1
|
Jung MS, Piazuelo MB, Brackman LC, McClain MS, Algood HMS. Essential role of Helicobacter pylori apolipoprotein N-acyltransferase (Lnt) in stomach colonization. Infect Immun 2023; 91:e0036923. [PMID: 37937999 PMCID: PMC10715074 DOI: 10.1128/iai.00369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Bacterial lipoproteins are post-translationally modified with acyl chains, anchoring these proteins to bacterial membranes. In Gram-negative bacteria, three enzymes complete the modifications. Lgt (which adds two acyl chains) and LspA (which removes the signal peptide) are essential. Lnt (which adds a third acyl chain) is not essential in certain bacteria including Francisella tularensis, Neisseria gonorrhoeae, and Acinetobacter baumannii. Deleting lnt results in mild to severe physiologic changes. We previously showed lnt is not essential for Helicobacter pylori growth in vitro. Here, the physiologic consequences of deleting lnt in H. pylori and the role of Lnt in the host response to H. pylori were examined using in vitro and in vivo models. Comparing wild-type, Δlnt, and complemented mutant H. pylori, no changes in growth rates or sensitivity to acid or antibiotics were observed. Since deleting lnt changes the number of acyl chains on lipoproteins and the number of acyl chains on lipoproteins impacts the innate immune response through Toll-like receptor 2 (TLR2) signaling, primary human gastric epithelial cells were treated with a purified lipoprotein from wild-type or lnt mutant H. pylori. Differential gene expression analysis indicated that lipoprotein from the lnt mutant induced a more robust TLR2 response. In a complementary approach, we infected wild-type and Tlr2-/- mice and found that both the wild-type and complemented mutant strains successfully colonized the animals. However, the lnt mutant strain was unable to colonize either mouse strain. These results show that lnt is essential for H. pylori colonization and identifies lipoprotein synthesis as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew S. Jung
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lee C. Brackman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Liu X, Li M, Han Q, Zuo Z, Wang Q, Su D, Fan M, Chen T. Exploring a shared genetic signature and immune infiltration between spontaneous intracerebral hemorrhage and Helicobacter pylori infection. Microb Pathog 2023; 178:106067. [PMID: 36914055 DOI: 10.1016/j.micpath.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity, disability and mortality. Helicobacter pylori is a major pathogen responsible for chronic gastritis, leading to gastric ulcers and ultimately gastric cancer. Although it remains controversial whether H. pylori infection causes peptic ulcers under various traumatic stimuli, some related studies suggest that H. pylori infection may be an important factor in delaying peptic ulcer healing. However, the linking mechanism between ICH and H. pylori infection remain unclear. The purpose of this study was to examine the genetic features and pathways shared in ICH and H. pylori infection, and compare immune infiltration. METHODS We used microarray data for ICH and H. pylori infection from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed on both datasets using the R software and the limma package to find the common differentially expressed genes (DEGs). In addition, we performed functional enrichment analysis on DEGs, determined protein-protein interactions (PPIs), identified Hub genes using the STRING database and Cytoscape software, and constructed microRNA-messenger RNA (miRNA-mRNA) interaction networks. Additionally, immune infiltration analysis was performed with the R software and related R packages. RESULTS A total of 72 DEGs were identified between ICH and H. pylori infection, including 68 upregulated genes and 4 downregulated genes. Functional enrichment analysis revealed that multiple signaling pathways are closely linked to both diseases. In addition, the cytoHubba plugin identified 15 important hub genes, namely PLEK, NCF2, CXCR4, CXCL1, FGR, CXCL12, CXCL2, CD69, NOD2, RGS1, SLA, LCP1, HMOX1, EDN1, and ITGB3.Also, the correlation analysis of immune cell fractions revealed a limited link between their immune-related common genes and immune cells. CONCLUSION Through bioinformatics methods, this study revealed that there are common pathways and hub genes between ICH and H. pylori infection. Thus, H. pylori infection may have common pathogenic mechanisms with the development of peptic ulcer after ICH. This study provided new ideas for early diagnosis and prevention of ICH and H. pylori infection.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Mei Li
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Qian Han
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Zhengyao Zuo
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Qing Wang
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Dongpo Su
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Mingming Fan
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Tong Chen
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
4
|
Yu Z, Sheng WD, Yin X, Bin Y. Coptis, Pinellia, and Scutellaria as a promising new drug combination for treatment of Helicobacter pylori infection. World J Clin Cases 2022; 10:12500-12514. [PMID: 36579091 PMCID: PMC9791531 DOI: 10.12998/wjcc.v10.i34.12500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the most important infectious agent and plays an important role in the progression of chronic gastritis and the development of gastric cancer.
AIM To identify efficient therapeutic agents or strategies that can treat H. pylori infection.
