1
|
Abdi A, Oroojzadeh P, Valivand N, Sambrani R, Lotfi H. Immunological aspects of probiotics for improving skin diseases: Influence on the Gut-Brain-Skin Axis. Biochem Biophys Res Commun 2024; 702:149632. [PMID: 38340656 DOI: 10.1016/j.bbrc.2024.149632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The interplay between gut microbiota and human health, both mental and physical, is well-documented. This connection extends to the gut-brain-skin axis, linking gut microbiota to skin health. Recent studies have underscored the potential of probiotics and prebiotics to modulate gut microbiota, supported by in vivo and clinical investigations. In this comprehensive review, we explore the immunological implications of probiotics in influencing the gut-skin axis for the treatment and prevention of skin conditions, including psoriasis, acne, diabetic ulcers, atopic dermatitis, and skin cancer. Our analysis reveals that probiotics exert their effects by modulating cytokine production, whether administered orally or topically. Probiotics bolster skin defenses through the production of antimicrobial peptides and the induction of keratinocyte differentiation and regeneration. Yet, many questions surrounding probiotics remain unanswered, necessitating further exploration of their mechanisms of action in the context of skin diseases.
Collapse
Affiliation(s)
- Ali Abdi
- Medical Immunology, Aziz Sancar Institute of Experimental Medicine, İstanbul University, Istanbul, Turkey
| | - Parvin Oroojzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roshanak Sambrani
- Clinical Research Development Unit of Razi Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
3
|
Gawlik-Kotelnicka O, Margulska A, Skowrońska A, Strzelecki D. PRO-DEMET Randomized Controlled Trial on Probiotics in Depression—Pilot Study Results. Nutrients 2023; 15:nu15061400. [PMID: 36986132 PMCID: PMC10058314 DOI: 10.3390/nu15061400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
There is a pressing need to identify new treatment options for depression and its comorbidities. Depression often coexists with metabolic complications, and the two may share a pathophysiological overlap, including inflammation and microbiota changes. Microbiota interventions (e.g., probiotics) may represent a safe and easy-to-use treatment option as an adjunctive therapy in patients only partially responsive to pharmacologic treatment. (1) Objective: The paper presents the results of a feasibility and pilot study. The study is an internal part of a randomized controlled trail (RCT) of the effect of probiotic supplementation on psychometric, anthropometric, metabolic, and inflammatory parameters in adult patients with depressive disorders depending on the presence of metabolic syndrome. (2) Methods: The trial has a four-arm, parallel-group, prospective, randomized, double-blind, controlled design. Sixty participants received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 over 60 days. The feasibility of the study design was assessed, as well as the rates of recruitment, eligibility, consent, and study completion. The following were assessed: depressive, anxiety and stress symptoms, quality of life, blood pressure, body mass index and waist circumference, complete blood count with differential, serum levels of C-reactive protein, high-density lipoprotein cholesterol, triglycerides, fasting glucose, some secondary markers of inflammation and metabolic health, as well as noninvasive biomarkers of liver fibrosis (APRI and FIB-4). (3) Results: The study was found to be generally feasible. The eligibility rate was 52% of recruited participants with 80% completing the study protocol. No differences in sociodemographic or anthropometric factors or basic laboratory findings were found between the placebo and probiotic group at the start of the intervention period. Importantly, the proportion of recruited participants fulfilling the criteria of metabolic syndrome was too low. (4) Conclusions: Whilst the whole study protocol was feasible, some different timepoint procedures require modification. The major weakness of the recruitment methods was that the percentage of metabolic arms participants was insufficient. Overall, the full RCT design on probiotics in depression with vs. without metabolic syndrome was shown to be feasible with little modification.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
- Correspondence:
| | - Aleksandra Margulska
- Department of Adolescent Psychiatry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
4
|
The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression-A Study Protocol. Metabolites 2023; 13:metabo13020182. [PMID: 36837799 PMCID: PMC9966580 DOI: 10.3390/metabo13020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
This article aims to present the theoretical basis, methodology, and design of a clinical trial we will conduct. The study will be prospective, randomized, placebo-controlled, and double-blind. Each intervention period will last 8 weeks and the trial will be conducted on 100 patients in total, who will be randomly divided into two groups consisting of 50 patients each. We plan to investigate the impact of Lactobacillus helveticus Rosell and Bifidobacterium longum Rosell on the depressive, anxiety, and stress levels in patients with depressive disorders with possible comorbid anxiety. In addition to assessing the influence of probiotics on the clinical condition, we also plan to study the clinical and biochemical parameters of metabolic syndrome, which often coexists with depression. Both depressive and metabolic issues may have part of their etiopathology in common, e.g., inflammation, oxidative stress, and dysbiosis. This is why we will additionally investigate the parameters related to gut microbiota, inflammatory, and oxidative statuses. Thus, the primary endpoint of the study will be the change in depression score measured with the Montgomery-Åsberg Depression Rating Scale. The secondary endpoints will include changes in anxiety and stress levels, as well as metabolic, inflammation, and oxidative stress parameters.
