1
|
Bhadra M, Sachan M, Nara S. Current strategies for early epithelial ovarian cancer detection using miRNA as a potential tool. Front Mol Biosci 2024; 11:1361601. [PMID: 38690293 PMCID: PMC11058280 DOI: 10.3389/fmolb.2024.1361601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is one of the most aggressive and significant malignant tumor forms in the female reproductive system. It is the leading cause of death among gynecological cancers owing to its metastasis. Since its preliminary disease symptoms are lacking, it is imperative to develop early diagnostic biomarkers to aid in treatment optimization and personalization. In this vein, microRNAs, which are short sequence non-coding molecules, displayed great potential as highly specific and sensitive biomarker. miRNAs have been extensively advocated and proven to serve an instrumental part in the clinical management of cancer, especially ovarian cancer, by promoting the cancer cell progression, invasion, delayed apoptosis, epithelial-mesenchymal transition, metastasis of cancer cells, chemosensitivity and resistance and disease therapy. Here, we cover our present comprehension of the most up-to-date microRNA-based approaches to detect ovarian cancer, as well as current diagnostic and treatment strategies, the role of microRNAs as oncogenes or tumor suppressor genes, and their significance in ovarian cancer progression, prognosis, and therapy.
Collapse
|
2
|
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women's reproductive diseases: an overview. Mol Biol Rep 2024; 51:414. [PMID: 38472662 DOI: 10.1007/s11033-024-09357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors. METHODS The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases. RESULTS We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier. CONCLUSIONS This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohadeseh Azimi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Shima Alavi
- Department of Obstetrics and Gynecology, Ghods Hospital, Arak, Iran
| |
Collapse
|
3
|
Bo C, Wang Y. Angiogenesis signaling in endometriosis: Molecules, diagnosis and treatment (Review). Mol Med Rep 2024; 29:43. [PMID: 38240108 PMCID: PMC10828998 DOI: 10.3892/mmr.2024.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Endometriosis (EM) is one of the most common diseases among women of reproductive age. The etiology and pathogenesis of EM remain unclear and therefore there is a lack of effective treatment measures, which affects physical and mental health, as well as the quality of life of patients with EM. Angiogenesis has become a hotspot for research on the pathogenesis of EM; the role of angiogenesis‑related serological markers and anti‑angiogenic therapy in the diagnosis and treatment of EM is promising for early diagnosis and treatment of EM. Angiogenesis in EM is subject to complex regulation by hormones, immunity and associated cytokines. Therefore, novel targets for angiogenesis therapy are also being discovered and developed. The present review summarized the pathological mechanisms of angiogenesis and the value of relevant markers in pathogenesis and diagnosis of EM, along with the status of research on anti‑angiogenic drugs in the treatment of EM. The role of angiogenesis in EM provides an important reference for treatment and diagnosis, but there is no uniform non‑invasive diagnostic marker and proven strategy for anti‑angiogenesis.
Collapse
Affiliation(s)
- Caixia Bo
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
4
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
5
|
Oropeza-de Lara SA, Garza-Veloz I, Berthaud-González B, Martinez-Fierro ML. Circulating and Endometrial Tissue microRNA Markers Associated with Endometrial Cancer Diagnosis, Prognosis, and Response to Treatment. Cancers (Basel) 2023; 15:2686. [PMID: 37345024 DOI: 10.3390/cancers15102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
In developed countries, endometrial cancer (EC) is one of the most common neoplasms of the female reproductive system. MicroRNAs (miRs) are a class of single-stranded noncoding RNA molecules with lengths of 19-25 nucleotides that bind to target messenger RNA (mRNA) to regulate post-transcriptional gene expression. Although there is a large amount of research focused on identifying miRs with a diagnostic, prognostic, or response to treatment capacity in EC, these studies differ in terms of experimental methodology, types of samples used, selection criteria, and results obtained. Hence, there is a large amount of heterogeneous information that makes it difficult to identify potential miR biomarkers. We aimed to summarize the current knowledge on miRs that have been shown to be the most suitable potential markers for EC. We searched PubMed and Google Scholar without date restrictions or filters. We described 138 miRs with potential diagnostic, prognostic, or treatment response potential in EC. Seven diagnostic panels showed higher sensitivity and specificity for the diagnosis of EC than individual miRs. We further identified miRs up- or downregulated depending on the FIGO stage, precursor lesions, and staging after surgery, which provides insight into which miRs are expressed chronologically depending on the disease stage and/or that are modulated depending on the tumor grade based on histopathological evaluation.