METHODS We performed literature analysis, experimental validation, and network pharmacology. First, traditional Chinese medicine (TCM) prescriptions for the treatment of H. pylori infection were obtained from the China National Knowledge Infrastructure, China Biology Medicine, China Science and Technology Journal Database, and WanFang databases. In addition, we conducted a relevant search by Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). Next, we used TCM Inheritance Support System V2.5 to identify core drug combinations in the TCM prescriptions. Then, an H. pylori-associated chronic mouse model of gastritis was established. The antibacterial properties and anti-inflammatory potential of the core drug combination were evaluated by the rapid urease test, modified Warthin-Starry silver staining, histopathological analysis, and enzyme linked immunosorbent assay. Finally, the active compounds, hub targets, and potential signaling pathways associated with the core drug combination were analyzed by network pharmacology.
RESULTS The TCM treatment of H. pylori was mainly based on reinforcing the healthy Qi and eliminating pathogenic factors by simultaneously applying pungent dispersing, bitter descending, cold and warm drugs. The combination of Coptis, Pinellia, and Scutellaria (CPS) was identified as the core drug combination from 207 prescriptions and 168 herbs. This drug combination eradicated H. pylori, alleviated the gastric pathology induced by H. pylori infection, and reduced the expression levels of tumor necrosis factor-α (P = 0.024) and interleukin-1β (P = 0.001). Moreover, a total of 35 compounds and 2807 targets of CPS were identified using online databases. Nine key compounds (tenaxin I, neobaicalein, norwogonin, skullcapflavone II, baicalein, 5,8,2'-trihydroxy-7-methoxyflavone, acacetin, panicolin, and wogonin) and nine hub target proteins (EGFR, PTGS2, STAT3, MAPK3, MAPK8, HSP90AA1, MAPK1, MMP9, and MTOR) were further explored. Seventy-seven signaling pathways were correlated with H. pylori-induced inflammation and carcinogenesis.
CONCLUSION In summary, we showed that CPS is the core drug combination for treating H. pylori infection. Animal experiments demonstrated that CPS has bacteriostatic properties and can reduce the release of inflammatory cytokines in the gastric mucosa. Network pharmacology predictions further revealed that CPS showed complex chemical compositions with multi-target and multi-pathway regulatory mechanisms. Although the results derived from network pharmacology are not necessarily comprehensive, they still expand our understanding of CPS for treating H. pylori infection.
Collapse
Affiliation(s)
- Zhang Yu
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Wu-Dong Sheng
- Department of Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xu Yin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Yu Bin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
5
|
Kaneko K, Zaitoun AM, Letley DP, Rhead JL, Torres J, Spendlove I, Atherton JC, Robinson K. The active form of Helicobacter pylori vacuolating cytotoxin induces decay-accelerating factor CD55 in association with intestinal metaplasia in the human gastric mucosa. J Pathol 2022; 258:199-209. [PMID: 35851954 PMCID: PMC9543990 DOI: 10.1002/path.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
High-level expression of decay-accelerating factor, CD55, has previously been found in human gastric cancer (GC) and intestinal metaplasia (IM) tissues. Therapeutic effects of CD55 inhibition in cancer have been reported. However, the role of Helicobacter pylori infection and virulence factors in the induction of CD55 and its association with histological changes of the human gastric mucosa remain incompletely understood. We hypothesised that CD55 would be increased during infection with more virulent strains of H. pylori, and with more marked gastric mucosal pathology. RT-qPCR and immunohistochemical analyses of gastric biopsy samples from 42 H. pylori-infected and 42 uninfected patients revealed that CD55 mRNA and protein were significantly higher in the gastric antrum of H. pylori-infected patients, and this was associated with the presence of IM, but not atrophy, or inflammation. Increased gastric CD55 and IM were both linked with colonisation by vacA i1-type strains independently of cagA status, and in vitro studies using isogenic mutants of vacA confirmed the ability of VacA to induce CD55 and sCD55 in gastric epithelial cell lines. siRNA experiments to investigate the function of H. pylori-induced CD55 showed that CD55 knockdown in gastric epithelial cells partially reduced IL-8 secretion in response to H. pylori, but this was not due to modulation of bacterial adhesion or cytotoxicity. Finally, plasma samples taken from the same patients were analysed for the soluble form of CD55 (sCD55) by ELISA. sCD55 levels were not influenced by IM and did not correlate with gastric CD55 mRNA levels. These results suggest a new link between active vacA i1-type H. pylori, IM, and CD55, and identify CD55 as a molecule of potential interest in the management of IM as well as GC treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Abed M Zaitoun
- Department of Cellular PathologyNottingham University Hospitals NHS Trust, Queen's Medical Centre CampusNottinghamUK
| | - Darren P Letley
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Joanne L Rhead
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Javier Torres
- Unidad de Investigación en Enfermedades InfecciosasHospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSMexico CityMexico
| | - Ian Spendlove
- Division of Cancer and Stem Cells, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - John C Atherton
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Karen Robinson
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| |
Collapse
|
6
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
7
|
Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter 2022; 27:e12891. [PMID: 35384141 PMCID: PMC9287064 DOI: 10.1111/hel.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
For decades, traditional in vitro and in vivo models used for the study of Helicobacter pylori infection have relied heavily on the use of gastric cancer cell lines and rodents. Major challenges faced by these methods have been the inability to study cancer initiation in already cancerous cell lines, and the difficulty in translating results obtained in animal models due to genetic differences. These challenges have prevented a thorough understanding of the pathogenesis of disease and slowed the development of cancer therapies and a suitable vaccine against the pathogen. In recent years, the development of gastric organoids has provided great advantages over the traditional in vivo and in vitro models due to their similarities to the human stomach in vivo, their ease of use, and the capacity for long-term culture. This review discusses the advantages and limitations of existing in vivo and in vitro models of H. pylori infection, and how gastric organoids have been applied to study H. pylori pathogenesis, with a focus on how the pathogen interacts with the gastric epithelium, inflammatory processes, epithelial repair, and cancer initiation. The potential applications of organoids to address more complex questions on the role of hormones, vaccine-induced immunity are also discussed.
