1
|
WANG YY, YING HM, TIAN F, QIAN XL, Zhou ZF. Three months use of Hybrid Closed Loop Systems improves glycated hemoglobin levels in adolescents and children with type 1 diabetes: A meta-analysis. PLoS One 2024; 19:e0308202. [PMID: 39133688 PMCID: PMC11318905 DOI: 10.1371/journal.pone.0308202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Longer outpatient studies have demonstrated that hybrid closed loop (HCL) use has led to a concomitant reduction in glycated hemoglobin(HbA1c) by 0.3%-0.7%. However, reports have also indicated that HbA1c levels are not declined in the long-term use of HCL. Therefore, we wonder that 3 months use of HCL could improve glycated hemoglobin levels in adolescents and children with T1D. METHODS Relevant studies were searched electronically in the Cochrane Library, PubMed, and Embase utilizing the key words "Pediatrics or Child or Adolescent", "Insulin Infusion Systems" and "Diabetes Mellitus" from inception to 17th March 2024 to evaluate the performance of HCL on HbA1c in adolescents, and children with T1D. RESULTS Nine studies involving 927 patients were identified. Three months use of HCL show a beneficial effect on HbA1c management (p <0.001) as compared to standard of care in adolescents and children with T1D, without evidence of heterogeneity between articles (I2 = 40%, p = 0.10). HCL did significantly increase the overall average percentage of hypoglycemic time between 70 and 180 mg/dL (TIR) (p <0.001; I2 = 51%). HCL did not show a beneficial effect on hypoglycemic time <70 mg/dL and <54 mg/dL (p >0.05). The overall percentage of hyperglycemic time was significantly decreased in HCL group compared to the control group when it was defined as >180 mg/dL (p <0.001; I2 = 83%), >250 mg/dL (p = 0.007, I2 = 86%) and >300 mg/dL (p = 0.005; I2 = 76%). The mean glucose level was significantly decreased by HCL (p <0.001; I2 = 58%), however, no significant difference was found in coefficient of variation of sensor glucose (p = 0.82; I2 = 71%) and daily insulin dose (p = 0.94; I2 <0.001) between the HCL group and the control group. CONCLUSIONS HCL had a beneficial effect on HbA1c management and TIR without increased hypoglycemic time as compared to standard of care in adolescents and children with T1D when therapy duration of HCL was not less than three months. TRIAL NUMBER AND REGISTRY URL CRD42022367493; https://www.crd.york.ac.uk/PROSPERO, Principal investigator: Zhen-feng Zhou, Date of registration: October 30, 2022.
Collapse
Affiliation(s)
- Yuan-yuan WANG
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Hui-min YING
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Fang TIAN
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Xiao-lu QIAN
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Zhen-feng Zhou
- Department of Anesthesiology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People’s Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
2
|
Wang YY, Ying HM, Tian F, Qian XL, Zhou ZF, Zhou CC. Automated insulin delivery in children with type 1 diabetes during physical activity: a meta-analysis. J Pediatr Endocrinol Metab 2024; 37:505-515. [PMID: 38700489 DOI: 10.1515/jpem-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the performance of the automated insulin delivery (AID) in adolescents, and children with type 1 diabetes (T1D) during physical activity. METHODS Relevant studies were searched electronically in the Cochrane Library, PubMed, and Embase utilizing the key words "Child", "Insulin Infusion Systems", and "Diabetes Mellitus" from inception to 17th March 2024 to evaluate the performance of the AID in adolescents, and children with T1D during physical activity. RESULTS Twelve studies involving 514 patients were identified. AID did not show a beneficial effect on duration of hypoglycemia<70 mg/dL during study period (p>0.05; I2=96 %) and during the physical activity (p>0.99). Percentage of sensor glucose values in TIR was higher in AID than the non-AID pumps during study period (p<0.001; I2=94 %). The duration of hyperglycemic time was significantly decreased in AID group compared to the non-AID pumps group during study period (p<0.05; I2>50 %). CONCLUSIONS AID improved TIR and decreased the duration of hyperglycemic time, but did not appear to have a significant beneficial effect on the already low post-exercise duration of hypoglycemia achievable by open loop or sensor-augmented pumps in adolescents and children with T1D during physical activity; further research is needed to confirm the beneficial effect of AID on duration of hypoglycemia.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Hui-Min Ying
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Fang Tian
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Xiao-Lu Qian
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, P.R. China
| | - Chun-Cong Zhou
- Department of Urolithiasis and Anorectal Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, P.R. China
| |
Collapse
|
3
|
Boscari F, Avogaro A. Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives. Rev Endocr Metab Disord 2021; 22:217-240. [PMID: 33755854 PMCID: PMC7985920 DOI: 10.1007/s11154-021-09635-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus imposes a significant burden of complications and mortality, despite important advances in treatment: subjects affected by this disease have also a worse quality of life-related to disease management. To overcome these challenges, different new approaches have been proposed, such as new insulin formulations or innovative devices. The introduction of insulin pumps allows a more physiological insulin administration with a reduction of HbA1c level and hypoglycemic risk. New continuous glucose monitoring systems with better accuracy have allowed, not only better glucose control, but also the improvement of the quality of life. Integration of these devices with control algorithms brought to the creation of the first artificial pancreas, able to independently gain metabolic control without the risk of hypo- and hyperglycemic crisis. This approach has revolutionized the management of diabetes both in terms of quality of life and glucose control. However, complete independence from exogenous insulin will be obtained only by biological approaches that foresee the replacement of functional beta cells obtained from stem cells: this will be a major challenge but the biggest hope for the subjects with type 1 diabetes. In this review, we will outline the current scenario of innovative diabetes management both from a technological and biological point of view, and we will also forecast some cutting-edge approaches to reduce the challenges that hamper the definitive cure of diabetes.