Collapse
Affiliation(s)
- Sergio Antonio Oropeza-de Lara
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Bertha Berthaud-González
- Hospital General Zacatecas "Luz González Cosío", Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
6
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
7
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
8
|
A Regulatory Loop Involving miR-200c and NF-κB Modulates Mortalin Expression and Increases Cisplatin Sensitivity in an Ovarian Cancer Cell Line Model. Int J Mol Sci 2022; 23:ijms232315300. [PMID: 36499626 PMCID: PMC9737914 DOI: 10.3390/ijms232315300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is currently the most lethal gynecological cancer. At present, primary debulking surgery combined with platinum-based chemotherapy is the standard treatment strategy for ovarian cancer. Although cisplatin-based chemotherapy has greatly improved the prognosis of patients, the subsequent primary or acquired drug resistance of cancer cells has become an obstacle to a favorable prognosis. Mortalin is a chaperone that plays an important role in multiple cellular and biological processes. Our previous studies have found that mortalin is associated with the proliferation and migration of ovarian cancer cells and their resistance to cisplatin-based chemotherapy. In this study, microRNA (miR)-200b/c downregulated mortalin expression and inhibited the proliferation and migration of the paired cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) epithelial ovarian cancer cell lines. Moreover, miR-200c increased the sensitivity of ovarian cancer cells to cisplatin treatment by regulating mortalin levels. Nuclear factor (NF)-κB directly regulated mortalin and miR-200b/c expression levels, while NF-κB and miR-200b/c jointly regulated the expression of mortalin. The combination of cisplatin and miR-200c significantly enhanced the therapeutic effects on ovarian cancer in vivo, suggesting that miR-200c may serve as a potential therapeutic agent for ovarian cancer.
Collapse
|
9
|
Bartnik P, Kacperczyk-Bartnik J, Goławski K, Sierdziński J, Mańka G, Kiecka M, Lipa M, Warzecha D, Spaczyński R, Piekarski P, Banaszewska B, Jakimiuk AJ, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Czajkowski K, Wielgoś M, Koc-Żórawska E, Żórawski M, Laudański P. Plasma and Peritoneal Fluid ZEB Levels in Patients with Endometriosis and Infertility. Biomedicines 2022; 10:biomedicines10102460. [PMID: 36289723 PMCID: PMC9599446 DOI: 10.3390/biomedicines10102460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial−mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with and without endometriosis in order to assess their utility in the diagnostic process. Plasma and peritoneal fluid samples were collected from 50 patients with and 48 without endometriosis during planned surgical procedures in eight clinical centers. Quantitative ZEB1 and ZEB2 levels analyses were performed using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in ZEB1 levels in any of the subanalyses nor any differences regarding ZEB2 levels between patients with and without endometriosis. Plasma ZEB2 levels were significantly higher among patients with infertility compared to fertile women (16.07 ± 12.70 ng/L vs. 12.07 ± 11.92 ng/L; p < 0.04). Both ZEB1 and ZEB2 do not seem to have a significant value in the initial diagnosis of endometriosis as a single marker. The differences in ZEB2 plasma levels between patients with and without infertility indicate the possibility of EMT dysregulation in the pathogenesis of adverse fertility outcomes.
