenic Escherichia coli (APEC). A total of 480 1-day-old Cherry Valley male ducks were randomly assigned to 8 treatments with 10 replicates, each replicate containing 10 ducks. A 4 × 2 factor design was used with four dietary zinc levels (0, 30, 60, 120 mg Zn/kg in the form Zn-Met was added to the corn-soybean basal diet) and challenged with or without APEC at 8-days-old ducks. The trial lasted for 14 days. The results showed that a dietary Zn-Met supplementation significantly increased body weight (BW) of 14 days and BW gain, and decreased mortality during 7-14-days-old ducks (p < 0.05). Furthermore, dietary 30, 60, 120 mg/kg Zn-Met supplementation noticeably increased the thymus index at 2 days post-infection (2 DPI) and 8 DPI (p < 0.05), and 120 mg/kg Zn-Met enhanced the serum IgA at 2 DPI and IgA, IgG, IgM, C3 at 8 DPI (p < 0.05). In addition, dietary 120 mg/kg Zn-Met supplementation dramatically increased villus height and villus height/crypt depth (V/C) of jejunum at 2 DPI and 8 DPI (p < 0.05). The TNF-α and IFN-γ mRNA expression were downregulated after supplemented with 120 mg/kg Zn-Met in jejunum at 8 DPI (p < 0.05). Moreover, dietary 120 mg/kg Zn-Met supplementation stimulated ZO-3, OCLN mRNA expression at 2 DPI and ZO-2 mRNA expression in jejunum at 8 DPI (p < 0.05), and improved the MUC2 concentration in jejunum at 2 DPI and 8 DPI (p < 0.05). At the same time, the cecal Bifidobacterium and Lactobacillus counts were increased (p < 0.05), and Escherichia coli counts were decreased (p < 0.05) after supplemented with Zn-Met. In conclusion, inclusion of 120 mg/kg Zn-Met minimizes the adverse effects of APEC challenge on meat ducks by improving growth performance and enhancing immune function and intestinal health.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jia Mei
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ting Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenyu Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Ma J, Liu S, Piao X, Wang C, Wang J, Lin YS, Hsu TP, Liu L. Dietary Supplementation of Ferrous Glycine Chelate Improves Growth Performance of Piglets by Enhancing Serum Immune Antioxidant Properties, Modulating Microbial Structure and Its Metabolic Function in the Early Stage. Front Vet Sci 2022; 9:876965. [PMID: 35548055 PMCID: PMC9083199 DOI: 10.3389/fvets.2022.876965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present research aimed to explore the effect of dietary ferrous glycine chelate supplementation on performance, serum immune-antioxidant parameters, fecal volatile fatty acids, and microbiota in weaned piglets. A total of 80 healthy piglets (weaned at 28 day with an initial weight of 7.43 ± 1.51 kg) were separated into two treatments with five replicates of eight pigs each following a completely randomized block design. The diet was a corn-soybean basal diet with 2,000 mg/kg ferrous glycine chelates (FGC) or not (Ctrl). The serum and fecal samples were collected on days 14 and 28 of the experiment. The results indicated that dietary FGC supplementation improved (p < 0.05) the average daily gain and average daily feed intake overall, alleviated (p < 0.05) the diarrhea rate of piglets at the early stage, enhanced (p < 0.05) the levels of superoxide dismutase and catalase on day 14 and lowered (p < 0.05) the MDA level overall. Similarly, the levels of growth hormone and serum iron were increased (p < 0.05) in the FGC group. Moreover, dietary FGC supplementation was capable of modulating the microbial community structure of piglets in the early period, increasing (p < 0.05) the abundance of short-chain fatty acid-producing bacteria Tezzerella, decreasing (p < 0.05) the abundance of potentially pathogenic bacteria Slackia, Olsenella, and Prevotella as well as stimulating (p < 0.05) the propanoate and butanoate metabolisms. Briefly, dietary supplemented FGC ameliorates the performance and alleviated the diarrhea of piglets by enhancing antioxidant properties, improving iron transport, up-regulating the growth hormone, modulating the fecal microbiota, and increasing the metabolism function. Therefore, FGC is effective for early iron supplementation and growth of piglets and may be more effective in neonatal piglets.
Collapse
Affiliation(s)
- Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangshu Piao
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu-sheng Lin
- Shanghai Bestar Biochemical Co. Ltd., Shanghai, China
| | - Tzu-ping Hsu
- Shanghai Bestar Biochemical Co. Ltd., Shanghai, China
| | - Li Liu
- Tianjin Zhongsheng Feed Co. Ltd., Tianjin, China
| |
Collapse
|
12
|
De Mille CM, Burrough ER, Kerr BJ, Schweer WP, Gabler NK. Dietary Pharmacological Zinc and Copper Enhances Voluntary Feed Intake of Nursery Pigs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.874284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the three experiments herein were to characterize the effect of pharmacological zinc and copper concentrations on nursery pig feed intake, stomach ghrelin, energy and nutrient digestibility, and mineral retention in post-weaned pigs. In Expt. 1, 300 weaned pigs were allotted across three dietary treatments (n = 10 pens/treatment) and fed in two diet phases (P1 and P2) lasting 7 and 14 days, respectively. Treatments were: (1) Control diet with no pharmacological minerals in P1 and P2, CON; (2) CON + 3,000 mg/kg Zn and 200 mg/kg Cu (P1), no pharmacological minerals in P2, ZC-CON; and (3) CON + 3,000 mg/kg Zn and 200 mg/kg Cu (P1), CON + 2,000 mg/kg Zn and 200 mg/kg Cu (P2); ZC. Over the 21-day test period, ZC pigs had 15% higher ADG and 13–24% ADFI compared to the CON and ZC-CON pigs (P < 0.05). ZC-CON and ZC pig daily feed intakes were 29 and 73% higher by day 5 and 7 post-weaning, respectively, compared to the CON pigs (P < 0.0001). However, removing pharmacological minerals in P2 abruptly decreased ZC-CON daily feed intake within 24 h to similar intakes as the CON compared to the ZC pigs (0.17, 0.14, and 0.22 kg/d, respectively, P < 0.05). Dietary pharmacological minerals increased stomach fundus ghrelin-positive cells than CON pigs at day 7 (P = 0.005) and day 21 (P < 0.001). However, fasting plasma total and acyl-ghrelin concentrations did not differ from a control in response to zinc oxide daily drenching (Expt. 2). Expt. 3 showed that zinc and copper to have moderate to low retention; however, pharmacological zinc and copper diets increased zinc (P < 0.05) and copper retention (P = 0.06) after 28 days post-weaning compared to control pigs. Pharmacological zinc and copper did not improve digestible energy, metabolizable energy or nitrogen balance. Altogether, dietary pharmacological zinc and copper concentrations improve growth rates and mineral retention in nursery pigs. This improved performance may partially be explained by increased stomach ghrelin abundance and enhanced early feed intake in newly weaned pigs fed pharmacological concentrations of zinc and copper.
