1
|
Chen X, Chen R, Wu Y, Yu A, Wang F, Ying C, Yin Y, Chen X, Ma L, Fu Y. FABP5+ macrophages contribute to lipid metabolism dysregulation in type A aortic dissection. Int Immunopharmacol 2024; 143:113438. [PMID: 39447410 DOI: 10.1016/j.intimp.2024.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Type A aortic dissection (TAAD) is an acute onset disease with a high mortality rate. TAAD is caused by a tear in the aortic intima and subsequent blood infiltration. The most prominent characteristics of TAAD are aortic media degeneration and inflammatory cell infiltration, which disturb the structural integrity and function of nonimmune and immune cells in the aortic wall. However, to date, there is no systematic evaluation of the interactions between nonimmune cells and immune cells and their effects on metabolism in the context of aortic dissection. Here, multiomics, including bulk RNA-seq, single-cell RNA-seq, and lipid metabolomics, was applied to elucidate the comprehensive TAAD lipid metabolism landscape. Normally, monocytes in the stress response state secrete a variety of cytokines. Injured fibroblasts lack the ability to degrade lipids, which is suspected to contribute to a high lipid environment. Macrophages differentiate into fatty acid binding protein 5-positive (FABP5+) macrophages under the stimulation of metabolic substrates. Moreover, the upregulation of Fabp5+ macrophages were retrospectively validated in TAAD model mice and TAAD patients. Finally, Fabp5+ macrophages can generate a wide range of proinflammatory cytokines, which possibly contribute to TAAD pathogenesis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ruoshi Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yuefeng Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Lab of Biomed-X, Zhejiang University-University of Edinburgh Institute (ZJU-UoE), School of Medicine, Zhejiang University, Haining 310000, China
| | - Anfeng Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Fei Wang
- GeneChem Technology Co. Ltd., Shanghai 201203, China
| | - Chenxi Ying
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaofan Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
2
|
Song T, Wang R, Zhou X, Chen W, Chen Y, Liu Z, Men L. Metabolomics and molecular dynamics unveil the therapeutic potential of epalrestat in diabetic nephropathy. Int Immunopharmacol 2024; 140:112812. [PMID: 39094360 DOI: 10.1016/j.intimp.2024.112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Diabetic nephropathy (DN) is one of the leading clinical causes of end-stage renal failure. The classical aldose reductase (AR) inhibitor epalrestat shows beneficial effect on renal dysfunction induced by DN, with metabolic profile and molecular mechanisms remains to be investigated further. In the current study, integrated untargeted metabolomics, network pharmacology and molecular dynamics approaches were applied to explore the therapeutic mechanisms of epalrestat against DN. Firstly, untargeted serum and urine metabolomics analysis based on UPLC-Q-TOF-MS was performed, revealed that epalrestat could regulate the metabolic disorders of amino acids metabolism, arachidonic acid metabolism, pyrimidine metabolism and citrate cycle metabolism pathways after DN. Subsequently, metabolomics-based network analysis was carried out to predict potential active targets of epalrestat, mainly involving AGE-RAGE signaling pathway, TNF signaling pathway and HIF-1 signaling pathway. Moreover, a 100 ns molecular dynamics approach was employed to validate the interactions between epalrestat and the core targets, showing that epalrestat could form remarkable tight binding with GLUT1 and NFκB than it with AR. Surface-plasmon resonance assay further verified epalrestat could bind GLUT1 and NFκB proteins specifically. Overall, integrated system network analysis not only demonstrated that epalrestat could attenuate DN induced metabolic disorders and renal injuries, but also revealed that it could interact with multi-targets to play a synergistic regulatory role in the treatment of DN.