Collapse
|
5
|
Thekkekkara D, Manjula SN, Mishra N, Bhatt S, Shilpi S. Synbiotics in the Management of Breast Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:289-304. [DOI: 10.1007/978-981-19-7550-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Tremblay A, Xu X, Colee J, Tompkins TA. Efficacy of a Multi-Strain Probiotic Formulation in Pediatric Populations: A Comprehensive Review of Clinical Studies. Nutrients 2021; 13:nu13061908. [PMID: 34206098 PMCID: PMC8226750 DOI: 10.3390/nu13061908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
A probiotic formulation combining Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33, and Bifidobacterium bifidum Rosell®-71 with fructooligosaccharides, first commercialized in China, has been sold in over 28 countries since 2002. Clinical studies with this blend of strains were conducted mainly in pediatric populations, and most were published in non-English journals. This comprehensive review summarizes the clinical studies in infants and children to evaluate the efficacy of this probiotic for pediatric indications. Literature searches for pediatric studies on Biostime® or Probiokid® (non-commercial name) in 6 international and Chinese databases identified 28 studies, which were classified by indications. Twelve studies show that the probiotic significantly increases the efficacy of standard diarrhea treatment regardless of etiology, reducing the risk of unresolved diarrhea (RR 0.31 [0.23; 0.42]; p < 0.0001) by 69%. In eight studies, the probiotic enhanced immune defenses, assessed by levels of various immune competence and mucosal immunity markers (six studies), and reduced the incidence of common infections (two studies). The probiotic improved iron deficiency anemia treatment efficacy (three studies), reducing the risk of unresolved anemia by 49% (RR 0.51 [0.28; 0.92]; p = 0.0263) and significantly reducing treatment side effects by 47% (RR 0.53 [0.37; 0.77]; p = 0.0009). Other studies support further investigation into this probiotic for oral candidiasis, eczema, feeding intolerance in premature babies, or hyperbilirubinemia in newborns.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
| | - Xiaoyu Xu
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
| | - James Colee
- IFAS Statistical Consulting Unit, University of Florida, P.O. Box 110500, Gainesville, FL 32611-0500, USA;
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
- Correspondence:
| |
Collapse
|
7
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
8
|
Invited Review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. APPLIED ANIMAL SCIENCE 2020. [DOI: 10.15232/aas.2020-02049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Yu W, Gao D, Jin W, Wang Z, Li Y, Peng X, Cong Y, Li C, Zhao A, Liu S, Qi S. Intestinal Flora Dysbiosis Aggravates Cognitive Dysfunction Associated With Neuroinflammation in Heart Failure. J Card Fail 2020; 26:885-894. [PMID: 32105821 DOI: 10.1016/j.cardfail.2020.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cognitive dysfunction after heart failure (HF) is characterized by neuroinflammation, which plays an important role in the occurrence and development of cognitive dysfunction. Recent studies have shown that an intestinal flora imbalance may also trigger neuroinflammation in Alzheimer's disease. The present study was designed to reveal that intestinal flora dysbiosis caused by HF aggravates neuroinflammation-associated cognitive impairment. METHODS AND RESULTS Adult male Sprague-Dawley rats were fed daily for 2 weeks with probiotics or placebo until the day of surgery. HF was then triggered by 8 weeks of sustained coronary artery occlusion. 16S rDNA sequencing was used to confirm intestinal flora dysbiosis after HF and demonstrate that the changes paralleled intestinal pathology scores. The permeability of the blood-brain barrier was increased after HF, and such an increase in permeability may increase the levels of inflammatory cytokines caused by intestinal flora disorders. The changes in the intestinal flora caused by probiotics significantly reduced the level of neuroinflammation. In addition, probiotic administration considerably improved the impaired spatial memory in HF rats. CONCLUSIONS We conclude that intestinal flora dysbiosis plays a potential role in aggravating the impaired cognition associated with neuroinflammation and that these effects may be attenuated by probiotics.