Collapse
|
13
|
Mokone B, Motsei LE, Yusuf AO, Egbu CF, Ajayi TO. Growth, physiological performance, and pork quality of weaner large white piglets to different inclusion levels of nano zinc oxide. Trop Anim Health Prod 2021; 54:22. [PMID: 34950972 DOI: 10.1007/s11250-021-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Thirty intensively reared piglets averaged 7.6 ± 0.32 kg were used for the experiment. The piglets were randomly allotted to 5 different treatments: 200 mg/kg, 400 mg/kg, 600 mg/kg nano zinc oxide (nZnO; 50 nm), positive control (tylosin 10%), and the negative control (no additive) in a completely randomized design. Data were collected for weight changes, blood parameters, and carcass and meat quality characteristics. Piglets supplemented with 200 mg/kg had elevated (P < 0.05) weight gain, while those supplemented with 400 and 600 mg/kg nZnO had higher comparable weight gains, while the control groups had the least comparable weight gain values. Pigs fed 600 mg/kg of nano zinc had the highest albumin concentrations with the least values observed in 200 and 400 mg/kg groups. Pigs offered tylosin 10% and 600 mg/kg had higher comparable total protein, while those fed control diet had the lowest total protein concentration. Pigs supplemented with nZnO had highest comparable values for slaughter weights. The supplementation of 600 mg/kg had elevated values of villi height, while the groups supplemented with 200 and 400 mg/kg had a similar trend, and the control had the least comparable values of villi height. It could be concluded that the supplementation of nZnO at a dietary dose of 600 mg/kg gave the best performance in terms of intestinal morphology (villus height), growth performance, meat quality, and immune response.
Collapse
Affiliation(s)
- Bontle Mokone
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa
| | - Lebogang Ezra Motsei
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa
| | - Azeez Olanrewaju Yusuf
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B 2240, Abeokuta, Nigeria.
| | - Chidozie Freedom Egbu
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Department of Agricultural Education, Alvan Ikoku Federal College of Education, P.M.B 1033, Owerri, Nigeria
| | - Taiwo Olufemi Ajayi
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B 2240, Abeokuta, Nigeria
| |
Collapse
|
14
|
Zhang P, Jing C, Liang M, Jiang S, Huang L, Jiao N, Li Y, Yang W. Zearalenone Exposure Triggered Cecal Physical Barrier Injury through the TGF-β1/Smads Signaling Pathway in Weaned Piglets. Toxins (Basel) 2021; 13:toxins13120902. [PMID: 34941739 PMCID: PMC8708673 DOI: 10.3390/toxins13120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to investigate the effects of exposure to different dosages of zearalenone (ZEA) on cecal physical barrier functions and its mechanisms based on the TGF-β1/Smads signaling pathway in weaned piglets. Thirty-two weaned piglets were allotted to four groups and fed a basal diet supplemented with ZEA at 0, 0.15, 1.5, and 3.0 mg/kg, respectively. The results showed that 1.5 and 3.0 mg/kg ZEA damaged cecum morphology and microvilli, and changed distribution and shape of M cells. Moreover, 1.5 and 3.0 mg/kg ZEA decreased numbers of goblet cells, the expressions of TFF3 and tight junction proteins, and inhibited the TGF-β1/Smads signaling pathway. Interestingly, the 0.15 mg/kg ZEA had no significant effect on cecal physical barrier functions but decreased the expressions of Smad3, p-Smad3 and Smad7. Our study suggests that high-dose ZEA exposure impairs cecal physical barrier functions through inhibiting the TGF-β1/Smads signaling pathway, but low-dose ZEA had no significant effect on cecum morphology and integrity through inhibiting the expression of smad7. These findings provide a scientific basis for helping people explore how to reduce the toxicity of ZEA in feeds.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Changwei Jing
- Technical Department, Shandong Chinwhiz Co., Ltd., Weifang 262400, China;
| | - Ming Liang
- Department of Feeding Microecology, Shandong Baolaililai Bioengineering Co., Ltd., Tai’an 271001, China;
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Ning Jiao
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Yang Li
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| |
Collapse
|
15
|
Chitosan-chelated zinc modulates ileal microbiota, ileal microbial metabolites, and intestinal function in weaned piglets challenged with Escherichia coli K88. Appl Microbiol Biotechnol 2021; 105:7529-7544. [PMID: 34491402 DOI: 10.1007/s00253-021-11496-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023]
Abstract
This study was to investigate the effects of chitosan-chelated zinc on ileal microbiota, inflammatory response, and barrier function in weaned piglets challenged with Escherichia coli K88. Piglets of the chitosan-chelated zinc treatment (Cs-Zn; 100 mg zinc + 766 mg chitosan/kg basal diet, from chitosan-chelated zinc) and the chitosan treatment (CS, 766 mg chitosan/kg basal diet) had significantly increased ileal villus height and the ratio of villi height to crypt depth. CS-Zn group piglets had a higher abundance of Lactobacillus in the ileal digesta, while the abundance of Streptococcus, Escherichia shigella, Actinobacillus, and Clostridium sensu stricto 6 was significantly decreased. The concentrations of propionate, butyrate, and lactate in the CS-Zn group piglets were significantly increased, while the pH value was significantly decreased. Furthermore, the concentrations of IL-1β, TNF-α, MPO, and INF-γ in the ileal mucosa of the CS-Zn and the H-ZnO group (pharmacological dose of 1600 mg Zn/kg basal diet, from ZnO) were significantly lower than those of the control group fed with basal diet, and the mRNA expression of TLR4, MyD88, and NF-κB of the CS-Zn group was also reduced. In addition, the mRNA expression of IGF-1 was increased, the protein expression of occludin and claudin-1 was enhanced, while the mRNA expression of caspase 3 and caspase 8 was decreased in the CS-Zn group. These results suggest CS-Zn treatment could help modulate the composition of ileal microbiota, attenuate inflammatory response, and maintain the intestinal function in weaned piglets challenged with Escherichia coli K88. KEY POINTS: • Chitosan-chelated zinc significantly modulated ileal microbiota. • Chitosan-chelated zinc can improve ileal health. • The ileal microbiota plays an important role in host health.