Collapse
|
8
|
Yang YJ, Lu CL, Sheu BS. Differential H. pylori-Induced MAPK Responses Regulate Lewis Antigen Expression and Colonization Density on Gastric Epithelial Cells Between Children and Adults. Front Immunol 2022; 13:849512. [PMID: 35350782 PMCID: PMC8957798 DOI: 10.3389/fimmu.2022.849512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Helicobacter pylori causes gastrointestinal diseases, the manifestations of diseases are more serious in adults than in children. Lewis antigen expressions on the gastric epithelium serves as receptors targeted by H. pylori. Moreover, the MAPK signaling pathway involves glycoprotein synthesis of Lewis antigens. We aimed to investigate whether differences in H. pylori-induced MAPK responses mediate gastric Lewis antigens expression and colonization density differently in children and adults. We used human stomach fetal epithelium (HSFE) and SV40-immortalized human normal gastric epithelial (GES-1) cell lines to mimic primary gastric epithelium of children and adults, respectively. H. pylori colonization intensity and Lewis antigens were significantly higher in GES-1 than in HSFE cells, whereas IL-8 and IL-6 levels were significantly higher in HSFE than in GES-1 cells after infection. c-Jun N-terminal kinase (JNK) siRNA and inhibitor (SP600125) experiments showed that Lewis antigen expression and H. pylori colonization were reduced in GES-1 cells but increased in HSFE cells. Furthermore, p-p38 intensity was significantly higher in the superficial epithelium of the children than in the adults with/without H. pylori infection. The overexpression of p38 in GES-1 cells downregulated H. pylori-induced JNK activity mimicking H. pylori infection in children. In conclusion, a higher p38 expression in gastric epithelium counteracting JNK activity in children may contribute to lower Lewis antigen expression and colonization density than in adults after H. pylori infection.
Collapse
Affiliation(s)
- Yao-Jong Yang
- Departments of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Lu
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Gastric Non-Helicobacter pylori Urease-Positive Staphylococcus epidermidis and Streptococcus salivarius Isolated from Humans Have Contrasting Effects on H. pylori-Associated Gastric Pathology and Host Immune Responses in a Murine Model of Gastric Cancer. mSphere 2022; 7:e0077221. [PMID: 35138124 PMCID: PMC8826947 DOI: 10.1128/msphere.00772-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In populations with similar prevalence of Helicobacter pylori infection, cancer risk can vary dramatically. Changes in composition or structure of bacterial communities in the stomach, either at the time of exposure or over the course of H. pylori infection, may contribute to gastric pathology. In this study, a population of 37 patients from the low-gastric-cancer-risk (LGCR) region of Tumaco, Colombia, and the high-gastric-cancer-risk (HGCR) region of Túquerres, Colombia, were recruited for gastric endoscopy. Antral biopsy specimens were processed for histology and bacterial isolation. Fifty-nine distinct species among 26 genera were isolated by aerobic, anaerobic, and microaerobic culture and confirmed by 16S rRNA analysis. Urease-positive Staphylococcus epidermidis and Streptococcus salivarius were frequently isolated from gastric biopsy specimens. We asked whether coinfection of H. pylori with urease-positive S. salivarius and/or S. epidermidis had a demonstrable effect on H. pylori-induced gastritis in the germfree (GF) INS-GAS mouse model. Coinfections with S. salivarius and/or S. epidermidis did not affect gastric H. pylori colonization. At 5 months postinfection, GF INS-GAS mice coinfected with H. pylori and S. salivarius had statistically higher pathological scores in the stomachs than mice infected with H. pylori only or H. pylori with S. epidermidis (P < 0.05). S. epidermidis coinfection with H. pylori did not significantly change stomach pathology, but levels of the proinflammatory cytokine genes Il-1β, Il-17A , and Il-22 were significantly lower than in H. pylori-monoinfected mice. This study demonstrates that non-H. pylori urease-positive bacteria may play a role in the severity of H. pylori-induced gastric cancer in humans. IMPORTANCE Chronic infection with H. pylori is the main cause of gastric cancer, which is a global health problem. In two Colombian populations with high levels of H. pylori prevalence, the regional gastric cancer rates are considerably different. Host genetic background, H. pylori biotype, environmental toxins, and dietary choices are among the known risk factors for stomach cancer. The potential role of non-H. pylori gastric microbiota in gastric carcinogenesis is being increasingly recognized. In this study, we isolated 59 bacterial species from 37 stomach biopsy samples of Colombian patients from both low-gastric-cancer-risk and high-gastric-cancer-risk regions. Urease-positive S. epidermidis and S. salivarius commonly cultured from the stomachs, along with H. pylori, were inoculated into germfree INS-GAS mice. S. salivarius coinfection with H. pylori induced significantly higher gastric pathology than in H. pylori-monoinfected mice, whereas S. epidermidis coinfection caused significantly lower H. pylori-induced proinflammatory cytokine responses than in H. pylori-monoinfected mice. This study reinforces the argument that the non-H. pylori stomach microflora play a role in the severity of H. pylori-induced gastric cancer.