Collapse
Affiliation(s)
- Tongtong Song
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Xiaoyue Zhou
- The First Hospital of Jilin University, Changchun 130052, PR China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China
| | - Ying Chen
- The First Hospital of Jilin University, Changchun 130052, PR China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Szydełko J, Czop M, Petniak A, Lenart-Lipińska M, Kocki J, Zapolski T, Matyjaszek-Matuszek B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: a case-control study. Cardiovasc Diabetol 2024; 23:278. [PMID: 39080630 PMCID: PMC11287982 DOI: 10.1186/s12933-024-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Joanna Szydełko
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
4
|
Juntit OA, Sornsuwan K, Yasamut U, Tayapiwatana C. Integration of Image Pattern Recognition and Photon Sensor for Analyzing Cytokine Gene Expression Using πCode MicroDisc. BIOSENSORS 2024; 14:306. [PMID: 38920610 PMCID: PMC11202078 DOI: 10.3390/bios14060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Current quantitative gene expression detection in genomic and transcriptomic research heavily relies on quantitative real-time PCR (qPCR). While existing multiplex gene detection techniques offer simultaneous analysis of multiple targets, we present an alternative assay capable of detecting gene expression simultaneously within a single well. This highly sensitive method utilizes πCode MicroDiscs, featuring unique identification patterns and fluorescent detection. Our study compared this multiplex πCode platform with a qPCR platform for profiling cytokine gene expression. The πCode MicroDisc assay successfully demonstrated the expression of polymerization markers for M1- and M2-like macrophages generated from THP-1-derived macrophages in a qualitative assay. Additionally, our findings suggest a pattern agreement between the πCode assay and the qPCR assay, indicating the potential of the πCode technology for comparative gene expression analysis. Regarding the inherent sensitivity and linearity, the developed πCode assay primarily provides qualitative gene expression to discriminate the polarization of macrophages. This remarkable capability presents substantial advantages for researchers, rendering the technology highly suitable for high-throughput applications in clinical diagnosis and disease monitoring.
Collapse
Affiliation(s)
- On-anong Juntit
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokporn Sornsuwan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Umpa Yasamut
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Finotto L, Cole B, Giese W, Baumann E, Claeys A, Vanmechelen M, Decraene B, Derweduwe M, Dubroja Lakic N, Shankar G, Nagathihalli Kantharaju M, Albrecht JP, Geudens I, Stanchi F, Ligon KL, Boeckx B, Lambrechts D, Harrington K, Van Den Bosch L, De Vleeschouwer S, De Smet F, Gerhardt H. Single-cell profiling and zebrafish avatars reveal LGALS1 as immunomodulating target in glioblastoma. EMBO Mol Med 2023; 15:e18144. [PMID: 37791581 PMCID: PMC10630887 DOI: 10.15252/emmm.202318144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.
Collapse
Affiliation(s)
- Lise Finotto
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Basiel Cole
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Maxime Vanmechelen
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Department of Medical OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Brecht Decraene
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Nikolina Dubroja Lakic
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Gautam Shankar
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Madhu Nagathihalli Kantharaju
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Jan Philipp Albrecht
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Ilse Geudens
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Fabio Stanchi
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Keith L Ligon
- Center for Neuro‐oncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of PathologyBrigham and Women's HospitalBostonMAUSA
- Department of PathologyHarvard Medical SchoolBostonMAUSA
| | - Bram Boeckx
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Diether Lambrechts
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Kyle Harrington
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Chan Zuckerberg InitiativeRedwood CityCAUSA
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- VIB ‐ KU Leuven Center for Brain & Disease Research, Laboratory of NeurobiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Steven De Vleeschouwer
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
6
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Wang YC, Ma YD, Liu H, Cui ZH, Zhao D, Zhang XQ, Zhang LX, Guo WJ, Long Y, Tu SS, Yuan DZ, Zhang JH, Wang BK, Xu LZ, Shen QY, Wang Y, Nie L, Yue LM. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci 2023; 313:121224. [PMID: 36435224 DOI: 10.1016/j.lfs.2022.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