Collapse
Affiliation(s)
- Wei Yu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dapeng Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen Jin
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zijian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yan Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiaowei Peng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yushuang Cong
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ayang Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shuai Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
10
|
Mohammadi G, Dargahi L, Naserpour T, Mirzanejad Y, Alizadeh SA, Peymani A, Nassiri-Asl M. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int Microbiol 2018; 22:317-323. [PMID: 30810993 DOI: 10.1007/s10123-018-00051-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/11/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
In recent years, the beneficial impact of targeted gut microbiota manipulation in various neurological disorders has become more evident. Therefore, probiotics have been considered as a promising approach to modulate brain gene expression and neuronal pathways even in some neurodegenerative diseases. The purpose of this study was to determine the effect of probiotic biotherapy with combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the expression levels of proteins critical to neuronal apoptosis in hippocampus of lipopolysaccharide (LPS)-exposed rats. Four groups of animals (Control, LPS, Probiotic + LPS, and Probiotic) were treated with maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 2 weeks by gavage. On the 15th day, a single intraperitoneal dose of saline or LPS (1 mg/kg) was injected and 4 h later, protein assessment was performed by western blotting in hippocampal tissues. LPS significantly increased the Bax, Bax/Bcl-2 ratio, and cleaved caspase-3 expression along with decreased the Bcl-2 and procaspase-3 protein levels. However, probiotic pretreatment (L. helveticus R0052 + B. longum R0175) significantly downregulated the Bax and Bax/Bcl-2 ratio accompanied with upregulated Bcl-2 expression. Prophylactic treatment with these bacteria also attenuated LPS-induced caspase-3 activation by remarkably increasing the expression of procaspase-3 while reducing the level of cleaved caspase-3 in target tissues. Our data indicate that probiotic formulation (L. helveticus R0052 + B. longum R0175) alleviated hippocampal apoptosis induced by LPS in rats via the gut-brain axis and suggest that this probiotic could play a beneficial role in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taghi Naserpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Yazdan Mirzanejad
- Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, Qazvin University of Medical Sciences, P.O. Box 341197-5981, Qazvin, Iran.