Collapse
|
16
|
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 2021; 236:113411. [PMID: 33811908 DOI: 10.1016/j.physbeh.2021.113411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Saccharomyces boulardii, a probiotic yeast is well prescribed for various gastrointestinal disorders accompanied by gut dysbiosis such as inflammatory bowel disease, bacterial diarrhea and antibiotic associated diarrhea. Gut dysbiosis has been associated with central nervous system via gut brain axis primarily implied in the modulation of psychiatric conditions. In the current study we use Saccharomyces boulardii as a therapeutic agent against gut dysbiosis associated cognitive decline. In mice, gut dysbiosis was induced by oral Ampicillin Na (250 mg/kg twice-daily) for 14 days. While in the treatment group S. boulardii (90 mg/kg once a day) was administered orally for 21 days along with 14 days of antibiotic treatment. Gene expression studies revealed antibiotic mediated decrease in the Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were restored by S. boulardii treatment. Cognitive behavioral studies showed a parallel reduction in fear conditioning, spatial as well as recognition memory which were reversed upon S. boulardii treatment in these animals. S. boulardii treatment reduced myeloperoxidase enzyme, an inflammatory marker, in colon as well as brain which was increased after antibiotic administration. Similarly, S. boulardii reduced the brain acetylcholine esterase, oxidative stress and inflammatory cytokines and chemokines which were altered due to antibiotic treatment. S. boulardii treatment also protected hippocampal neuronal damage and restored villus length and crypt depth thus normalizing gut permeability in antibiotic treated animals. Hence, we conclude that S. boulardii prevented antibiotic associated gut dysbiosis leading to reduced intestinal and brain inflammation and oxidative stress thus preventing hippocampal neuronal damage and eventually reversing gut dysbiosis associate cognitive decline in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Abhishek Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Maria Adhikary
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
17
|
Li X, Wen J, Jiao L, Wang C, Hong Q, Feng J, Hu C. Dietary copper/zinc-loaded montmorillonite improved growth performance and intestinal barrier and changed gut microbiota in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2021; 105:678-686. [PMID: 33793003 DOI: 10.1111/jpn.13522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, intestinal barrier and gut microbiota of weaned pigs were investigated in the present study. A total of 108 piglets (Duroc × Landrace × Yorkshire; 6.36 kg; weaned at 21 ± 1 d age) were used in this experiment. The pigs were randomly assigned to three treatments with six replicates, six pigs in each replicate. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet supplemented with 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; and (3) Cu +Zn +Mt group: basal diet supplemented with the mixture of copper sulphate, zinc sulphate and montmorillonite (equivalent to the copper and zinc in the Cu/Zn-Mt treatment). The results indicated that, compared with the pigs from control group, average daily gain and gain: feed ratio were increased and the faecal score on days 7 and 14 after weaning was decreased by supplementation of Cu/Zn-Mt; intestinal transepithelial electrical resistance (TER) and expressions of tight junction protein claudin-1 and zonula occludens-1 were increased, and intestinal permeability of fluorescein isothiocyanate-dextran 4 kDa was decreased by supplementation with Cu/Zn-Mt. According to the Illumina-based sequencing results, Cu/Zn-Mt supplementation increased the relative abundance of core bacteria (Lactococcus, Bacillus) at genus level and decreased the potentially pathogenic bacteria (Streptococcus and Pseudomonas) in colon of weaned piglets. However, the piglets fed with the mixture of copper sulphate, zinc sulphate and montmorillonite showed no effects in above parameters in comparison with the pigs from control group. In conclusion, dietary Cu/Zn-Mt could improve growth performance, decrease the diarrhoea and improve intestinal barrier and bacterial communities of weaned pigs. The results indicated that 'loading' of montmorillonite with Zn and Cu changed not only its chemical but also its nutritional properties.
Collapse
Affiliation(s)
- Xin Li
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jiashu Wen
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Lefei Jiao
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Chunchun Wang
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Qihua Hong
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jie Feng
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Caihong Hu
- College of animal science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
18
|
Roy Sarkar S, Mitra Mazumder P, Banerjee S. Probiotics protect against gut dysbiosis associated decline in learning and memory. J Neuroimmunol 2020; 348:577390. [PMID: 32956951 DOI: 10.1016/j.jneuroim.2020.577390] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Gut-Brain-Axis imbalance due to gut dysbiosis by antibiotics may lead to neurobehavioral changes. Here we determine neuroprotective effect of probiotic against gut dysbiosis associated decline in learning and memory. Oral Ampicillin was used to induce gut dysbiosis while probiotic was administered along with antibiotic as treatment in Swiss albino mice. Antibiotic decreased Lactobacillus, Bifidobacterium, Firmicutes and Clostridium level. This was followed by reduced cognition, hippocampal neuronal density, intestinal crypt depth, villus length and increased corticohippocampal acetylcholinesterase, myeloperoxidase activity and oxidative stress which were partially reversed by probiotic treatment. Probiotic protected hippocampal neurons from gut dysbiosis associated inflammatory and oxidative damage in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Division of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
19
|
Goudarzi R, Nasab ME, Saffari PM, Zamanian G, Park CD, Partoazar A. Evaluation of ROCEN on Burn Wound Healing and Thermal Pain: Transforming Growth Factor-β1 Activation. INT J LOW EXTR WOUND 2020; 20:337-346. [DOI: 10.1177/1534734620915327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study aimed to evaluate the effect of liposomal arthrocen 2% (ROCEN) on the healing of burn wound and pain alleviation of thermal stimuli in a rat model of the second-degree burn. The results showed that ROCEN formulation significantly improved the main parameters of burn wound healing in a short period of time (7 days). The percentage of wound surface was also reduced significantly compared with the control group following once daily application of ROCEN for 14 days. The level of TGF (transforming growth factor)-β1 cytokine was also elevated significantly in the burn tissue treated with ROCEN almost the same as zinc oxide cream. Also, ROCEN showed a significant analgesic effect evaluated by 2 models of acute thermal pain, tail-flick and hotplate tests, which suggested that the formulation may act as a pain reliever in burn injuries. In conclusion, the application of the topical formulation of ROCEN may have benefits in the acceleration of the wound healing process and alleviation of the pain due to burn injuries.