Collapse
|
10
|
Hedayati MA, Ahmadi S, Servatyari K, Sheikhesmaeili F. PREX2 gene's expression in gastric antral epithelial cells of patients with H. pylori infection. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:353-358. [PMID: 34705970 DOI: 10.1590/s0004-2803.202100000-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Prex2 protein is a member of the Rac family proteins that belongs to small G proteins with a critical role in cell migration, cell proliferation, and apoptosis through its effects on PI3K cell signaling pathway and phosphatase activity of PTEN protein. The effect of PREX2 gene expression has been shown in some cancer cells. A survey of PREX2 gene expression in gastric antral epithelial cells of gastric cancer patients with Helicobacter pylori various genotypes infection can conduct to better understanding H. pylori infection's carcinogenesis. METHODS In a case-control study, PREX2 gene expression was evaluated in gastric antral biopsy samples on four groups of patients referred to Sanandaj hospitals, including gastritis with (n=23) and without (n=27) H. pylori infection and gastric cancer with (n=21) and without (n=32) H. pylori infection. Each gastric biopsy sample's total RNA was extracted and cDNA synthesized by using Kits (Takara Company). The PREX2 gene expression was measured using the relative quantitative real-time RT-PCR method and ΔΔCt formula. RESULTS The PREX2 gene expression increased in gastric antral biopsy samples of gastritis and gastric cancer patients with H. pylori infection (case groups) than patients without H. pylori infection (control groups) 2.38 and 2.27 times, respectively. The patients with H. pylori vacA s1m1 and sabB genotypes infection showed a significant increase of PREX2 gene expression in gastric cancer antral epithelial cells. CONCLUSION H. pylori vacA s1m1 and sabB genotypes have the positive correlations with PREX2 gene expression in gastric antral epithelial cells of gastritis and gastric cancer patients.
Collapse
Affiliation(s)
- Manouchehr Ahmadi Hedayati
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sanaz Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
11
|
Soutto M, Bhat N, Khalafi S, Zhu S, Poveda J, Garcia-Buitrago M, Zaika A, El-Rifai W. NF-kB-dependent activation of STAT3 by H. pylori is suppressed by TFF1. Cancer Cell Int 2021; 21:444. [PMID: 34419066 PMCID: PMC8380333 DOI: 10.1186/s12935-021-02140-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND H. pylori infection is the main risk factor for gastric cancer. In this study, we investigated H. pylori-mediated activation of STAT3 and NF-κB in gastric cancer, using in vitro and in vivo models. METHODS To investigate the activation of NF-κB and STAT3 by H. pylori strains we used in vitro and in vivo mouse models, western blots, immunofluorescence, ChIP Assay, luciferase and quantitative real-time PCR assays. RESULTS Following infection with H. pylori in vitro, we found an earlier phosphorylation of NF-kB-p65 (S536), followed by STAT3 (Y705). Immunofluorescence, using in vitro and in vivo models, demonstrated nuclear localization of NF-kB and STAT3, following H. pylori infection. NF-kB and STAT3 luciferase reporter assays confirmed earlier activation of NF-kB followed by STAT3. In vitro and in vivo models demonstrated induction of mRNA expression of IL-6 (p < 0.001), VEGF-α (p < 0.05), IL-17 (p < 0.001), and IL-23 (p < 0.001). Using ChIP, we confirmed co-binding of both NF-kB-p65 and STAT3 on the IL6 promoter. The reconstitution of Trefoil Factor 1 (TFF1) suppressed activation of NF-kB with reduction in IL6 levels and STAT3 activity, in response to H. pylori infection. Using pharmacologic (BAY11-7082) and genetic (IκB super repressor (IκBSR)) inhibitors of NF-kB-p65, we confirmed the requirement of NF-kB-p65 for activation of STAT3, as measured by phosphorylation, transcription activity, and nuclear localization of STAT3 in in vitro and in vivo models. CONCLUSION Our findings suggest the presence of an early autocrine NF-kB-dependent activation of STAT3 in response to H. pylori infection. TFF1 acts as an anti-inflammatory guard against H. pylori-mediated activation of pro-inflammatory networks.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, 33136-1015, USA
| | - Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shayan Khalafi
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julio Poveda
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, 33136-1015, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, 33136-1015, USA.