AIMS Polycystic ovary syndrome (PCOS) is a common endocrine disorder in the women of childbearing age. It is characterized by hyperandrogenism and abnormal follicular growth and ovulation. The polyol pathway is a glucose metabolism bypass pathway initiated by aldose reductase (ADR). Androgen induces the expression of ADR in the male reproductive tract, which has a general physiological significance for male reproductive function. Here we investigate whether hyperandrogenemia in PCOS leads to increased flux of the polyol pathway in ovarian tissue, which in turn affects follicular maturation and ovulation through oxidative stress. MAIN METHODS We used clinical epidemiological methods to collect serum and granulosa cells from clinical subjects for a clinical case-control study. At the same time, cell biology and molecular biology techniques were used to conduct animal and cell experiments to further explore the mechanism of hyperandrogen-induced ovarian polyol pathway hyperactivity and damage to ovarian function. KEY FINDINGS Here, we find that hyperandrogenism of PCOS can induce the expression of ovarian aldose reductase, which leads to the increase of the polyol pathway flux, and affects ovarian function through excessive oxidative stress. SIGNIFICANCE Our research has enriched the pathological mechanism of PCOS and may provide a new clue for the clinical treatment of PCOS.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Department of Reproductive Health and Infertility, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Yong-Dan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhi-Hui Cui
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xue-Qin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Xue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wen-Jing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sha-Sha Tu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dong-Zhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin-Hu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bing-Kun Wang
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang-Zhi Xu
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiong-Yan Shen
- Reproductive Medicine Center, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Wang
- Reproductive Medicine Center, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Perng V, Navazesh SE, Park J, Arballo JR, Ji P. Iron Deficiency and Overload Modulate the Inflammatory Responses and Metabolism of Alveolar Macrophages. Nutrients 2022; 14:nu14153100. [PMID: 35956279 PMCID: PMC9370601 DOI: 10.3390/nu14153100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alveolar macrophages (AM) are critical to defense against respiratory pathogens. This study evaluated cellular iron imbalance to immunometabolism in endotoxin-polarized porcine AMs (PAMs). PAMs collected from five 6-week-old pigs were treated with a basal media, iron chelator, or ferric ammonium citrate to maintain iron replete or induce iron deficiency or overload, respectively. After 24 h treatment, PAMs were challenged with saline or lipopolysaccharide (LPS) for 6 h. Cells were analyzed for gene, protein, and untargeted metabolome. Cytokines were determined in culture media. Data were assessed using two-way ANOVA. Treatments successfully induced iron deficiency and overload. The mRNA of DMT1 and ZIP14 was increased up to 300-fold by LPS, but unaffected by iron. Surprisingly, both iron deprivation and overload attenuated LPS-induced inflammation, showing less TNFα production and lower mRNA of pro- and anti-inflammatory cytokines than iron-replete PAMs. Forty-eight metabolites were altered by either or both main effects. LPS enhanced the glycolysis and polyol pathways. Iron deprivation disrupted the TCA cycle. Iron overload increased intracellular cholesterol. Interestingly, iron deprivation augmented, whereas iron overload diminished, LPS-induced itaconic acid production, which has anti-microbial and anti-inflammatory properties. Therefore, iron-deficient PAMs may be more resistant to intracellular pathogens which use PAMs as a conduit for infection.
Collapse
Affiliation(s)
| | | | | | | | - Peng Ji
- Correspondence: ; Tel.: +1-530-752-6469
| |
Collapse
|
9
|
The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers (Basel) 2022; 14:cancers14143331. [PMID: 35884391 PMCID: PMC9316955 DOI: 10.3390/cancers14143331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells possess a high metabolic demand for their rapid proliferation, survival, and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus, the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically, myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages (TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for improving immune checkpoint therapy.