Collapse
Affiliation(s)
- Federico Boscari
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy.
| | - Angelo Avogaro
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Karageorgiou V, Papaioannou TG, Bellos I, Alexandraki K, Tentolouris N, Stefanadis C, Chrousos GP, Tousoulis D. Effectiveness of artificial pancreas in the non-adult population: A systematic review and network meta-analysis. Metabolism 2019; 90:20-30. [PMID: 30321535 DOI: 10.1016/j.metabol.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Artificial pancreas is a technology that minimizes user input by bridging continuous glucose monitoring and insulin pump treatment, and has proven safety in the adult population. The purpose of this systematic review and meta-analysis is to evaluate the efficacy of closed-loop (CL) systems in the glycemic control of non-adult type 1 diabetes patients in both a pairwise and network meta-analysis (NMA) context and investigate various parameters potentially affecting the outcome. METHODS Literature was systematically searched using the MEDLINE (1966-2018), Scopus (2004-2018), Cochrane Central Register of Controlled Trials (CENTRAL) (1999-2018), Clinicaltrials.gov (2008-2018) and Google Scholar (2004-2018) databases. Studies comparing the glycemic control in CL (either single- or dual-hormone) with continuous subcutaneous insulin infusion (CSII) in people with diabetes (PWD) aged <18 years old were deemed eligible. The primary outcome analysis was conducted with regard to time spent in the target glycemic range. All outcomes were evaluated in NMA in order to investigate potential between-algorithm differences. Pairwise meta-analysis and meta-regression were performed using the RevMan 5.3 and Open Meta-Analyst software. For NMA, the package pcnetmetain R 3.5.1 was used. RESULTS The meta-analysis was based on 25 studies with a total of 504 PWD. The CL group was associated with significantly higher percentage of time spent in the target glycemic range (Mean (SD): 67.59% (SD: 8.07%) in the target range and OL PWD spending 55.77% (SD: 11.73%), MD: -11.97%, 95% CI [-18.40, -5.54%]) and with lower percentages of time in hyperglycemia (MD: 3.01%, 95% CI [1.68, 4.34%]) and hypoglycemia (MD: 0.67%, 95% CI [0.21, 1.13%]. Mean glucose was also decreased in the CL group (MD: 0.75 mmol/L, 95% CI [0.18-1.33]). The NMA arm of the study showed that the bihormonal modality was superior to other algorithms and standard treatment in lowering mean glucose and increasing time spent in the target range. The DiAs platform was superior to PID in controlling hypoglycemia and mean glucose. Time in target range and mean glucose were unaffected by the confounding factors tested. CONCLUSIONS The findings of this meta-analysis suggest that artificial pancreas systems are superior to the standard sensor-augmented pump treatment of type 1 diabetes mellitus in non-adult PWD. Between-algorithm differences are also addressed, implying a superiority of the bihormonal treatment modality. Future large-scale studies are needed in the field to verify these outcomes and to determine the optimal algorithm to be used in the clinical setting.