| |
Collapse
|
12
|
Yu X, Cai T, Fan L, Liang Z, Du Q, Wang Q, Yang Z, Vlahos R, Wu L, Lin L. The traditional herbal formulation, Jianpiyifei II, reduces pulmonary inflammation induced by influenza A virus and cigarette smoke in mice. Clin Sci (Lond) 2021; 135:1733-1750. [PMID: 34236078 DOI: 10.1042/cs20210050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide chronic inflammatory lung disease, and influenza A virus (IAV) infection is a common cause of acute exacerbations of COPD (AECOPD). Therefore, targeting viral infections represents a promising strategy to prevent the occurrence and development of inflammatory flare ups in AECOPD. Jianpiyifei II (JPYFII) is a traditional herbal medicine used in China to treat patients with COPD, and its clinical indications are not well understood. However, investigation of the anti-inflammatory effects and underlying mechanism using an animal model of smoking have been reported in a previous study by our group. In addition, some included herbs, such as Radix astragali and Radix aupleuri, were reported to exhibit antiviral effects. Therefore, the aim of the present study was to investigate whether JPYFII formulation relieved acute inflammation by clearing the IAV in a mouse model that was exposed to cigarette smoke experimentally. JPYFII formulation treatment during smoke exposure and IAV infection significantly reduced the number of cells observed in bronchoalveolar lavage fluid (BALF), expression of proinflammatory cytokines, chemokines, superoxide production, and viral load in IAV-infected and smoke-exposed mice. However, JPYFII formulation treatment during smoke exposure alone did not reduce the number of cells in BALF or the expression of Il-6, Tnf-a, and Il-1β. The results demonstrated that JPYFII formulation exerted an antiviral effect and reduced the exacerbation of lung inflammation in cigarette smoke (CS)-exposed mice infected with IAV. Our results suggested that JPYFII formulation could potentially be used to treat patients with AECOPD associated with IAV infection.
Collapse
Affiliation(s)
- Xuhua Yu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Tiantian Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Long Fan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ziyao Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuling Du
- Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Lei Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lin Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
13
|
Khani D, Hedayati MA, Nasseri S, Sheikhesmaeili F, Ghadiany R. ZAK Gene Expression in Patients with Helicobacter pylori Infection. J Gastrointest Cancer 2021; 53:326-332. [PMID: 33620708 DOI: 10.1007/s12029-021-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND ZAK protein is a member of the MLK family proteins defined as mediators in the cell cycle. A survey of ZAK gene expression in gastric antral epithelial cells (GAECs) of gastritis and gastric adenocarcinoma patients with Helicobacter pylori genotypes infection can elucidate carcinogenesis of H. pylori genotypes. METHODS In a case-control study, ZAK gene expression was evaluated in GAECs biopsy samples of gastritis and gastric adenocarcinoma patients with (n 23, 21) and without H. pylori infection (n 27, 32), respectively. Total RNA was extracted from each gastric antral biopsy samples and cDNA synthesized by using Takara kits. H. pylori virulence genes֝ cDNA were detected by traditional PCR and specific primers. The ZAK gene expression was measured using the relative Real-Time RT PCR. RESULTS The prevalence of gastric adenocarcinoma was the highest in man and 61-85 aged groups (p < .05). There was no significant correlation between the prevalence of H. pylori infection and patients' demographic groups. This study showed that ZAK gene overexpression gradually increases with increasing age and tumor grade among gastric adenocarcinoma patients. The gastric antral biopsy samples with H. pylori vacA s1m2 genotype infection showed a weak correlation with ZAK gene overexpression (p < .1). CONCLUSION ZAK gene expression was higher in GAECs of gastritis cancer than in gastric adenocarcinoma, indicating the protective effect of ZAK against gastric cancer (p < .005). Reducing ZAK gene expression shows the negative correlations with H. pylori infection and gastric adenocarcinoma.