Collapse
|
10
|
Awad EM, Ahmed ASF, El-Daly M, Amin AH, El-Tahawy NFG, Wagdy A, Hollenberg MD, Taye A. Dihydromyricetin protects against high glucose-induced endothelial dysfunction: Role of HIF-1α/ROR2/NF-κB. Biomed Pharmacother 2022; 153:113308. [PMID: 35752009 DOI: 10.1016/j.biopha.2022.113308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES Dihydromyricetin (DHM), a natural flavonoid isolated from vine tea with anti-inflammatory activity was evaluated for its ability to prevent vascular endothelial dysfunction caused by hyperglycaemia. METHODS Vasoconstrictor (phenylephrine-PE) and vasodilator (acetylcholine-ACh) responses were monitored for female rat aorta rings maintained in a bioassay organ bath for 3 h at 37 °C in either low (LG: 10 mM) or high (HG: 40 mM, to mimic hyperglycaemia) glucose-Krebs buffer in the absence or presence of 50 µM DHM. Tissues recovered from the organ bath at 3 h were fixed and analyzed for morphological changes and their expression of eNOS, iNOS, HIF-1α, GLUT1, ROR2 tyrosine kinase, NF-κB, TNF-α, Bax, Bcl2, caspase-3, and forindices of increased oxidative stress. KEY FINDINGS HG-incubated tissues showed increased PE-stimulated contractile response and decreased ACh-mediated endothelial vasodilation. DHM prevented both of these changes. Besides, HG incubation increased the immunoreactivity to iNOS, HIF-1α, GLUT1, ROR2, NF-κB, TNF-α, Bax, and active caspase-3, and decreased the expression of eNOS and Bcl2. Hyperglycaemia-like conditions also increased the indices of oxidative/nitrosative stress. These HG-induced changes, which were accompanied by an increase in tissue adventitial thickness and inflammatory cell infiltration, were all prevented by DHM. CONCLUSION Our data demonstrate an anti-inflammatory protective action of DHM to preserve vascular function in the setting of hyperglycaemia.
Collapse
Affiliation(s)
- Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Nashwa F G El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - AlShimaa Wagdy
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Morley D Hollenberg
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
11
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
12
|
Abstract
The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is essential for lysosomal evasion and permissiveness of macrophages for intracellular proliferation of the pathogen. In contrast, we show that polymorphonuclear cells (PMNs) respond to a functional Dot/Icm system through rapid restriction of L. pneumophila. Specifically, we show that the L. pneumophila T4SS-injected amylase (LamA) effector catalyzes rapid glycogen degradation in the PMNs cytosol, leading to cytosolic hyperglucose. Neutrophils respond through immunometabolic reprogramming that includes upregulated aerobic glycolysis. The PMNs become activated with spatial generation of intracellular reactive oxygen species within the Legionella-containing phagosome (LCP) and fusion of specific and azurophilic granules to the LCP, leading to rapid restriction of L. pneumophila. We conclude that in contrast to macrophages, PMNs respond to a functional Dot/Icm system, and specifically to the effect of the injected amylase effector, through rapid engagement of major microbicidal processes and rapid restriction of the pathogen. IMPORTANCE Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires' disease. In addition to alveolar macrophages, neutrophils infiltrate into the lungs of infected patients. Unlike alveolar macrophages, neutrophils restrict and kill L. pneumophila, but the mechanisms were previously unclear. Here, we show that the pathogen secretes an amylase (LamA) enzyme that rapidly breakdowns glycogen stores within neutrophils, and this triggers increased glycolysis. Subsequently, the two major killing mechanisms of neutrophils, granule fusion and production of reactive oxygen species, are activated, resulting in rapid killing of L. pneumophila.