| |
Collapse
|
11
|
Mohammadi G, Dargahi L, Peymani A, Mirzanejad Y, Alizadeh SA, Naserpour T, Nassiri-Asl M. The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J Am Coll Nutr 2018; 38:209-217. [PMID: 30307792 DOI: 10.1080/07315724.2018.1487346] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The role of gut microbiota in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease (AD), via the gut-brain axis has recently been demonstrated; hence, modification of the intestinal microbiota composition by probiotic biotherapy could be a therapeutic target for these conditions. The aim of this study was to assess the effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on inflammatory and memory processes in lipopolysaccharide (LPS)-induced rats, one of the animal models used in peripherally induced neuroinflammation and neurodegeneration. METHODS Rats were randomly divided into four groups (Control, LPS, Probiotic + LPS, and Probiotic). All experimental groups were orally administrated maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 14 consecutive days and then were injected with saline or LPS (1 mg/kg, intraperitoneally [i.p.], single dose) 20 hours later. Memory retention ability and systemic and neuroinflammatory markers were assessed 4 hours after the injections. RESULTS Systemic exposure to LPS resulted in significant elevation of both the circulating and hippocampal levels of proinflammatory cytokines, which decreased remarkably following probiotic pretreatment. Oral bacteriotherapy with a combination of L. helveticus R0052 and B. longum R0175 also attenuated the decremental effect of LPS on memory through brain-derived neurotrophic factor (BDNF) expression at the molecular level; however, this effect was not significant in the passive avoidance test at the behavioral level. CONCLUSIONS These results suggest that the management of gut microbiota with this probiotic formulation could be a promising intervention to improve neuroinflammation-associated disorders such as AD.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- a Department of Molecular Medicine , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Leila Dargahi
- b NeuroBiology Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Peymani
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Yazdan Mirzanejad
- d Division of Infectious Diseases , University of British Columbia , Vancouver , Canada
| | - Safar Ali Alizadeh
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Taghi Naserpour
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Marjan Nassiri-Asl
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
12
|
Myocardial infarction and gut microbiota: An incidental connection. Pharmacol Res 2018; 129:308-317. [DOI: 10.1016/j.phrs.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
|
13
|
Manzano S, De Andrés J, Castro I, Rodríguez J, Jiménez E, Espinosa-Martos I. Safety and tolerance of three probiotic strains in healthy infants: a multi-centre randomized, double-blind, placebo-controlled trial. Benef Microbes 2017; 8:569-578. [DOI: 10.3920/bm2017.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some strains of species belonging to the genera Bifidobacterium and Lactobacillus are used in order to maintain health. Although these organisms have a long record of safe use, it is important to assess their safety and tolerance in potentially vulnerable populations, such as infants. The objective of this study was to evaluate the safety and tolerance of three probiotic strains (Bifidobacterium longum subsp. infantis R0033, Bifidobacterium bifidum R0071 and Lactobacillus helveticus R0052) in healthy infants aged 3 to 12 months. A multi-centre randomized, double-blind, placebo-controlled intervention study with 221 healthy full-term infants was conducted. Infants received either a placebo or one of the 3 probiotic strains (3×109 cfu) daily during an 8 week intervention period. Growth (weight, height and head circumference), adverse events (AEs)/serious adverse events (SAEs), concentrations of D-lactic acid in urine samples, characteristics of the stools and use of medication were collected for safety evaluation. All 4 groups were homogeneous with respect to age, gender, feeding type, ethnicity, height, weight and head circumference at the start of the study. The results showed that changes in growth (weight, height and head circumference) were equivalent in all 4 groups. No SAEs were reported. Total number of AEs recorded was equivalent in all groups. Thus, the use of B. infantis R0033, L. helveticus R0052 and B. bifidum R0071 in infancy is safe, and well tolerated.
Collapse
Affiliation(s)
- S. Manzano
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - J. De Andrés
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
| | - I. Castro
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
| | - J.M. Rodríguez
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - E. Jiménez
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - I. Espinosa-Martos
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| |
Collapse
|
14
|
McFarlin BK, Henning AL, Bowman EM, Gary MA, Carbajal KM. Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World J Gastrointest Pathophysiol 2017; 8:117-126. [PMID: 28868181 PMCID: PMC5561432 DOI: 10.4291/wjgp.v8.i3.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine if 30-d of oral spore-based probiotic supplementation could reduce dietary endotoxemia.