Collapse
Affiliation(s)
- Vasilios Karageorgiou
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros G Papaioannou
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Bellos
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystallenia Alexandraki
- Clinic of Endocrine Oncology, Section of Endocrinology, Department of Pathophysiology, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - George P Chrousos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T, Haidich AB, Hovorka R, Tsapas A. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ 2018; 361:k1310. [PMID: 29669716 PMCID: PMC5902803 DOI: 10.1136/bmj.k1310] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of artificial pancreas treatment in non-pregnant outpatients with type 1 diabetes. DESIGN Systematic review and meta-analysis of randomised controlled trials. DATA SOURCES Medline, Embase, Cochrane Library, and grey literature up to 2 February 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised controlled trials in non-pregnant outpatients with type 1 diabetes that compared the use of any artificial pancreas system with any type of insulin based treatment. Primary outcome was proportion (%) of time that sensor glucose level was within the near normoglycaemic range (3.9-10 mmol/L). Secondary outcomes included proportion (%) of time that sensor glucose level was above 10 mmol/L or below 3.9 mmol/L, low blood glucose index overnight, mean sensor glucose level, total daily insulin needs, and glycated haemoglobin. The Cochrane Collaboration risk of bias tool was used to assess study quality. RESULTS 40 studies (1027 participants with data for 44 comparisons) were included in the meta-analysis. 35 comparisons assessed a single hormone artificial pancreas system, whereas nine comparisons assessed a dual hormone system. Only nine studies were at low risk of bias. Proportion of time in the near normoglycaemic range (3.9-10.0 mmol/L) was significantly higher with artificial pancreas use, both overnight (weighted mean difference 15.15%, 95% confidence interval 12.21% to 18.09%) and over a 24 hour period (9.62%, 7.54% to 11.7%). Artificial pancreas systems had a favourable effect on the proportion of time with sensor glucose level above 10 mmol/L (-8.52%, -11.14% to -5.9%) or below 3.9 mmol/L (-1.49%, -1.86% to -1.11%) over 24 hours, compared with control treatment. Robustness of findings for the primary outcome was verified in sensitivity analyses, by including only trials at low risk of bias (11.64%, 9.1% to 14.18%) or trials under unsupervised, normal living conditions (10.42%, 8.63% to 12.2%). Results were consistent in a subgroup analysis both for single hormone and dual hormone artificial pancreas systems. CONCLUSIONS Artificial pancreas systems are an efficacious and safe approach for treating outpatients with type 1 diabetes. The main limitations of current research evidence on artificial pancreas systems are related to inconsistency in outcome reporting, small sample size, and short follow-up duration of individual trials.
Collapse
Affiliation(s)
- Eleni Bekiari
- Clinical Research and Evidence Based Medicine Unit, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Konstantinos Kitsios
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hood Thabit
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Martin Tauschmann
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eleni Athanasiadou
- Clinical Research and Evidence Based Medicine Unit, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Thomas Karagiannis
- Clinical Research and Evidence Based Medicine Unit, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Anna-Bettina Haidich
- Department of Hygiene and Epidemiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roman Hovorka
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Apostolos Tsapas
- Clinical Research and Evidence Based Medicine Unit, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The review summarizes the current state of the artificial pancreas (AP) systems and introduces various new modules that should be included in future AP systems. RECENT FINDINGS A fully automated AP must be able to detect and mitigate the effects of meals, exercise, stress and sleep on blood glucose concentrations. This can only be achieved by using a multivariable approach that leverages information from wearable devices that provide real-time streaming data about various physiological variables that indicate imminent changes in blood glucose concentrations caused by meals, exercise, stress and sleep. The development of a fully automated AP will necessitate the design of multivariable and adaptive systems that use information from wearable devices in addition to glucose sensors and modify the models used in their model-predictive alarm and control systems to adapt to the changes in the metabolic state of the user. These AP systems will also integrate modules for controller performance assessment, fault detection and diagnosis, machine learning and classification to interpret various signals and achieve fault-tolerant control. Advances in wearable devices, computational power, and safe and secure communications are enabling the development of fully automated multivariable AP systems.