Collapse
|
13
|
Cheng P, Xie J, Liu Z, Wang J. Aldose reductase deficiency inhibits LPS-induced M1 response in macrophages by activating autophagy. Cell Biosci 2021; 11:61. [PMID: 33771228 PMCID: PMC8004403 DOI: 10.1186/s13578-021-00576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
Macrophage M1 polarization mediates inflammatory responses and tissue damage. Recently, aldose reductase (AR) has been shown to play a critical role in M1 polarization in macrophages. However, the underlying mechanisms are unknown. Here, we demonstrated, for the first time, that AR deficiency repressed the induction of inducible nitric oxide synthase in lipopolysaccharide (LPS)-stimulated macrophages via activation of autophagy. This suppression was related to a defect in the inhibitor of nuclear factor κB (NF-κB) kinase (IKK) complex in the classical NF-κB pathway. However, the mRNA levels of IKKβ and IKKγ were not reduced in LPS-treated AR knockout (KO) macrophages, indicating that their proteins were downregulated at the post-transcriptional level. We discovered that LPS stimuli induced the recruitment of more beclin1 and increased autophagosome formation in AR-deficient macrophages. Blocking autophagy through 3-methyladenine and ammonium chloride treatment restored IKKβ and IKKγ protein levels and increased nitric oxide synthase production in LPS-stimulated AR-deficient macrophages. More assembled IKKβ and IKKγ underwent ubiquitination and recruited the autophagic adaptor p62 in LPS-induced AR KO macrophages, promoting their delivery to autophagosomes and lysosomes. Collectively, these findings suggest that AR deficiency is involved in the regulation of NF-κB signaling, and extends the role of selective autophagy in fine-tuned M1 macrophage polarization.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Neurology, Second Naval Hospital of Southern Theater Command (425th Hospital of the People's Liberation Army), Sanya, 572000, China. .,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianwei Xie
- Department of Neurology, Second Naval Hospital of Southern Theater Command (425th Hospital of the People's Liberation Army), Sanya, 572000, China
| | - Zhiyong Liu
- Department of Neurology, Second Naval Hospital of Southern Theater Command (425th Hospital of the People's Liberation Army), Sanya, 572000, China
| | - Jian Wang
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Wang Q, Nie L, Zhao P, Zhou X, Ding Y, Chen Q, Wang Q. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. Int J Oral Sci 2021; 13:11. [PMID: 33762572 PMCID: PMC7990943 DOI: 10.1038/s41368-021-00116-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia induces chronic low-grade inflammation (inflammaging), which is a newly identified contributor to diabetes-related tissue lesions, including the inflammatory bone loss in periodontitis. It is also a secondary senescent pattern mediated by an increased burden of senescent cells and senescence-associated secretory phenotype (SASP). Macrophage is a key SASP-spreading cell and may contribute to the maintenance of SASP response in the periodontal microenvironment. Using a transgenic diabetic model (BLKS/J-Leprdb/leprdb mice) we identified striking senescence of the periodontium in young (18-wk)-diabetic mice accompanied by amassed p16+-macrophages and enhanced early SASP response. Exposed to high glucose in vitro, bone marrow-derived macrophage (BMDM) revealed a strong GLUT1 mRNA response driving the elevated-glucose uptake. GLUT1 is a representative and facilitative glucose transporter in macrophages with potential roles in hyperglycemia-induced inflammation. In this study, both GLUT1 and the downstream GTPase Rheb expression upregulated in the gingiva of diabetic mice with impaired condition. Furthermore, SASP release and p16/p21 signaling were proven to be triggered by mTOR phosphorylation in BMDM and antagonized by restricting glucose uptake in GLUT1-/- BMDM. Taken together, our findings suggest that elevated-GLUT1 sensor responded to high glucose is important for macrophage senescence and SASP response, generated as a result of hyperglycemia, and it is a potential molecular mechanism for the exacerbation of periodontitis in diabetes.
Collapse
Affiliation(s)
- Qian Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host Microbe 2020; 27:571-584.e7. [PMID: 32220647 DOI: 10.1016/j.chom.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila has co-evolved with amoebae, their natural hosts. Upon transmission to humans, the bacteria proliferate within alveolar macrophages causing pneumonia. Here, we show L. pneumophila injects the effector LamA, an amylase, into the cytosol of human macrophage (hMDMs) and amoebae to rapidly degrade glycogen to generate cytosolic hyper-glucose. In response, hMDMs shift their metabolism to aerobic glycolysis, which directly triggers an M1-like pro-inflammatory differentiation and nutritional innate immunity through enhanced tryptophan degradation. This leads to a modest restriction of bacterial proliferation in hMDMs. In contrast, LamA-mediated glycogenolysis in amoebae deprives the natural host from the main building blocks for synthesis of the cellulose-rich cyst wall, leading to subversion of amoeba encystation. This is non-permissive for bacterial proliferation. Therefore, LamA of L. pneumophila is an amoebae host-adapted effector that subverts encystation of the amoebae natural host, and the paradoxical hMDMs' pro-inflammatory response is likely an evolutionary accident.