Collapse
Affiliation(s)
- Paweł Bartnik
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Joanna Kacperczyk-Bartnik
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Ksawery Goławski
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | | | | | - Michał Lipa
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Damian Warzecha
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Robert Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Piotr Piekarski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Beata Banaszewska
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Artur J. Jakimiuk
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
- Center of Reproductive Health, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
| | - Wojciech Rokita
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Jakub Młodawski
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Maria Szubert
- Club 35. Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Surgical Gynecology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Sieroszewski
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Grzegorz Raba
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Kamil Szczupak
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Marek Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Krzysztof Czajkowski
- II Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Mirosław Wielgoś
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Ewa Koc-Żórawska
- II Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Marcin Żórawski
- Department of Clinical Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Piotr Laudański
- I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
- Correspondence:
| |
Collapse
|
10
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
11
|
Ravegnini G, Gorini F, De Crescenzo E, De Leo A, De Biase D, Di Stanislao M, Hrelia P, Angelini S, De Iaco P, Perrone AM. Can miRNAs be useful biomarkers in improving prognostic stratification in endometrial cancer patients? An update review. Int J Cancer 2022; 150:1077-1090. [PMID: 34706070 PMCID: PMC9298718 DOI: 10.1002/ijc.33857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Endometrial cancer (EC) is the most common gynecological cancer, with annual incidence rates in Western countries ranging between 15 and 25 per 100 000 women. About 15% to 20% of patients with EC have high-risk disease and follow an aggressive clinical course. Unfortunately, the assessment of histologic parameters is poorly reproducible and conventional clinicopathological and molecular features do not reliably predict either the patient's response to the available treatments or the definition of personalized therapeutic approaches. In this context, the identification of novel diagnostic and prognostic biomarkers, which can be integrated in the current classification schemes, represents an unmet clinical need and an important challenge. miRNAs are key players in cancer by regulating the expression of specific target genes. Their role in EC, in association with clinical and prognostic tumor biomarkers, has been investigated but, so far, with little consensus among the studies. The present review aims to describe the recent advances in miRNAs research in EC taking into consideration the current classification schemes and to highlight the most promising miRNAs. Finally, a perspective point of view sheds light on the challenges ahead in the landscape of EC.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Francesca Gorini
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Eugenia De Crescenzo
- Division of Oncologic GynecologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences, DIMECUniversity of BolognaBolognaItaly
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
- Pathology Unit, IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Centro di Studio e Ricerca delle Neoplasie GinecologicheUniversity of BolognaBolognaItaly
| | - Dario De Biase
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
- Centro di Studio e Ricerca delle Neoplasie GinecologicheUniversity of BolognaBolognaItaly
| | - Marco Di Stanislao
- Division of Oncologic GynecologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences, DIMECUniversity of BolognaBolognaItaly
| | - Patrizia Hrelia
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Sabrina Angelini
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Pierandrea De Iaco
- Division of Oncologic GynecologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences, DIMECUniversity of BolognaBolognaItaly
- Centro di Studio e Ricerca delle Neoplasie GinecologicheUniversity of BolognaBolognaItaly
| | - Anna Myriam Perrone
- Division of Oncologic GynecologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences, DIMECUniversity of BolognaBolognaItaly
- Centro di Studio e Ricerca delle Neoplasie GinecologicheUniversity of BolognaBolognaItaly
| |
Collapse
|
12
|
miR-370-3p as a Novel Biomarker Promotes Breast Cancer Progression by Targeting FBLN5. Stem Cells Int 2021; 2021:4649890. [PMID: 34475958 PMCID: PMC8407987 DOI: 10.1155/2021/4649890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
miRNAs play a crucial part in multiple biological processes of cell proliferation, migration, apoptosis, and chemoresistance. In cancer, miRNAs can be divided into oncogenes or tumor suppressors on the basis of their functions in the carcinogenic process. The purpose of this study was to explore the roles and clinical diagnostic value of miR-370-3p in breast cancer. Our results demonstrated that miR-370-3p significantly promoted proliferation, metastasis, and stemness of breast cancer in vitro and in vivo. In particular, clinical data revealed that high expression of serum miR-370-3p and exosomal miR-370-3p from breast cancer patients was remarkably correlated with lymphatic metastasis and tumor node metastasis (TNM) stages. Mechanistically, miR-370-3p inhibited FBLN5 expression and activated the NF-κB signaling pathway to promote breast cancer cell proliferation, migration, and stemness. FBLN5 expression was significantly decreased in breast cancer cells and tumor tissues of breast cancer patients. Our research identified that miR-370-3p promoted breast cancer progression by inhibiting FBLN5 expression and activating the NF-κB signaling pathway. Serum exosomal miR-370-3p would provide a potential biomarker for the diagnosis of breast cancer.