Collapse
Affiliation(s)
- Ali Cinar
- Department of Chemical and Biological Engineering and Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
7
|
Turksoy K, Frantz N, Quinn L, Dumin M, Kilkus J, Hibner B, Cinar A, Littlejohn E. Automated Insulin Delivery-The Light at the End of the Tunnel. J Pediatr 2017; 186:17-28.e9. [PMID: 28396030 DOI: 10.1016/j.jpeds.2017.02.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Nicole Frantz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Laurie Quinn
- College of Nursing, University of Illinois at Chicago, Chicago, IL
| | - Magdalena Dumin
- Biological Sciences Division, University of Chicago, Chicago, IL
| | - Jennifer Kilkus
- Biological Sciences Division, University of Chicago, Chicago, IL
| | - Brooks Hibner
- Biological Sciences Division, University of Chicago, Chicago, IL
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL; Biological Sciences Division, University of Chicago, Chicago, IL; Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL
| | | |
Collapse
|
8
|
Murphy HR, Stewart ZA. Automated insulin delivery: what's new, needed, and next? Lancet 2017; 389:333-334. [PMID: 28007347 DOI: 10.1016/s0140-6736(16)32591-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Helen R Murphy
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Zoe A Stewart
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
9
|
Nimri R, Muller I, Atlas E, Miller S, Fogel A, Bratina N, Kordonouri O, Battelino T, Danne T, Phillip M. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care 2014; 37:3025-32. [PMID: 25078901 DOI: 10.2337/dc14-0835] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We evaluated the effect of the MD-Logic system on overnight glycemic control at patients' homes. RESEARCH DESIGN AND METHODS Twenty-four patients (aged 12-43 years; average A1c 7.5 ± 0.8%, 58.1 ± 8.4 mmol/mol) were randomly assigned to participate in two overnight crossover periods, each including 6 weeks of consecutive nights: one under closed loop and the second under sensor-augmented pump (SAP) therapy at patients' homes in real-life conditions. The primary end point was time spent with sensor glucose levels below 70 mg/dL (3.9 mmol/L) overnight. RESULTS Closed-loop nights significantly reduced time spent in hypoglycemia (P = 0.02) and increased the percentage of time spent in the target range of 70-140 mg/dL (P = 0.003) compared with nights when the SAP therapy was used. The time spent in substantial hyperglycemia above 240 mg/dL was reduced by a median of 52.2% (interquartile range [IQR] 4.8, 72.9%; P = 0.001) under closed-loop control compared with SAP therapy. Overnight total insulin doses were lower in the closed-loop nights compared with the SAP nights (P = 0.04). The average daytime glucose levels after closed-loop operation were reduced by a median of 10.0 mg/dL (IQR -2.7, 19.2; P = 0.017) while lower total insulin doses were used (P = 0.038). No severe adverse events occurred during closed-loop control; there was a single event of severe hypoglycemia during a control night. CONCLUSIONS The long-term home use of automated overnight insulin delivery by the MD-Logic system was found to be a feasible, safe, and an effective tool to reduce nocturnal hypoglycemia and improve overnight glycemic control in subjects with type 1 diabetes.
Collapse
Affiliation(s)
- Revital Nimri
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Ido Muller
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Eran Atlas
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Shahar Miller
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Aviel Fogel
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Natasa Bratina
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia
| | - Olga Kordonouri
- Diabetes Center for Children and Adolescents, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas Danne
- Diabetes Center for Children and Adolescents, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Moshe Phillip
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol Ther 2014; 16:477-90. [PMID: 25072271 DOI: 10.1089/dia.2014.0193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intensive insulin therapy (IIT) has been shown to reduce micro- and macrovascular complications in patients with type 1 diabetes mellitus (T1DM). However, IIT is associated with a significant increase in severe hypoglycemic events, resulting in increased morbidity and mortality. Optimization of glycemic control without hypoglycemia (especially nocturnal) should be the next major goal for subjects on insulin treatment. The use of insulin pumps along with continuous glucose monitors (CGMs) has made it easier but requires significant resources and patient education. Research is ongoing to close the loop by integrating the pump and the CGM using different algorithms. The currently available closed-loop system is the threshold suspend. Steps needed to achieve a near-perfect closed-loop are (1) a control-to-range system that will reduce the incidence and/or severity of hyper- and/or hypoglycemia by adjusting the insulin dose and (2) a control-to-target system, a fully automated or hybrid system that sets target glucose levels to individual needs and maintains glucose levels throughout the day using insulin (unihormonal) alone or with other hormones such as glucagon or possibly pramlintide (bihormonal). Future research is also focusing on better insulin delivery devices (pumps), more accurate CGMs, better predictive algorithms, and ultra-rapid-acting insulin analogs to make the closed-loop system as physiological as possible.