Collapse
Affiliation(s)
- Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, USA
| | - Maryam Eskandary Nasab
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Partow Mirzaee Saffari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Zamanian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Chong Deok Park
- School of Pharmacy, Sungkyunkwan University, Seoul, South Korea
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
21
|
Pei X, Xiao Z, Liu L, Wang G, Tao W, Wang M, Zou J, Leng D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1366-1374. [PMID: 30094852 DOI: 10.1002/jsfa.9312] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study evaluated the effects of dietary zinc oxide nanoparticles (nano-ZnOs) on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned piglets. A total of 150 weaned piglets (9.37 ± 0.48 kg) were randomly allotted to five dietary treatments and fed with a basal diet (control), or the basal diet supplemented with nano-ZnOs at 150, 300, or 450 mg kg-1 , and 3000 mg kg-1 ZnO for 21 days. After a feeding test, six pigs from the control, 450 mg kg-1 nano-ZnOs and 3000 mg kg-1 ZnO groups were slaughtered. RESULTS Compared with the control, dietary supplements of nano-ZnOs and ZnO could improve (P < 0.05) average daily weight gain (ADG), average daily feed intake (ADFI), and villus height to crypt depth ratio in the duodenum and jejunum, and decrease (P < 0.05) diarrhea incidence. Zinc retention in the serum, heart, liver, spleen and kidney of pigs supplemented with nano-ZnOs and ZnO was increased (P < 0.05). Nano-ZnOs decreased (P < 0.05) the zinc excretion compared with conventional ZnO. Lower Escherichia coli counts in the cecum, colon, and rectum were observed (P < 0.05) in the nano-ZnOs group compared with the other groups. Compared with the control, ZnO and nano-ZnOs increased (P < 0.05) the serum concentration of IgA, IL-6, and TNF-α, and decreased (P < 0.05) the concentration of IgM. CONCLUSION These results indicated that low doses of nano-ZnOs can have beneficial effects on growth performance, intestinal morphology and microflora, and immunity in weanling pigs, which are similar to the effects of pharmacological dosages of conventional ZnO. Nano-ZnOs may reduce mineral excretion, which may reduce environmental challenges. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Pei
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiping Xiao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Geng Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wenjing Tao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Minqi Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Junbiao Zou
- Jiangxi Innovating Science and Technology Co., Ltd, Nanchang, People's Republic of China
| | - Dongbi Leng
- Jiangxi Innovating Science and Technology Co., Ltd, Nanchang, People's Republic of China
| |
Collapse
|
22
|
Zhuo Z, Yu X, Li S, Fang S, Feng J. Heme and Non-heme Iron on Growth Performances, Blood Parameters, Tissue Mineral Concentration, and Intestinal Morphology of Weanling Pigs. Biol Trace Elem Res 2019; 187:411-417. [PMID: 29770950 DOI: 10.1007/s12011-018-1385-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
This experiment was conducted to evaluate the effects of heme and non-heme iron sources on growth performances, blood parameters, tissue mineral concentration, and intestinal morphology in weanling pigs. At 25 days of age, 32 newly weaned piglets (Duroc × Landrace × Yorkshire; 8.66 ± 0.59 kg) were allocated to one of the following dietary treatments: control group (basal diet with no extra iron addition), FeSO4 group (basal diet + 100 mg Fe/kg as FeSO4), Fe-Gly group (basal diet + 100 mg Fe/kg as Fe-Gly), and Heme group (basal diet + 100 mg Fe/kg as Heme). Each treatment had eight replicates and one pig per replicate. The experiment lasted for 28 days. The results showed that compared with basal diet, supplement with 100 mg/kg iron can increase ADG of the piglets, especially in the late experiment period (15~28 days). Heme significantly increased the a* value of longissimus dorsi muscle of piglets when compared with other iron sources (P < 0.05). The iron supplementations had no significant effect on hematological parameters, while Fe-Gly and heme increased pigs' serum iron content on day 28 when compared with FeSO4 and basal diet (P < 0.05). The liver iron deposition in pigs fed Fe-Gly and heme was also higher than those fed FeSO4 or basal diet (P < 0.05). Besides, diet supplement with iron significantly increased villus height (P < 0.05) in duodenum and it had tendency to increase villus height and crypt depth ratio in duodenum (P = 0.095). In conclusion, iron supplementation in diets can improve piglet's body iron state and intestinal development, but Fe-Gly and heme exhibited better bioavailability than traditional additive of FeSO4.