Collapse
Affiliation(s)
- Delniya Khani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Ahmadi Hedayati
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghaie Ghadiany
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Chang Y, Tian Y, Zhou D, Yang L, Liu TM, Liu ZG, Wang SW. Gentiopicroside ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling. Int Immunopharmacol 2021; 90:107213. [PMID: 33296781 DOI: 10.1016/j.intimp.2020.107213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Excessive ethanol consumption results in gastric mucosa damage, which could further develop into chronic gastritis, peptic ulcer, and gastric cancer in humans. Gentiopicroside (GPS), a major active component of Gentianae Macrophyllae radix, was reported to play a critical role in anti-inflammation. In the study, we aimed to investigate the functional role and underlying mechanism of GPS in ethanol-induced gastritis. METHODS A model of gastritis was created by ethanol in C57BL/6 mice. Enzyme-linked immunosorbent assay was used to determine the concentration of TNF-α, IL-1β, IL-8, and IL-10. RESULTS We found that GPS treatment significantly ameliorated ethanol-induced gastritis in mice, with lower production of pro-inflammatory cytokine TNF-α, IL-1β, and IL-8 and higher levels of anti-inflammatory cytokine IL-10. The anti-inflammatory effect of GPS was further confirmed in vitro in ethanol-treated human gastric mucosal GES cells. Mechanistically, we demonstrated that GPS regulated matrix metallopeptidase expression and pERK1/2 signaling. Knockdown of matrix metallopeptidase 10 (MMP-10) greatly improved cell survival and suppressed inflammatory response in ethanol-treated GES cells. Moreover, inhibition of pERK1/2 signaling using U0126 decreased the expression of MMP-10 in ethanol-induced gastritis. U0126 treatment also suppressed the expression of TNF-α, IL-1β, and IL-8, and enhanced IL-10 expression in mice gastric mucosa. CONCLUSIONS Taken together, our findings suggest that GPS ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling, which might provide a promising therapeutic drug for ethanol-induced gastritis.
Collapse
Affiliation(s)
- Ying Chang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi'an 710032, China; Department of Pharmacy, Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Yun Tian
- Department of Clinical Pharmacy, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Dan Zhou
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an 710061, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | | | - Zhen-Guo Liu
- Department of Pharmacy, Northwest Women's and Children's Hospital, Xi'an 710061, China.
| | - Si-Wang Wang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Where to Biopsy to Detect Helicobacter pylori and How Many Biopsies Are Needed to Detect Antibiotic Resistance in a Human Stomach. J Clin Med 2020; 9:jcm9092812. [PMID: 32878081 PMCID: PMC7565078 DOI: 10.3390/jcm9092812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
This study aims to determine the gastric distribution, density, and diversity of Helicobacter pylori infection. Subtotal resection of the stomachs of three H. pylori-infected and asymptomatic obese patients were collected after a sleeve gastrectomy. Distribution and density of H. pylori were determined using culture and RT-PCR on multiple gastric sites (88, 176, and 101 biopsies per patient). Diversity of H. pylori strains was studied using antibiotic susceptibility testing, random amplified polymorphism DNA (RAPD) typing and cagA gene detection on single-colony isolates (44, 96, and 49 isolates per patient). H. pylori was detected in nearly all analyzed sites (354/365 biopsies, 97%). Antral density was higher in one patient only. The three stomachs were almost exclusively infected by an antibiotic-susceptible strain. One clarithromycin-resistant isolate in one biopsy was detected in two stomachs (1/44 and 1/49 isolates), while in the third one, eight (8/96 isolates) metronidazole-resistant isolates were detected. DNA typing showed infection with cagA-negative strains for one patient, cagA-positive strains for a second patient and the third patient was infected with two different strains of distinct cagA genotypes. Infection with H. pylori is shown to spread to the whole surface of the stomach, but a possibility of minor sub-population of antibiotic-resistant clones, undetectable in routine practice.
Collapse
|
16
|
Investigation of the thermodynamic drivers of the interaction between the high mobility group box domain of Sox2 and bacterial lipopolysaccharide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183106. [DOI: 10.1016/j.bbamem.2019.183106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023]
|
17
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Alvestegui A, Olivares-Morales M, Muñoz E, Smith R, Nataro JP, Ruiz-Perez F, Farfan MJ. TLR4 Participates in the Inflammatory Response Induced by the AAF/II Fimbriae From Enteroaggregative Escherichia coli on Intestinal Epithelial Cells. Front Cell Infect Microbiol 2019; 9:143. [PMID: 31131263 PMCID: PMC6509964 DOI: 10.3389/fcimb.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) infections are one of the most frequent causes of persistent diarrhea in children, immunocompromised patients and travelers worldwide. The most prominent colonization factors of EAEC are aggregative adherence fimbriae (AAF). EAEC prototypical strain 042 harbors the AAF/II fimbriae variant, which mediates adhesion to intestinal epithelial cells and participates in the induction of an inflammatory response against this pathogen. However, the mechanism and the cell receptors implicated in eliciting this response have not been fully characterized. Since previous reports have shown that TLR4 recognize fimbriae from different pathogens, we evaluated the role of this receptor in the response elicited against EAEC by intestinal cells. Using a mutual antagonist against TLR2 and TLR4 (OxPAPC), we observed that blocking of these receptors significantly reduces the secretion of the inflammatory marker IL-8 in response to EAEC and AAF/II fimbrial extract in HT-29 cells. Using a TLR4-specific antagonist (TAK-242), we observed that the secretion of this cytokine was significantly reduced in HT-29 cells infected with EAEC or incubated with AAF/II fimbrial extract. We evaluated the participation of AAF/II fimbriae in the TLR4-mediated secretion of 38 cytokines, chemokines, and growth factors involved in inflammation. A reduction in the secretion of IL-8, GRO, and IL-4 was observed. Our results suggest that TLR4 participates in the secretion of several inflammation biomarkers in response to AAF/II fimbriae.