METHODS Apparently healthy men and women (n = 75) were screened for post-prandial dietary endotoxemia. Subjects whose serum endotoxin concentration increased by at least 5-fold from pre-meal levels at 5-h post-prandial were considered “responders” and were randomized to receive either placebo (rice flour) or a commercial spore-based probiotic supplement [Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans, and Bacillus licheniformis, and Bacillus clausii] for 30-d. The dietary endotoxemia test was repeated at the conclusion of the supplementation period. Dietary endotoxin (LAL) and triglycerides (enzymatic) were measured using an automated chemistry analyzer. Serum disease risk biomarkers were measured using bead-based multiplex assays (Luminex and Milliplex) as secondary, exploratory measures.
RESULTS Data were statistically analyzed using repeated measures ANOVA and a P < 0.05. We found that spore-based probiotic supplementation was associated with a 42% reduction in endotoxin (12.9 ± 3.5 vs 6.1 ± 2.6, P = 0.011) and 24% reduction in triglyceride (212 ± 28 vs 138 ± 12, P = 0.004) in the post-prandial period Placebo subjects presented with a 36% increase in endotoxin (10.3 ± 3.4 vs 15.4 ± 4.1, P = 0.011) and 5% decrease in triglycerides (191 ± 24 vs 186 ± 28, P = 0.004) over the same post-prandial period. We also found that spore-based probiotic supplementation was associated with significant post-prandial reductions in IL-12p70 (24.3 ± 2.2 vs 21.5 ± 1.7, P = 0.017) and IL-1β (1.9 ± 0.2 vs 1.6 ± 0.1, P = 0.020). Compared to placebo post supplementation, probiotic subject had less ghrelin (6.8 ± 0.4 vs 8.3 ± 1.1, P = 0.017) compared to placebo subjects.
CONCLUSION The key findings of the present study is that oral spore-based probiotic supplementation reduced symptoms indicative of “leaky gut syndrome”.
Collapse
|
15
|
Clark AK, Haas KN, Sivamani RK. Edible Plants and Their Influence on the Gut Microbiome and Acne. Int J Mol Sci 2017; 18:ijms18051070. [PMID: 28513546 PMCID: PMC5454980 DOI: 10.3390/ijms18051070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development.
Collapse
Affiliation(s)
- Ashley K Clark
- School of Medicine, University of California-Davis, Sacramento, CA 95816, USA.
| | - Kelly N Haas
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
| | - Raja K Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA.
| |
Collapse
|
16
|
MacPherson CW, Shastri P, Mathieu O, Tompkins TA, Burguière P. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination. PLoS One 2017; 12:e0169847. [PMID: 28099447 PMCID: PMC5242491 DOI: 10.1371/journal.pone.0169847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells' transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.
Collapse
Affiliation(s)
- Chad W. MacPherson
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
- * E-mail:
| | - Padmaja Shastri
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Olivier Mathieu
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Thomas A. Tompkins
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Pierre Burguière
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| |
Collapse
|
17
|
Arboleya S, Stanton C, Ryan CA, Dempsey E, Ross PR. Bosom Buddies: The Symbiotic Relationship Between Infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and Probiotic Features. Annu Rev Food Sci Technol 2016; 7:1-21. [PMID: 26934170 DOI: 10.1146/annurev-food-041715-033151] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. Bifidobacterium longum is one of the most abundant species of the Bifidobacterium genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of 'omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of B. longum in the colon. The discovery of a genomic island in B. longum ssp. infantis that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, B. longum is widely used as probiotic, and beneficial effects in infant health have been reported in several studies.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Paul R Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; , .,School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
18
|
Roudsari MR, Karimi R, Sohrabvandi S, Mortazavian AM. Health effects of probiotics on the skin. Crit Rev Food Sci Nutr 2016; 55:1219-40. [PMID: 24364369 DOI: 10.1080/10408398.2012.680078] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin is the largest organ of the body and is constantly exposed to physical, chemical, bacterial, and fungal challenges. It is well known that probiotics are helpful for specific disorders and different clinical studies have indicated that probiotics have special effects in cutaneous apparatus directly or indirectly that can be considerable from versatile aspects. Probiotic bacteriotherapy can have great potential in preventing and treating the skin diseases including eczema, atopic dermatitis, acne, and allergic inflammation or in skin hypersensitivity, UV-induced skin damage, wound protection, and as a cosmetic product. The current paper comprehensively reviews the different health effects of probiotics on the skin.