Collapse
Affiliation(s)
- Zhao Zhuo
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaonan Yu
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Sisi Li
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shenglin Fang
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Lei XJ, Kim IH. Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Wang W, Van Noten N, Degroote J, Romeo A, Vermeir P, Michiels J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2018; 103:231-241. [PMID: 30298533 DOI: 10.1111/jpn.12999] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Zinc oxide (ZnO) supplied at pharmacological dosage in diets of weaned piglets improves growth performance. However, it causes environmental contamination and induces bacterial antibiotic resistance, yet this practice is debated. The effects on gut microbiota and integrity in weaned piglets of conventional ZnO at nutritional and pharmacological dosage (110 and 2,400 mg/kg Zn, respectively) were compared to an alternative ZnO source at 110 and 220 mg/kg Zn. Each of the four treatments was applied to four pens (two piglets/pen; weaning age, 20 days) for 15 days, and piglets were sampled on day 15 to determine indices of gut integrity. Feeding conventional ZnO at 2,400 mg/kg Zn reduced coliforms and Escherichia coli in distal small intestine as compared to conventional ZnO at 110 mg/kg (-1.7 and -1.4 log10 cfu/g, respectively), whereas the alternative ZnO reduced only coliforms, irrespective of dosage (-1.6 to -1.7 log10 cfu/g). Transepithelial electrical resistance of distal small intestinal mucosa was higher for pigs fed the alternative ZnO source as compared with groups fed 110 mg/kg Zn of conventional ZnO, in line with a trend for higher gene expression of claudin-1 and zona occludens-1. Interestingly, the alternative ZnO source at 110 and 220 mg/kg Zn increased intestinal alkaline phosphatase gene transcript as compared to conventional ZnO at 110 mg/kg Zn, whereas the alternative ZnO source at 110 mg/kg Zn exhibited higher Zn concentrations in mucosa (2,520 μg/g) as compared to conventional ZnO at 110 mg/kg Zn (1,211 μg/g). However, assessing alkaline phosphatase activity, no significant effects were found. In conclusion, the alternative ZnO reduced digesta Enterobacteriaceae numbers and improved gut integrity, albeit similar or better, depending on the dosage, to the effects of pharmacological dosage of conventional ZnO.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Pieter Vermeir
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
25
|
Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV, Lee SA, Kwon WB, Mathai JK, Navarro DM, Jaworski NW, Stein HH. Non-antibiotic feed additives in diets for pigs: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:113-125. [PMID: 30140751 PMCID: PMC6103469 DOI: 10.1016/j.aninu.2018.01.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023]
Abstract
A number of feed additives are marketed to assist in boosting the pigs' immune system, regulate gut microbiota, and reduce negative impacts of weaning and other environmental challenges. The most commonly used feed additives include acidifiers, zinc and copper, prebiotics, direct-fed microbials, yeast products, nucleotides, and plant extracts. Inclusion of pharmacological levels of zinc and copper, certain acidifiers, and several plant extracts have been reported to result in improved pig performance or improved immune function of pigs. It is also possible that use of prebiotics, direct-fed microbials, yeast, and nucleotides may have positive impacts on pig performance, but results have been less consistent and there is a need for more research in this area.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95817, USA
| | | | | | - Gloria A. Casas
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Production, College of Animal and Veterinary Sciences, University of Colombia, Bogota 111321, Colombia
| | - L. Vanessa Lagos
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Su A. Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Woong B. Kwon
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - John K. Mathai
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Hans H. Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Song YM, Kim MH, Kim HN, Jang I, Han JH, Fontamillas GA, Lee CY, Park BC. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:403-409. [PMID: 29268571 PMCID: PMC5838346 DOI: 10.5713/ajas.17.0718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 12/17/2017] [Indexed: 11/28/2022]
Abstract
Objective The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO) supplement Shield Zn (SZ) at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively), 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH) and crypt depth (CD) of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05). The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I) and interleukin (IL)-10 regressed and tended to regress (p = 0.053) on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis factor-α, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth factor-β1 mRNA levels were lower for the SZ group than for PC. Conclusion The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.
Collapse
Affiliation(s)
- Young Min Song
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Myeong Hyeon Kim
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Ha Na Kim
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Insurk Jang
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Giselle Ann Fontamillas
- Graduate School of International Agricultural Technology, and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Chul Young Lee
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
27
|
Wang CC, Wu H, Lin FH, Gong R, Xie F, Peng Y, Feng J, Hu CH. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate Immun 2017; 24:40-46. [PMID: 29183244 PMCID: PMC6830759 DOI: 10.1177/1753425917741970] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the effects of sodium butyrate on the intestinal barrier and mast cell activation, as well as inflammatory mediator production, and determine whether mitogen-activated protein kinase signaling pathways are involved in these processes. A total of 72 piglets, weaned at 28 ± 1 d age, were allotted to two dietary treatments (control vs. 450 mg/kg sodium butyrate) for 2 wk. The results showed that supplemental sodium butyrate increased daily gain, improved intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function reflected by increased transepithelial electrical resistance and decreased paracellular flux of dextran (4 kDa). Moreover, sodium butyrate reduced the percentage of degranulated mast cells and its inflammatory mediator content (histamine, tryptase, TNF-α and IL-6) in the jejunum mucosa. Sodium butyrate also decreased the expression of mast cell-specific tryptase, TNF-α and IL-6 mRNA. Sodium butyrate significantly decreased the phosphorylated ratio of JNK whereas not affecting the phosphorylated ratios of ERK and p38. The results indicated that the protective effects of sodium butyrate on intestinal integrity were closely related to inhibition of mast cell activation and inflammatory mediator production, and that the JNK signaling pathway was likely involved in this process.
Collapse
Affiliation(s)
- Chun Chun Wang
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Huan Wu
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Fang Hui Lin
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Rong Gong
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Fei Xie
- 2 Shanghai Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Yan Peng
- 2 Shanghai Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Jie Feng
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Cai Hong Hu
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Jiao L, Wang CC, Wu H, Gong R, Lin FH, Feng J, Hu C. Copper/zinc-loaded montmorillonite influences intestinal integrity, the expression of genes associated with inflammation, TLR4-MyD88 and TGF-β1 signaling pathways in weaned pigs after LPS challenge. Innate Immun 2017; 23:648-655. [PMID: 28958208 DOI: 10.1177/1753425917733033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study was aimed at investigating whether dietary copper/zinc-loaded montmorillonite (Cu/Zn-Mt) could alleviate Escherichia coli LPS-induced intestinal injury through pro- and anti-inflammatory signaling pathways (TLRs, NLRs and TGF-β1) in weaned piglets. Eighteen 21-d-old pigs were randomly divided into three groups (control, LPS and LPS + Cu/Zn-Mt). After 21 d of feeding, pigs in the LPS group and LPS + Cu/Zn-Mt group received i.p. administration of LPS, whereas pigs in the control group received saline. At 4 h post-injection, jejunum samples were collected for analysis. The results indicated that, compared with the LPS group, supplemental Cu/Zn-Mt increased transepithelial electrical resistance, the expressions of anti-inflammatory cytokines (TGF-β1) in mRNA and protein levels, and decreased FD4 and the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-8 and IL-1β). The pro-inflammatory signaling pathways results demonstrated that Cu/Zn-Mt supplementation decreased the mRNA levels of TLR4 and its downstream signals (MyD88, IRAK1, TRAF6) but had no effect on NOD1 and NOD2 signals. Cu/Zn-Mt supplementation did not affect NF-κB p65 mRNA abundance, but down-regulated its protein expression. The anti-inflammatory signaling pathways results showed supplemental Cu/Zn-Mt also increased TβRII, Smad4 and Smad7 mRNA expressions. These findings suggested dietary Cu/Zn-Mt attenuated LPS-induced intestinal injury by alleviating intestinal inflammation, influencing TLR4-MyD88 and TGF-β1 signaling pathways in weaned pig.