Collapse
Affiliation(s)
- Alejandra Alvestegui
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Ernesto Muñoz
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Rachel Smith
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mauricio J Farfan
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Sebrell TA, Hashimi M, Sidar B, Wilkinson RA, Kirpotina L, Quinn MT, Malkoç Z, Taylor PJ, Wilking JN, Bimczok D. A Novel Gastric Spheroid Co-culture Model Reveals Chemokine-Dependent Recruitment of Human Dendritic Cells to the Gastric Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:157-171.e3. [PMID: 30878664 PMCID: PMC6599165 DOI: 10.1016/j.jcmgh.2019.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastric dendritic cells (DCs) control the adaptive response to infection with Helicobacter pylori, a major risk factor for peptic ulcer disease and gastric cancer. We hypothesize that DC interactions with the gastric epithelium position gastric DCs for uptake of luminal H pylori and promote DC responses to epithelial-derived mediators. The aim of this study was to determine whether the gastric epithelium actively recruits DCs using a novel co-culture model of human gastric epithelial spheroids and monocyte-derived DCs. METHODS Spheroid cultures of primary gastric epithelial cells were infected with H pylori by microinjection. Co-cultures were established by adding human monocyte-derived DCs to the spheroid cultures and were analyzed for DC recruitment and antigen uptake by confocal microscopy. Protein array, gene expression polymerase chain reaction array, and chemotaxis assays were used to identify epithelial-derived chemotactic factors that attract DCs. Data from the co-culture model were confirmed using human gastric tissue samples. RESULTS Human monocyte-derived DCs co-cultured with gastric spheroids spontaneously migrated to the gastric epithelium, established tight interactions with the epithelial cells, and phagocytosed luminally applied H pylori. DC recruitment was increased upon H pylori infection of the spheroids and involved the activity of multiple chemokines including CXCL1, CXCL16, CXCL17, and CCL20. Enhanced chemokine expression and DC recruitment to the gastric epithelium also was observed in H pylori-infected human gastric tissue samples. CONCLUSIONS Our results indicate that the gastric epithelium actively recruits DCs for immunosurveillance and pathogen sampling through chemokine-dependent mechanisms, with increased recruitment upon active H pylori infection.
Collapse
Affiliation(s)
- Thomas A Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Marziah Hashimi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Barkan Sidar
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Liliya Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Zeynep Malkoç
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | | | - James N Wilking
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| |
Collapse
|
20
|
Mirkamandar E, Nemati M, Hayatbakhsh MM, Bassagh A, Khosravimashizi A, Jafarzadeh A. Association of a single nucleotide polymorphism in the TLR2 gene (rs3804099), but not in the TLR4 gene (rs4986790), with Helicobacter pylori infection and peptic ulcer. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 29:283-291. [PMID: 29755012 DOI: 10.5152/tjg.2018.17484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS Toll-like receptors (TLRs), particularly TLR2 and TLR4, take part in elicitation of immune responses against Helicobacter pylori (H. pylori). This study aimed to investigate the relationship between single nucleotide polymorphisms (SNP) rs3804099 in the TLR2 gene and rs4986790 in the TLR4 gene with H. pylori infection and peptic ulcer (PU). MATERIALS AND METHODS Blood specimens were obtained from 350 individuals, including 100 H. pylori-infected patients with PU, 125 H. pylori-infected asymptomatic subjects (AS), and 125 non-infected healthy subjects (NHS). The DNA was extracted, and the SNPs were determined using ARMS-PCR method. RESULTS The frequency of CT genotype at TLR2 SNP rs3804099 in both the PU and AS groups was significantly higher than in the NHS group (p<0.05). In total H. pylori-infected individuals (PU+AS), the frequency of the CT genotype at rs3804099 was also significantly higher than in the NHS group (p<0.005). The frequency of the CC genotype at rs3804099 in PU+AS was markedly lower than in the NHS group (p=0.066). PU patients carried CT genotype more frequently than total healthy individuals (AS+NHS) (p<0.03). The distribution of the TT genotype was lower, whereas the frequency of the CT genotype was higher in AS individuals infected with CagA+ strains than those infected with CagA- strains (p<0.03). No significant differences were found among the PU, AS, and NHS groups regarding the genetic differences at rs4986790 in the TLR4 gene. CONCLUSION These results provide evidence regarding the association of the rs3804099 in the TLR2 gene with H. pylori infection and PU. The rs3804099 may affect vulnerability to H. pylori infection, particularly to CagA+ strains of bacteria.