Collapse
Affiliation(s)
- M Rahmati Roudsari
- a Skin Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | | | | |
Collapse
|
19
|
Bowe W, Patel NB, Logan AC. Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine. Benef Microbes 2014; 5:185-99. [PMID: 23886975 DOI: 10.3920/bm2012.0060] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acne vulgaris has long been postulated to feature a gastrointestinal mechanism, dating back 80 years to dermatologists John H. Stokes and Donald M. Pillsbury. They hypothesised that emotional states (e.g. depression and anxiety) could alter normal intestinal microbiota, increase intestinal permeability, and contribute to systemic inflammation. They were also among the first to propose the use of probiotic Lactobacillus acidophilus cultures. In recent years, aspects of this gut-brain-skin theory have been further validated via modern scientific investigations. It is evident that gut microbes and oral probiotics could be linked to the skin, and particularly acne severity, by their ability to influence systemic inflammation, oxidative stress, glycaemic control, tissue lipid content, and even mood. This intricate relationship between gut microbiota and the skin may also be influenced by diet, a current area of intense scrutiny by those who study acne. Here we provide a historical background to the gut-brain-skin theory in acne, followed by a summary of contemporary investigations and clinical implications.
Collapse
Affiliation(s)
- W Bowe
- Department of Dermatology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - N B Patel
- New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 150 Bergen Street, Newark, NJ 07103, USA
| | - A C Logan
- Genuine Health, 775 East Blithedale Avenue, Suite 364, Mill Valley, CA 94941, USA
| |
Collapse
|
20
|
Kato T, Fukuda S, Fujiwara A, Suda W, Hattori M, Kikuchi J, Ohno H. Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res 2014; 21:469-80. [PMID: 24848698 PMCID: PMC4195493 DOI: 10.1093/dnares/dsu013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fructooligosaccharide (FOS), a prebiotic well known for its health-promoting properties, can improve the human gut ecosystem most likely through changes in its microbial composition. However, the detailed mechanism(s) of action of FOS in the modulation of the gut ecosystem remain(s) obscure. Traditional methods of profiling microbes and metabolites could barely show any significant features due to the existence of large interindividual differences, but our novel microbe–metabolite correlation approach, combined with faecal immunoglobulin A (IgA) measurements, has revealed that the induction of mucosal IgA by FOS supplementation correlated with the presence of specific bacteria. Furthermore, the metabolic dynamics of butyrate, l-phenylalanine, l-lysine and tyramine were positively correlated with that of these bacteria and IgA production, whereas p-cresol was negatively correlated. Taken together, our focused intraindividual analysis with omics approaches is a powerful strategy for uncovering the gut molecular network and could provide a new vista for understanding the human gut ecosystem.