Collapse
Affiliation(s)
- Lefei Jiao
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Chun Chun Wang
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Huan Wu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Rong Gong
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Fang Hui Lin
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Jie Feng
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
29
|
Shao YX, Lei Z, Wolf PG, Gao Y, Guo YM, Zhang BK. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged bySalmonella entericaSerovar Typhimurium. J Nutr 2017; 147:1282-1289. [DOI: 10.3945/jn.116.243238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yu-Xin Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhao Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Patricia G Wolf
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yan Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing-Kun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 2017; 8:64878-64891. [PMID: 29029398 PMCID: PMC5630298 DOI: 10.18632/oncotarget.17612] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/19/2017] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to determine whether low dose of zinc oxide nanoparticles (Nano-ZnO) could serve as a potential substitute of pharmacological dose of traditional ZnO in weaned piglets. 180 crossbred weaning piglets were randomly assigned to 3 treatments. Experimental animals were fed basal diet supplemented with 0 mg Zn/kg (Control), 600 mg Zn/kg (Nano-ZnO) and 2000 mg Zn/kg (ZnO) for 14 days. On day 14 after weaning, the piglets fed Nano-ZnO did not differ from those fed traditional ZnO in growth performance and jejunal morphology, while Nano-ZnO treatment could significantly alleviate the incidence of diarrhea (P < 0.05). In jejunum, the mRNA expressions of intestinal antioxidant enzymes and tight junction proteins were increased (P < 0.05) in Nano-ZnO treatment. In ileum, the expression levels of IFN-γ, IL-1β, TNF-α and NF-κB were decreased (P < 0.05). Gene sequencing analysis of 16S rRNA revealed that dietary Nano-ZnO increased the bacterial richness and diversity in ileum, while decreased both of them in cecum and colon. Specifically, the relative abundances of Streptococcus in ileum, Lactobacillus in colon were increased, while the relative abundances of Lactobacillus in ileum, Oscillospira and Prevotella in colon were decreased (P < 0.05). In conclusion, our data reveal that low dose of Nano-ZnO (600 mg Zn/kg) can effectively reduce piglet diarrhea incidence, similar to high dose of traditional ZnO (2000 mg Zn/kg), which may be mediated by improving intestinal microbiota and inflammation response in piglets, and help to reduce zinc environmental pollution.
Collapse
|
31
|
Shao Y, Wolf PG, Guo S, Guo Y, Gaskins HR, Zhang B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem 2017; 43:18-26. [PMID: 28193579 DOI: 10.1016/j.jnutbio.2017.01.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022]
|
32
|
Hulst M, Jansman A, Wijers I, Hoekman A, Vastenhouw S, van Krimpen M, Smits M, Schokker D. Enrichment of in vivo transcription data from dietary intervention studies with in vitro data provides improved insight into gene regulation mechanisms in the intestinal mucosa. GENES AND NUTRITION 2017; 12:11. [PMID: 28413565 PMCID: PMC5390468 DOI: 10.1186/s12263-017-0559-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
Abstract
Background Gene expression profiles of intestinal mucosa of chickens and pigs fed over long-term periods (days/weeks) with a diet rich in rye and a diet supplemented with zinc, respectively, or of chickens after a one-day amoxicillin treatment of chickens, were recorded recently. Such dietary interventions are frequently used to modulate animal performance or therapeutically for monogastric livestock. In this study, changes in gene expression induced by these three interventions in cultured “Intestinal Porcine Epithelial Cells” (IPEC-J2) recorded after a short-term period of 2 and 6 hours, were compared to the in vivo gene expression profiles in order to evaluate the capability of this in vitro bioassay in predicting in vivo responses. Methods Lists of response genes were analysed with bioinformatics programs to identify common biological pathways induced in vivo as well as in vitro. Furthermore, overlapping genes and pathways were evaluated for possible involvement in the biological processes induced in vivo by datamining and consulting literature. Results For all three interventions, only a limited number of identical genes and a few common biological processes/pathways were found to be affected by the respective interventions. However, several enterocyte-specific regulatory and secreted effector proteins that responded in vitro could be related to processes regulated in vivo, i.e. processes related to mineral absorption, (epithelial) cell adherence and tight junction formation for zinc, microtubule and cytoskeleton integrity for amoxicillin, and cell-cycle progression and mucus production for rye. Conclusions Short-term gene expression responses to dietary interventions as measured in the in vitro bioassay have a low predictability for long-term responses as measured in the intestinal mucosa in vivo. The short-term responses of a set regulatory and effector genes, as measured in this bioassay, however, provided additional insight into how specific processes in piglets and broilers may be modulated by “early” signalling molecules produced by enterocytes. The relevance of this set of regulatory/effector genes and cognate biological processes for zinc deficiency and supplementation, gluten allergy (rye), and amoxicillin administration in humans is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0559-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcel Hulst
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Alfons Jansman
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ilonka Wijers
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Arjan Hoekman
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Stéphanie Vastenhouw
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Marinus van Krimpen
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Mari Smits
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Dirkjan Schokker
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
33
|
Effect of dietary zinc on morphological characteristics and apoptosis related gene expression in the small intestine of Bama miniature pigs. Acta Histochem 2017; 119:235-243. [PMID: 28174029 DOI: 10.1016/j.acthis.2017.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/24/2022]
Abstract
To investigate the effects of dietary zinc (Zn) on small intestinal mucosal epithelium, 6-month-old male Bama miniature pigs were randomly allocated into three groups and treated with three levels of Zn (Control, T1, and T2 diet supplemented with 0, 50, and 1500mg/kg Zn, respectively, as zinc sulfate) for 38days. The samples of small intestine tissues, serum, and feces were collected. The results showed that Zn concentrations of small intestine in the T2 group were higher than those in the control and T1 groups (p<0.05). In the T2 group, the pharmacological dose of dietary Zn treatment caused marked damage to the small intestinal epithelium. The expression of Bax, cleaved caspase-3, and caspase-8 were increased in the duodenum and the jejunum of the T2 group (p<0.05). The mRNA transcript levels of BAX, CYCS and CASP3 genes were upregulated in the duodenum and the jejunum of the T2 group. We concluded that a diet with a pharmacological dose of Zn increased the accumulation of Zn and the expression of Bax, cleaved caspase-3, and caspase-8, which might activate the apoptosis and lead to the marked injury of porcine small intestinal epithelium.