Collapse
|
17
|
Gorini G, Fourati S, Vaccari M, Rahman MA, Gordon SN, Brown DR, Law L, Chang J, Green R, Barrenäs F, Liyanage NPM, Doster MN, Schifanella L, Bissa M, Silva de Castro I, Washington-Parks R, Galli V, Fuller DH, Santra S, Agy M, Pal R, Palermo RE, Tomaras GD, Shen X, LaBranche CC, Montefiori DC, Venzon DJ, Trinh HV, Rao M, Gale M, Sekaly RP, Franchini G. Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathog 2020; 16:e1008377. [PMID: 32163525 PMCID: PMC7093029 DOI: 10.1371/journal.ppat.1008377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/24/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4β7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4β7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
Collapse
Affiliation(s)
- Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shari N. Gordon
- Department of Infectious Diseases, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Barrenäs
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Deborah H. Fuller
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Agy
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Rockville, Maryland, United States of America
| | - Robert E. Palermo
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
De Paepe B, Zschüntzsch J, Šokčević T, Weis J, Schmidt J, De Bleecker JL. Induction of Osmolyte Pathways in Skeletal Muscle Inflammation: Novel Biomarkers for Myositis. Front Neurol 2018; 9:846. [PMID: 30364257 PMCID: PMC6193116 DOI: 10.3389/fneur.2018.00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
We recently identified osmolyte accumulators as novel biomarkers for chronic skeletal muscle inflammation and weakness, but their precise involvement in inflammatory myopathies remains elusive. In the current study, we demonstrate in vitro that, in myoblasts and myotubes exposed to pro-inflammatory cytokines or increased salt concentration, mRNA levels of the osmolyte carriers SLC5A3, SLC6A6, SLC6A12, and AKR1B1 enzyme can be upregulated. Induction of SLC6A12 and AKR1B1 was confirmed at the protein level using immunofluorescence and Western blotting. Gene silencing by specific siRNAs revealed that these factors were vital for muscle cells under hyperosmotic conditions. Pro-inflammatory cytokines activated mitogen-activated protein kinases, nuclear factor κB as well as nuclear factor of activated T-cells 5 mRNA expression. In muscle biopsies from patients with polymyositis or sporadic inclusion body myositis, osmolyte pathway activation was observed in regenerating muscle fibers. In addition, the osmolyte carriers SLC5A3 and SLC6A12 localized to subsets of immune cells, most notably to the endomysial macrophages and T-cells. Collectively, this study unveiled that muscle cells respond to osmotic and inflammatory stress by osmolyte pathway activation, likely orchestrating general protection of the tissue. Moreover, pro-inflammatory properties are attributed to SLC5A3 and SLC6A12 in auto-aggressive macrophages and T-cells in inflamed skeletal muscle.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tea Šokčević
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Joachim Weis
- Institute for Neuropathology, Reinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan L De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
19
|
Yuan C, Hu J, Parathath S, Grauer L, Cassella CB, Bagdasarov S, Goldberg IJ, Ramasamy R, Fisher EA. Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes 2018; 67:1880-1891. [PMID: 29891593 PMCID: PMC6110315 DOI: 10.2337/db18-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
Abstract
Guidelines to reduce cardiovascular risk in diabetes include aggressive LDL lowering, but benefits are attenuated compared with those in patients without diabetes. Consistent with this, we have reported in mice that hyperglycemia impaired atherosclerosis regression. Aldose reductase (AR) is thought to contribute to clinical complications of diabetes by directing glucose into pathways producing inflammatory metabolites. Mice have low levels of AR, thus raising them to human levels would be a more clinically relevant model to study changes in diabetes under atherosclerosis regression conditions. Donor aortae from Western diet-fed Ldlr-/- mice were transplanted into normolipidemic wild-type, Ins2Akita (Akita+/- , insulin deficient), human AR (hAR) transgenic, or Akita+/- /hAR mice. Akita+/- mice had impaired plaque regression as measured by changes in plaque size and the contents of CD68+ cells (macrophages), lipids, and collagen. Supporting synergy between hyperglycemia and hAR were the even more pronounced changes in these parameters in Akita+/- /hAR mice, which had atherosclerosis progression in spite of normolipidemia. Plaque CD68+ cells from the Akita+/- /hAR mice had increased oxidant stress and expression of inflammation-associated genes but decreased expression of anti-inflammatory genes. In summary, hAR expression amplifies impaired atherosclerosis regression in diabetic mice, likely by interfering with the expected reduction in plaque macrophage inflammation.