Collapse
|
13
|
Ramorola BR, Goolam-Hoosen T, Alves de Souza Rios L, Mowla S. Modulation of Cellular MicroRNA by HIV-1 in Burkitt Lymphoma Cells-A Pathway to Promoting Oncogenesis. Genes (Basel) 2021; 12:genes12091302. [PMID: 34573283 PMCID: PMC8468732 DOI: 10.3390/genes12091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses and viral components have been shown to manipulate the expression of host microRNAs (miRNAs) to their advantage, and in some cases to play essential roles in cancer pathogenesis. Burkitt lymphoma (BL), a highly aggressive B-cell derived cancer, is significantly over-represented among people infected with HIV. This study adds to accumulating evidence demonstrating that the virus plays a direct role in promoting oncogenesis. A custom miRNA PCR was used to identify 32 miRNAs that were differently expressed in Burkitt lymphoma cells exposed to HIV-1, with a majority of these being associated with oncogenic processes. Of those, hsa-miR-200c-3p, a miRNA that plays a crucial role in cancer cell migration, was found to be significantly downregulated in both the array and in single-tube validation assays. Using an in vitro transwell system we found that this downregulation correlated with significantly enhanced migration of BL cells exposed to HIV-1. Furthermore, the expression of the ZEB1 and ZEB2 transcription factors, which are promotors of tumour invasion and metastasis, and which are direct targets of hsa-miR-200c-3p, were found to be enhanced in these cells. This study therefore identifies novel miRNAs as role players in the development of HIV-associated BL, with one of these miRNAs, hsa-miR-200c-3p, being a candidate for further clinical studies as a potential biomarker for prognosis in patients with Burkitt lymphoma, who are HIV positive.
Collapse
|
14
|
MicroRNA-200b Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting p27 and KLF9. Animals (Basel) 2021; 11:ani11082417. [PMID: 34438874 PMCID: PMC8388755 DOI: 10.3390/ani11082417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The miR-200b has been shown to play an important role in preadipocyte proliferation and differentiation. Herein, we explored the role of miR-200b in ovine adipocyte development, using Oil Red O staining, cell viability analysis, EdU and RT-qPCR. The results showed that miR-200b facilitated proliferation and suppressed the differentiation of preadipocytes. The dual fluorescent reporter vector experiments showed that miR-200b directly targeted p27 and KLF9. Meanwhile, we demonstrated that p27 significantly inhibited the proliferation, while KLF9 significantly promoted the differentiation of preadipocytes. Abstract MicroRNAs (miRNAs) are crucial regulatory molecules in lipid deposition and metabolism. However, the effect of miR-200b on the regulation of proliferation and adipogenesis of ovine preadipocytes is unknown in the sheep (Ovis aries). In this study, the expression profiles of miR-200b were investigated in the seven tissues of Tibetan ewes and differentiated preadipocytes. The effect of miR-200b, as well as its target genes p27 and KLF9, on the proliferation of ovine preadipocytes and adipogenesis was also investigated, using cell viability analysis, EdU staining, Oil Red O staining and reverse transcription-quantitative PCR (RT-qRCR). The miR-200b was expressed in all the tissues investigated, and it was highly expressed in lung, liver, subcutaneous adipose and spleen tissues. The expression of miR-200b continuously decreased when the differentiation of ovine preadipocytes initiated. The miR-200b mimic dramatically accelerated the proliferation but inhibited differentiation of ovine preadipocytes. The miR-200b inhibitor resulted in an opposite effect on the proliferation and differentiation of ovine preadipocytes. The dual luciferase reporter assay results showed that miR-200b mimic significantly decreased the luciferase activity of p27 and KLF9 in HEK293 cells transfected with wild-type dual luciferase reporter vectors. This suggests that p27 and KLF9 are the target genes of miR-200b. In over-expressed-p27 preadipocytes, the number of EdU-labeled preadipocytes and the expression levels of proliferation marker genes CDK2, CDK4, CCND1 and PCNA significantly decreased. In addition, the transfection of over-expressed-KLF9 vector into adipocytes remarkably increased the accumulation of lipid droplets and the expression levels of differentiation marker genes aP2, PPARγ, LPL and GLUT4. These results suggest that miR-200b accelerated the proliferation but inhibited the adipogenic differentiation of ovine preadipocytes by targeting p27 and KLF9, respectively.