Collapse
|
34
|
Xiao K, Cao S, Jiao L, Song Z, Lu J, Hu C. TGF-β1 protects intestinal integrity and influences Smads and MAPK signal pathways in IPEC-J2 after TNF-α challenge. Innate Immun 2017; 23:276-284. [PMID: 28142299 DOI: 10.1177/1753425917690815] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to investigate the protective effects of TGF-β1 on intestinal epithelial barrier, as well as canonical Smad and MAPK signal pathways involved in these protection processes by a IPEC-J2 model stimulated with TNF-α. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of TGF-β1. The results showed that TGF-β1 pretreatment ameliorated TNF-α-induced intestinal epithelial barrier disturbances as indicated by decrease of transepithelial electrical resistance (TER) and increase of paracellular permeability. TGF-β1 also dramatically alleviated TNF-α-induced alteration of TJ proteins ZO-1 and occludin. Moreover, TGF-β1 pretreatment increased TβRII protein expression in IPEC-J2 monolayers challenged with TNF-α. In addition, a significant increase of Smad4 and Smad7 mRNA was also observed in the TGF-β1 pretreatment after TNF-α challenge compared with the control group. Furthermore, TGF-β1 pretreatment enhanced smad2 protein activation. These results indicated that the canonical Smad signaling pathway was activated by TGF-β1 pretreatment. Finally, TGF-β1 pretreatment decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38) and increased the ratio of ERK (p-ERK/ERK). Anti-TGF-β1 Abs reduced these TGF-β1 effects. These results indicated that TGF-β1 protects intestinal integrity and influences Smad and MAPK signal pathways in IPEC-J2 after TNF-α challenge.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Shuting Cao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Zehe Song
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jianjun Lu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
35
|
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Duarte Da Silva JP, Hederová J, Hekman P, Ibrahim C, Kozhuharov E, Kulcsár G, Lander Persson E, Lenhardsson JM, Mačiulskis P, Malemis I, Markus-Cizelj L, Michaelidou-Patsia A, Nevalainen M, Pasquali P, Rouby JC, Schefferlie J, Schlumbohm W, Schmit M, Spiteri S, Srčič S, Taban L, Tiirats T, Urbain B, Vestergaard EM, Wachnik-Święcicka A, Weeks J, Zemann B, Allende A, Bolton D, Chemaly M, Fernandez Escamez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Wahlström H, Baptiste K, Catry B, Cocconcelli PS, Davies R, Ducrot C, Friis C, Jungersen G, More S, Muñoz Madero C, Sanders P, Bos M, Kunsagi Z, Torren Edo J, Brozzi R, Candiani D, Guerra B, Liebana E, Stella P, Threlfall J, Jukes H. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 2017; 15:e04666. [PMID: 32625259 PMCID: PMC7010070 DOI: 10.2903/j.efsa.2017.4666] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals suffering from bacterial infections should only be treated with antimicrobials based on veterinary diagnosis and prescription. Options should be reviewed to phase out most preventive use of antimicrobials and to reduce and refine metaphylaxis by applying recognised alternative measures.
Collapse
|
36
|
Maywald M, Meurer SK, Weiskirchen R, Rink L. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction. Mol Nutr Food Res 2016; 61. [PMID: 27794192 DOI: 10.1002/mnfr.201600493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
SCOPE Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF-β1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. METHODS AND RESULTS A synergistic effect of a combined zinc and TGF-β1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF-β1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF-β1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. CONCLUSION Combined zinc and TGF-β1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions.