Collapse
MESH Headings
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Aorta/physiopathology
- Aorta/transplantation
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diet, Western/adverse effects
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Humans
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidative Stress
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/physiopathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Chujun Yuan
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY
| | - Saj Parathath
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Lisa Grauer
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Courtney Blachford Cassella
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Svetlana Bagdasarov
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ira J Goldberg
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ravichandran Ramasamy
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Edward A Fisher
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
20
|
Chen X, Chen C, Hao J, Qin R, Qian B, Yang K, Zhang J, Zhang F. AKR1B1 Upregulation Contributes to Neuroinflammation and Astrocytes Proliferation by Regulating the Energy Metabolism in Rat Spinal Cord Injury. Neurochem Res 2018; 43:1491-1499. [DOI: 10.1007/s11064-018-2570-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
|
21
|
Abstract
PURPOSE OF REVIEW The pivotal role of macrophages in experimental atherosclerosis is firmly established, but their contribution to human disease is less well defined. In this review we have outlined the current insights on macrophage phenotypes and their presumed precursors, monocytes, in clinical atherosclerosis, and their association with disease progression. Moreover, we will assess major clinical modifiers of macrophage-mediated plaque inflammation and define the outstanding questions for further study. RECENT FINDINGS Our survey indicates that macrophage accumulation and status in human plaques are linked with lesion progression and destabilization as well as with symptomatic coronary artery disease. Likewise, levels of their precursors, circulating monocytes were repeatedly seen to associate with atherosclerosis and to predict clinical outcome. Furthermore, the presence and phenotype of both macrophages and monocytes appears to be responsive to the traditional risk factors of atherosclerosis, including hypercholesterolemia, hypertension, and type 2 diabetes, and to treatment thereof, with clear repercussions on disease development. SUMMARY Although plaque macrophages and their precursor cells do represent attractive targets for treating cardiovascular diseases, this therapeutic avenue requires much deeper understanding of the complexity of macrophage biology in human atherosclerosis than available at present.
Collapse
Affiliation(s)
- Erik A L Biessen
- aDepartment of Pathology bDepartment of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands cInstitute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH, Aachen, Aachen, Germany
| | | |
Collapse
|
22
|
Moganti K, Li F, Schmuttermaier C, Riemann S, Klüter H, Gratchev A, Harmsen MC, Kzhyshkowska J. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 2016; 222:952-959. [PMID: 27492721 DOI: 10.1016/j.imbio.2016.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications.
Collapse
Affiliation(s)
- Kondaiah Moganti
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Feng Li
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Christina Schmuttermaier
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Sarah Riemann
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany
| | - Alexei Gratchev
- Institute of Carcinogenesis, N.N.Blokhin Russian Cancer Research Center, Moscow, Russian Federation; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russian Federation
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept. Pathology and Medical Biology, The Netherlands
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russian Federation.
| |
Collapse
|