Collapse
Affiliation(s)
- Viral N Shah
- 1 Barbara Davis Center for Diabetes, University of Colorado Denver , Aurora, Colorado
| | | | | | | |
Collapse
|
11
|
Peyser T, Dassau E, Breton M, Skyler JS. The artificial pancreas: current status and future prospects in the management of diabetes. Ann N Y Acad Sci 2014; 1311:102-23. [PMID: 24725149 DOI: 10.1111/nyas.12431] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in insulins, insulin pumps, continuous glucose-monitoring systems, and control algorithms have resulted in an acceleration of progress in the development of artificial pancreas devices. This review discusses progress in the development of external systems that are based on subcutaneous drug delivery and subcutaneous continuous glucose monitoring. There are two major system-level approaches to achieving closed-loop control of blood glucose in diabetic individuals. The unihormonal approach uses insulin to reduce blood glucose and relies on complex safety mitigation algorithms to reduce the risk of hypoglycemia. The bihormonal approach uses both insulin to lower blood glucose and glucagon to raise blood glucose, and also relies on complex algorithms to provide for safety of the user. There are several major strategies for the design of control algorithms and supervision control for application to the artificial pancreas: proportional-integral-derivative, model predictive control, fuzzy logic, and safety supervision designs. Advances in artificial pancreas research in the first decade of this century were based on the ongoing computer revolution and miniaturization of electronic technology. The advent of modern smartphones has created the ability to utilize smartphone technology as the engineering centerpiece of an artificial pancreas. With these advances, an artificial or bionic pancreas is within reach.
Collapse
|
12
|
Abstract
‘To keep in equilibrium’, one of the Oxford English Dictionary’s many definitions of balance, is a desirable target for anylife, but has special meaning for the life of a person with diabetes. Achieving balance—between hypo- and hyperglycaemia; between energy intake and energy consumption; between insulin action and insulin secretion; between attention to diabetes and attention to everything else—remains challenging, but progress has been made over the last three decades, both in our understanding of how nature achieves balance and in the tools we have to try to reproduce the actions of nature in disease states. In particular, the role of the brain in controlling diabetes, from glucose sensing to decision making, has been investigated. Physiological and neuro-imaging studies are finally being translated into patient benefit, with the aim of improving, as Dr Banting put it, the provision of ‘energy for the economic burdens of life’.
Collapse
|
13
|
Nimri R, Muller I, Atlas E, Miller S, Kordonouri O, Bratina N, Tsioli C, Stefanija MA, Danne T, Battelino T, Phillip M. Night glucose control with MD-Logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis. Pediatr Diabetes 2014; 15:91-9. [PMID: 23944875 DOI: 10.1111/pedi.12071] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/05/2013] [Accepted: 07/18/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Artificial pancreas (AP) systems have shown an improvement in glucose control and a reduced risk of nocturnal hypoglycemia under controlled conditions but remain to be evaluated under daily-life conditions. OBJECTIVE To assess the feasibility, safety, and efficacy of the MD-Logic AP in controlling nocturnal glucose levels in the patient's home. METHODS Two-arm study, each covering four consecutive nights comparing the MD-Logic AP ('closed-loop' arm) with sensor-augmented pump therapy ('control' arm). Fifteen patients (mean age 19 ± 10.4 yr, A1c 7.5 ± 0.5% or 58 ± 5.9 mmol/mol, diabetes duration 9.9 ± 8.2 yr) were randomly assigned either to 'Group A' (first 'closed-loop', then 'control' arm) or to 'Group B' (vice versa). Investigators were masked to treatment intervention. Primary endpoints were the time spent with glucose levels below 70 mg/dL and the percentage of nights in which the mean overnight glucose levels were within 90-140 mg/dL. Endpoint analyses were based on unmodified sensor glucose readings of the four study nights. RESULTS Time of glucose levels spent below 70 mg/dL was significantly shorter on the closed-loop nights than on control nights, median and interquartile range 3.8 (0, 11.6) and 48.7 (0.6, 67.9) min, respectively; p = 0.0034. The percentage of individual nights in which mean overnight glucose level was within 90-140 mg/dL was 67 (33, 88), and 50 (25, 75), under closed-loop and control nights, respectively, with no statistical difference. Secondary endpoint analyses demonstrated significant improvements in hypoglycemia parameters. No serious adverse events were reported. CONCLUSION This interim analysis demonstrates the feasibility, safety, and efficiency of the MD-Logic AP system in home use, and demonstrates an improvement over sensor-augmented pump therapy. (ClinicalTrials.gov identifier NCT01726829).