Collapse
Affiliation(s)
- Martina Maywald
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
37
|
Inoue R, Tsukahara T, Nakatani M, Okutani M, Nishibayashi R, Ogawa S, Harayama T, Nagino T, Hatanaka H, Fukuta K, Romero-Pérez GA, Ushida K, Kelly D. Weaning Markedly Affects Transcriptome Profiles and Peyer's Patch Development in Piglet Ileum. Front Immunol 2015; 6:630. [PMID: 26697021 PMCID: PMC4678207 DOI: 10.3389/fimmu.2015.00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Transcriptome analyses were conducted on the ileal mucosa of 14- to 35-day-old piglets to investigate postnatal gut development during suckling and postweaning. The transcriptome profiles of 14-day-old suckling piglets showed a considerably higher number of differentially expressed genes than did those of 21-, 28-, and 35-day olds, indicating an intensive gut development during the first 14–21 postnatal days. In addition, the analysis of biological pathways indicated that Chemotaxis Leucocyte chemotaxis was the most significantly affected pathway in suckling piglets between 14 and 21 days of age. Weaning negatively affected pathways associated with acquired immunity, but positively affected those associated with innate immunity. Interestingly, pathway Chemotaxis Leucocyte chemotaxis was found positively affected when comparing 14- and 21-day-old suckling piglets, but negatively affected in 28-day-old piglets weaned at 21 days of age, when compared with 28-day-old suckling piglets. Genes CXCL13, SLA-DOA (MHC class II), ICAM1, VAV1, and VCAM1 were involved in the pathway Chemotaxis Leukocyte chemotaxis and they were found to significantly change between 14- and 21-day-old suckling piglets and between groups of suckling and weaned piglets. The expression of these genes significantly declined after weaning at 14, 21, and 28 days of age. This decline indicated that CXCL13, SLA-DOA, ICAM1, VAV1, and VCAM1 may be involved in the development of Peyer’s patches (PP) because lower gene expression clearly corresponded with smaller areas of PP in the ileal mucosa of piglets. Moreover, weaning piglets prior to a period of intensive gut development, i.e., 14 days of age, caused significant adverse effects on the size of PP, which were not reverted even 14 days postweaning.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan ; Gut Immunology Group, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen , UK
| | - Takamitsu Tsukahara
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan ; Kyoto Institute of Nutrition and Pathology , Kyoto , Japan
| | - Masako Nakatani
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Mie Okutani
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | | | - Shohei Ogawa
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Tomoko Harayama
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Takayuki Nagino
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Hironori Hatanaka
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Kikuto Fukuta
- Technical Center, Toyohashi Feed Mills , Shinshiro , Japan
| | | | - Kazunari Ushida
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Denise Kelly
- Gut Immunology Group, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen , UK
| |
Collapse
|
38
|
Zhong W, Li Q, Sun Q, Zhang W, Zhang J, Sun X, Yin X, Zhang X, Zhou Z. Preventing Gut Leakiness and Endotoxemia Contributes to the Protective Effect of Zinc on Alcohol-Induced Steatohepatitis in Rats. J Nutr 2015; 145:2690-8. [PMID: 26468492 PMCID: PMC4656905 DOI: 10.3945/jn.115.216093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zinc deficiency has been well documented in alcoholic liver disease. OBJECTIVE This study was undertaken to determine whether dietary zinc supplementation provides beneficial effects in treating alcohol-induced gut leakiness and endotoxemia. METHODS Male Sprague Dawley rats were divided into 3 groups and pair-fed (PF) Lieber-DeCarli liquid diet for 8 wk: 1) control (PF); 2) alcohol-fed (AF; 5.00-5.42% wt:vol ethanol); and 3) AF with zinc supplementation (AF/Zn) at 220 ppm zinc sulfate heptahydrate. The PF and AF/Zn groups were pair-fed with the AF group. Hepatic inflammation and endotoxin signaling were determined by immunofluorescence and quantitative polymerase chain reaction (qPCR). Alterations in intestinal tight junctions and aldehyde dehydrogenases were assessed by qPCR and Western blot analysis. RESULTS The AF rats had greater macrophage activation and cytokine production (P < 0.05) in the liver compared with the PF rats, whereas the AF/Zn rats showed no significant differences (P > 0.05). Plasma endotoxin concentrations of the AF rats were 136% greater than those of the PF rats, whereas the AF/Zn rats did not differ from the PF rats. Ileal permeability was 255% greater in the AF rats and 19% greater in the AF/Zn rats than in the PF rats. The AF group had reduced intestinal claudin-1, occludin, and zona occludens-1 (ZO-1) expression, and the AF/Zn group had upregulated claudin-1 and ZO-1 expression (P < 0.05) compared with the PF group. The intestinal epithelial expression and activity of aldehyde dehydrogenases were elevated (P < 0.05) in the AF/Zn rats compared with those of the AF rats. Furthermore, the ileal expression and function of hepatocyte nuclear factor 4α, which was impaired in the AF group, was significantly elevated in the AF/Zn group compared with the PF group. CONCLUSIONS The results demonstrate that attenuating hepatic endotoxin signaling by preserving the intestinal barrier contributes to the protective effect of zinc on alcohol-induced steatohepatitis in rats.
Collapse
Affiliation(s)
- Wei Zhong
- Center for Translational Biomedical Research and
| | - Qiong Li
- Center for Translational Biomedical Research and
| | - Qian Sun
- Center for Translational Biomedical Research and,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC; and
| | | | - Jiayang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Xinguo Sun
- Center for Translational Biomedical Research and
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC; and
| |
Collapse
|
39
|
Xiao K, Song ZH, Jiao LF, Ke YL, Hu CH. Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs. PLoS One 2014; 9:e104589. [PMID: 25170924 PMCID: PMC4149345 DOI: 10.1371/journal.pone.0104589] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
Weaning stress caused marked changes in intestinal structure and function. Transforming growth factor-β1 (TGF-β1) and canonical Smads signaling pathway are suspected to play an important regulatory role in post-weaning adaptation of the small intestine. In the present study, the intestinal morphology and permeability, developmental expressions of tight junction proteins and TGF-β1 in the intestine of piglets during the 2 weeks after weaning were assessed. The expressions of TGF-β receptor I/II (TβRI, TβRII), smad2/3, smad4 and smad7 were determined to investigate whether canonical smads signaling pathways were involved in early weaning adaption process. The results showed that a shorter villus and deeper crypt were observed on d 3 and d 7 postweaning and intestinal morphology recovered to preweaning values on d 14 postweaning. Early weaning increased (P<0.05) plasma level of diamine oxidase (DAO) and decreased DAO activities (P<0.05) in intestinal mucosa on d 3 and d 7 post-weaning. Compared with the pre-weaning stage (d 0), tight junction proteins level of occludin and claudin-1 were reduced (P<0.05) on d 3, 7 and 14 post-weaning, and ZO-1 protein was reduced (P<0.05) on d 3 and d 7 post-weaning. An increase (P<0.05) of TGF-β1 in intestinal mucosa was observed on d 3 and d 7 and then level down on d 14 post-weaning. Although there was an increase (P<0.05) of TβR II protein expression in the intestinal mucosa on d3 and d 7, no significant increase of mRNA of TβRI, TβRII, smad2/3, smad4 and smad7 was observed during postweaning. The results indicated that TGF-β1 was associated with the restoration of intestinal morphology and barrier function following weaning stress. The increased intestinal endogenous TGF-β1 didn't activate the canonical Smads signaling pathway.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Ze-He Song
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Le-Fei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Ya-Lu Ke
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Cai-Hong Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|