Collapse
Affiliation(s)
- Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Graduate School of Nanobioscience, Yokohama City University, Kanagawa 230-0045, Japan
| | - Shinji Fukuda
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
| | - Akemi Fujiwara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Graduate School of Nanobioscience, Yokohama City University, Kanagawa 230-0045, Japan
| | - Wataru Suda
- Center for Omics and Bioinformatics, Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| |
Collapse
|
21
|
Multistrain probiotic modulation of intestinal epithelial cells' immune response to a double-stranded RNA ligand, poly(i·c). Appl Environ Microbiol 2013; 80:1692-700. [PMID: 24375132 DOI: 10.1128/aem.03411-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A commercially available product containing three probiotic bacterial strains (Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033, and Bifidobacterium bifidum R0071) was previously shown in animal trials to modulate both TH1 and TH2 immune responses. Clinical studies on this combination of bacteria have also shown positive health effects against seasonal winter diseases and rotavirus infection. The goal of this study was to use a well-established in vitro intestinal epithelial (HT-29) cell model that has been shown to constitutively express double-stranded RNA (dsRNA) sensors (Toll-like receptor 3 [TLR3], retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and dsRNA-activated protein kinase). By using the HT-29 cell model, we wanted to evaluate whether or not this combination of three bacteria had the capacity to immune modulate the host cell response to a dsRNA ligand, poly(I·C). Using a custom-designed, two-color expression microarray targeting genes of the human immune system, we investigated the response of HT-29 cells challenged with poly(I·C) both in the presence and in the absence of the three probiotic bacteria. We observed that the combination of the three bacteria had a major impact on attenuating the expression of genes connected to proinflammatory TH1 and antiviral innate immune responses compared to that obtained by the poly(I·C)-only challenge. Major pathways through which the multistrain combination may be eliciting its immune-modulatory effect include the TLR3 domain-containing adapter-inducing beta interferon (TRIF), mitogen-activated protein kinase, and NF-κB signaling pathways. Such a model may be useful for selecting potential biomarkers for the design of future clinical trials.
Collapse
|
22
|
Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013; 38:1738-47. [PMID: 23566632 DOI: 10.1016/j.psyneuen.2013.02.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
Abstract
Modulation of the gut microbiota with diet and probiotic bacteria can restore intestinal homeostasis in inflammatory conditions and alter behavior via the gut-brain axis. The purpose of this study was to determine whether the modulatory effects of probiotics differ depending on diet and mouse genotype. At weaning, wild type (WT) and IL-10 deficient (IL-10(-/-)) 129/SvEv mice were placed on a standard mouse chow or a Western-style diet (fat 33%, refined carbohydrate 49%)±Lactobacillus helveticus ROO52 (10(9)cfu/d) for 21 days. Animal weight and food eaten were monitored weekly. Intestinal immune function was analysed for cytokine expression using the Meso Scale Discovery platform. Spatial memory and anxiety-like behavior was assessed in a Barnes maze. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze the fecal microbiota. Both WT and IL-10(-/-) mice on a Western diet had increased weight gain along with changes in gut microbiota and cytokine expression and altered anxiety-like behavior. The ability of L. helveticus to modulate these factors was genotype- and diet-dependent. Anxiety-like behavior and memory were negatively affected by Western-style diet depending on inflammatory state, but this change was prevented with L. helveticus administration. However, probiotics alone decreased anxiety-like behavior in WT mice on a chow diet. Mice on the Western diet had decreased inflammation and fecal corticosterone, but these markers did not correlate with changes in behavior. Analysis of bacterial phyla from WT and IL-10(-/-)mice showed discrete clustering of the groups to be associated with both diet and probiotic supplementation, with the diet-induced shift normalized to some degree by L. helveticus. These findings suggest that the type of diet consumed by the host and the presence or absence of active inflammation may significantly alter the ability of probiotics to modulate host physiological function.
Collapse
|
23
|
Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br J Nutr 2012; 109:50-6. [PMID: 23068715 DOI: 10.1017/s0007114512003807] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proinflammatory cytokines play a central role in depression-like behaviour and apoptosis in the limbic system after myocardial infarction (MI). A PUFA n-3 diet or the combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 probiotics, when given before the ischaemic period, reduce circulating proinflammatory cytokines as well as apoptosis in the limbic system. The present study was designed to determine if the same nutritional interventions maintain their beneficial effects when started after the onset of the reperfusion period and attenuate depression-like behaviour observed after MI. MI was induced by the occlusion of the left anterior descending coronary artery for 40 min in rats. After the onset of reperfusion, animals were fed with a high- or low-PUFA n-3 diet, combined or not with one billion live bacteria of L. helveticus and B. longum. At 3 d post-MI, caspase-3 enzymatic activities and terminal 2'-deoxyuridine, 5'-triphosphate (dUTP) nick-end labelling (TUNEL)-positive cells were decreased in the CA1, dentate gyrus (DG) and amygdala with the high-PUFA n-3 diet, as compared to the three other diets. Probiotics attenuated caspase-3 activity and TUNEL-positive cells in the DG and the medial amygdala. At 2 weeks post-MI, depression-like behaviour was observed in the low-PUFA n-3 diet without probiotics-group, and this behaviour was attenuated with the high-PUFA n-3 diet or/and probiotics. These results indicate that a high-PUFA n-3 diet or the administration of probiotics, starting after the onset of reperfusion, are beneficial to attenuate apoptosis in the limbic system and post-MI depression in the rat.