Collapse
Affiliation(s)
- Revital Nimri
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hovorka R, Elleri D, Thabit H, Allen JM, Leelarathna L, El-Khairi R, Kumareswaran K, Caldwell K, Calhoun P, Kollman C, Murphy HR, Acerini CL, Wilinska ME, Nodale M, Dunger DB. Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care 2014; 37:1204-11. [PMID: 24757227 PMCID: PMC3994941 DOI: 10.2337/dc13-2644] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/22/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes. RESEARCH DESIGN AND METHODS Overnight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12-18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h. RESULTS Closed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range -9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range -4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop. CONCLUSIONS Unsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.
Collapse
|
15
|
Christie D. Current recommendations and considerations for psychosocial and psychoeducational support of adolescents with Type 1 diabetes. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/dmt.12.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Russell SJ, El-Khatib FH, Nathan DM, Magyar KL, Jiang J, Damiano ER. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care 2012; 35:2148-55. [PMID: 22923666 PMCID: PMC3476884 DOI: 10.2337/dc12-0071] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether safe and effective glycemic control could be achieved in type 1 diabetes using a bihormonal bionic endocrine pancreas driven by a continuous glucose monitor in experiments lasting more than two days and including six high-carbohydrate meals and exercise as challenges to glycemic control. RESEARCH DESIGN AND METHODS Six subjects with type 1 diabetes and no endogenous insulin secretion participated in two 51-h experiments. Blood glucose was managed with a bionic endocrine pancreas controlling subcutaneous delivery of insulin and glucagon with insulin pumps. A partial meal-priming bolus of insulin (0.035 units/kg/meal, then 0.05 units/kg/meal in repeat experiments) was administered at the beginning of each meal (on average 78 ± 12 g of carbohydrates per meal were consumed). Plasma glucose (PG) control was evaluated with a reference quality measurement on venous blood every 15 min. RESULTS The overall mean PG was 158 mg/dL, with 68% of PG values in the range of 70-180 mg/dL. There were no significant differences in mean PG between larger and smaller meal-priming bolus experiments. Hypoglycemia (PG <70 mg/dL) was rare, with eight incidents during 576 h of closed-loop control (0.7% of total time). During 192 h of nighttime control, mean PG was 123 mg/dL, with 93% of PG values in the range of 70-180 mg/dL and only one episode of mild hypoglycemia (minimum PG 62 mg/dL). CONCLUSIONS A bihormonal bionic endocrine pancreas achieved excellent glycemic control with minimal hypoglycemia over the course of two days of continuous use despite high-carbohydrate meals and exercise. A trial testing a wearable version of the system under free-living conditions is justified.
Collapse
Affiliation(s)
- Steven J Russell
- Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, Dalla Man C, Place J, Demartini S, Del Favero S, Toffanin C, Hughes-Karvetski C, Dassau E, Zisser H, Doyle FJ, De Nicolao G, Avogaro A, Cobelli C, Renard E, Kovatchev B. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes 2012; 61:2230-7. [PMID: 22688340 PMCID: PMC3425406 DOI: 10.2337/db11-1445] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9-10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.
Collapse
Affiliation(s)
- Marc Breton
- University of Virginia, Center for Diabetes Technology, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Elleri D, Dunger DB, Hovorka R. Closed-loop insulin delivery for treatment of type 1 diabetes. BMC Med 2011; 9:120. [PMID: 22071283 PMCID: PMC3229449 DOI: 10.1186/1741-7015-9-120] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/09/2011] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes is one of the most common endocrine problems in childhood and adolescence, and remains a serious chronic disorder with increased morbidity and mortality, and reduced quality of life. Technological innovations positively affect the management of type 1 diabetes. Closed-loop insulin delivery (artificial pancreas) is a recent medical innovation, aiming to reduce the risk of hypoglycemia while achieving tight control of glucose. Characterized by real-time glucose-responsive insulin administration, closed-loop systems combine glucose-sensing and insulin-delivery components. In the most viable and researched configuration, a disposable sensor measures interstitial glucose levels, which are fed into a control algorithm controlling delivery of a rapid-acting insulin analog into the subcutaneous tissue by an insulin pump. Research progress builds on an increasing use of insulin pumps and availability of glucose monitors. We review the current status of insulin delivery, focusing on clinical evaluations of closed-loop systems. Future goals are outlined, and benefits and limitations of closed-loop therapy contrasted. The clinical utility of these systems is constrained by inaccuracies in glucose sensing, inter- and intra-patient variability, and delays due to absorption of insulin from the subcutaneous tissue, all of which are being gradually addressed.
Collapse
Affiliation(s)
- Daniela Elleri
- Department of Paediatrics and Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - David B Dunger
- Department of Paediatrics and Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Roman Hovorka
- Department of Paediatrics and Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|