Collapse
Affiliation(s)
- Ehsan Mirkamandar
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Maryam Nemati
- Department of Immunology, Kerman University of Medical Sciences School of Medicine, Kerman, Iran; Department of Laboratory Sciences, Kerman University of Medical Sciences School of Para-Medicine, Kerman, Iran
| | - Mohammad Mehdi Hayatbakhsh
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezu Bassagh
- Department of Immunology, Kerman University of Medical Sciences School of Medicine, Kerman, Iran
| | - Arezu Khosravimashizi
- Department of Immunology, Kerman University of Medical Sciences School of Medicine, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences School of Medicine, Kerman, Iran; Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
21
|
Confirming the Effects of Qinghuayin against Chronic Atrophic Gastritis and a Preliminary Observation of the Involved Inflammatory Signaling Pathways: An In Vivo Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4905089. [PMID: 30356431 PMCID: PMC6178163 DOI: 10.1155/2018/4905089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Background Qinghuayin (QHY) is a Chinese formula that is widely used in the treatment of chronic atrophic gastritis (CAG). This study was planned with the following objectives: (1) confirming the efficacy of QHY in a rat model of CAG and (2) performing a preliminary observation of the changes in several inflammatory signaling pathways potentially involved in the QHY mechanisms. Methods A total of 33 rats were used in this study; they were divided into the control (n = 12) and model (n = 21) groups. QHY was administrated to both the groups. We assessed the pathological manifestations and the serum tumor necrosis factor alpha (TNF-α) level as markers of efficacy. We also performed a preliminary observation of the changes in the protein and messenger ribonucleic acid (mRNA) expression of toll-like receptors 4 (TLR4), MyD88, NF-κB, and COX-2. Results The pathological changes induced in the rats by the establishment of the CAG models were recovered by low and high doses of QHY. Their serum TNF-α level also reduced following low- and high-dose QHY treatment. Protein and mRNA expressions of TLR4, MyD88, NF-κB, and COX-2 were upregulated by the establishment of CAG models and downregulated by the administration of low- and high-dose QHY. Conclusions Our data confirm the efficacy of QHY as an adjuvant therapy, based on the theories in traditional Chinese medicine. The preliminary observations indicate that the downregulation of the enhanced inflammatory signaling pathways might be crucial QHY mechanisms that need further verification.
Collapse
|
22
|
Li S, Xu T, Liu S, Liu Z, Pi Z, Song F, Jin Y. Exploring the potential pharmacodynamic material basis and pharmacologic mechanism of the Fufang-Xialian-Capsule in chronic atrophic gastritis by network pharmacology approach based on the components absorbed into the blood. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171806. [PMID: 30110485 PMCID: PMC6030346 DOI: 10.1098/rsos.171806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, a new network pharmacology approach based on the components absorbed into the blood was used to investigate the pharmacodynamic material basis and the pharmacologic mechanism of the Fufang-Xialian-Capsule (FXL) in treating chronic atrophic gastritis (CAG). Initially, we confirmed the components absorbed into the blood by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Then, the network approach, which was based on the results of components absorbed into the blood, was used to analyse the pharmacodynamic material basis and the pharmacologic mechanism of FXL on treating CAG. As a result, 22 absorbed components were found in rat plasma. Given the results of the absorption analysis of the components, eight pathways associated with CAG development were found. The targets linked to these pathways are the drug targets of FXL in CAG treatment. The components associated with these targets are the potential pharmacodynamic material basis and exert synergy in regulating pathways during CAG treatment.
Collapse
Affiliation(s)
- Shizhe Li
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Tengfei Xu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Fenrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
23
|
Mommersteeg MC, Yu J, Peppelenbosch MP, Fuhler GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim Biophys Acta Rev Cancer 2017; 1869:42-52. [PMID: 29154808 DOI: 10.1016/j.bbcan.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 02/09/2023]
Abstract
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.
Collapse
Affiliation(s)
- Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences and CUHK-Shenzhen Research Institute, Rm 707A, 7/F., Li Ka Shing Medical Science Building, The Chinese University of Hong Kong, Hong Kong.
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Nemati M, Larussa T, Khorramdelazad H, Mahmoodi M, Jafarzadeh A. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection. Life Sci 2017; 178:17-29. [PMID: 28427896 DOI: 10.1016/j.lfs.2017.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Toll like receptors (TLRs) are an essential subset of pathogen recognition receptors (PRRs) which identify the microbial components and contribute in the regulation of innate and adaptive immune responses against the infectious agents. The TLRs, especially TLR2, TLR4, TLR5 and TLR9, participate in the induction of immune response against H. pylori. TLR2 is expressed on a number of immune and non-immune cells and recognizes a vast broad of microbial components due to its potential to form heterodimers with other TLRs, including TLR1, TLR6 and TLR10. A number of H. pylori-related molecules may contribute to TLR2-dependent responses, including HP-LPS, HP-HSP60 and HP-NAP. TLR2 plays a pivotal role in regulation of immune response to H. pylori through activation of NF-κB and induction of cytokine expression in epithelial cells, monocytes/macrophages, dendritic cells, neutrophils and B cells. The TLR2-related immune response that is induced by H. pylori-derived components may play an important role regarding the outcome of the infection toward bacterial elimination, persistence or pathological reactions. The immunomodulatory and immunoregulatory roles of TLR2 during H. pylori infection were considered in this review. TLR2 could be considered as an interesting therapeutic target for treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|