Collapse
|
24
|
Scientific Opinion on the substantiation of a health claim related to a combination of Lactobacillus helveticus CNCM I-1722, Bifidobacterium longum subsp. infantis CNCM I-3424, Bifidobacterium bifidum CNCM I 3426 and fructo oligosaccharides from sucrose a. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Adam Rindfleisch J. Prescribing Probiotics. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 2011; 107:1793-9. [PMID: 21933458 DOI: 10.1017/s0007114511005137] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarction (MI) in rats is accompanied by apoptosis in the limbic system and a behavioural syndrome similar to models of depression. We have already shown that probiotics can reduce post-MI apoptosis and designed the present study to determine if probiotics can also prevent post-MI depressive behaviour. We also tested the hypothesis that probiotics achieve their central effects through changes in the intestinal barrier. MI was induced in anaesthetised rats via 40-min transient occlusion of the left anterior coronary artery. Sham rats underwent the same surgical procedure without actual coronary occlusion. For 7 d before MI and between the seventh post-MI day and euthanasia, half the MI and sham rats were given one billion live bacterial cells of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 per d dissolved in water, while the remaining animals received only the vehicle (maltodextrin). Depressive behaviour was evaluated 2 weeks post-MI in social interaction, forced swimming and passive avoidance step-down tests. Intestinal permeability was evaluated by oral administration with fluorescein isothiocyanate-dextran, 4 h before euthanasia. MI rats displayed less social interaction and impaired performance in the forced swimming and passive avoidance step-down tests compared to the sham controls (P < 0·05). Probiotics reversed the behavioural effects of MI (P < 0·05), but did not alter the behaviour of sham rats. Intestinal permeability was increased in MI rats and reversed by probiotics. In conclusion, L. helveticus R0052 and B. longum R0175 combination interferes with the development of post-MI depressive behaviour and restores intestinal barrier integrity in MI rats.
Collapse
|
27
|
Bowe WP, Logan AC. Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future? Gut Pathog 2011; 3:1. [PMID: 21281494 PMCID: PMC3038963 DOI: 10.1186/1757-4749-3-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 02/07/2023] Open
Abstract
Over 70 years have passed since dermatologists John H. Stokes and Donald M. Pillsbury first proposed a gastrointestinal mechanism for the overlap between depression, anxiety and skin conditions such as acne. Stokes and Pillsbury hypothesized that emotional states might alter the normal intestinal microflora, increase intestinal permeability and contribute to systemic inflammation. Among the remedies advocated by Stokes and Pillsbury were Lactobacillus acidophilus cultures. Many aspects of this gut-brain-skin unifying theory have recently been validated. The ability of the gut microbiota and oral probiotics to influence systemic inflammation, oxidative stress, glycemic control, tissue lipid content and even mood itself, may have important implications in acne. The intestinal microflora may also provide a twist to the developing diet and acne research. Here we provide a historical perspective to the contemporary investigations and clinical implications of the gut-brain-skin connection in acne.
Collapse
Affiliation(s)
- Whitney P Bowe
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - Alan C Logan
- Integrative Care Centre of Toronto, 3600 Ellesmere Road, Unit 4, Toronto, ON M1C 4Y8, Canada
| |
Collapse
|