Collapse
|
15
|
Wan W, Long Y, Jin X, Li Q, Wan W, Liu H, Zhu Y. Protective Role of microRNA-200a in Diabetic Retinopathy Through Downregulation of PDLIM1. J Inflamm Res 2021; 14:2411-2424. [PMID: 34113148 PMCID: PMC8187036 DOI: 10.2147/jir.s303540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a most common microvascular complication and regarded as the leading cause of blindness in the working age population. The involvement of miR-200a in various disorders has become recognized, and the objective of this study was to identify the protective effect of miR-200a in the development of DR. Methods The contents of miR-200a and its potential target gene, PDZ and LIM domain protein 1 (PDLIM1), were detected in both in-vivo and in-vitro DR models. Retinal leakage and inflammatory factor concentrations were detected after vitreous injections of miR-200a/PDLIM1 vectors in mice. The cellular viability, apoptosis and cellular migration were investigated using trypan blue staining, flow cytometry and transwell assay with human retinal microvascular endothelial cells (HRMECs). Besides, the prediction and confirmation of miR-200a targeting PDLIM1 were conducted with bioinformation analyses and dual-luciferase reporter assay. Results Lower miR-200a and higher PDLIM1 levels were detected in both in-vivo and in-vitro DR models. Besides, it was found that miR-200a treatment would significantly inhibit retinal permeability and inflammatory factors. Through targeting PDLIM1, it was found that miR-200a could improve cellular viability, remit apoptotic status and reduce cellular migration significantly in high glucose-treated HRMECs. Conclusion Our results demonstrated that miR-200a could be used as a potential therapy target through down-regulating PDLIM1 in DR.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongzhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
16
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Zong L, Zheng S, Meng Y, Tang W, Li D, Wang Z, Tong X, Xu B. Integrated Transcriptomic Analysis of the miRNA-mRNA Interaction Network in Thin Endometrium. Front Genet 2021; 12:589408. [PMID: 33796129 PMCID: PMC8009322 DOI: 10.3389/fgene.2021.589408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although the thin endometrium (TE) has been widely recognized as a critical factor in implantation failure, the contribution of miRNA-mRNA regulatory network to the development of disease etiology remains to be further elucidated. This study performed an integrative analysis of the miRNA-mRNA expression profiles in the thin and adjacent normal endometrium of eight patients with intrauterine adhesion to construct the transcriptomic regulatory networks. A total of 1,093 differentially expressed genes (DEGs) and 72 differentially expressed miRNAs (DEMs) were identified in the thin adhesive endometrium of the TE group compared with the control adjacent normal endometrial cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the DEGs and the target genes of DEM were significantly enriched in angiogenesis, cell growth regulation, and Wnt signaling pathway. Multiple hub genes (CAV1, MET, MAL2, has-mir-138, ARHGAP6, CLIC4, RRAS, AGFG1, has-mir-200, and has-mir-429) were identified by constructing the miRNA-mRNA regulatory networks. Furthermore, a miRNA-mRNA pathway function analysis was conducted, and the hub genes were enriched in the FoxO signaling pathway, cell growth regulation, inflammatory response regulation, and regulation of autophagy pathways. Our study is the first to perform integrated mRNA-seq and miRNA-seq analyses in the thin adhesive endometrium and the control adjacent normal endometrial cells. This study provides new insights into the molecular mechanisms underlying the formation of thin endometrium.
Collapse
Affiliation(s)
- Lu Zong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengxia Zheng
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ye Meng
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daojing Li
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenyun Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO -CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics 2021; 11:5330-5345. [PMID: 33859750 PMCID: PMC8039953 DOI: 10.7150/thno.58337] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Estrogen-dependent cancers (e.g., breast, endometrial, and ovarian cancers) are among the leading causes of morbidity and mortality in women worldwide. Recently, exosomes released by tumor-infiltrating CD8+ T cells have been under the spotlight in the field of cancer immunotherapy. Our study aims at elucidating the underlying mechanisms of the crosstalk between estrogen signaling and CD8+ T cells, and possible intervention values in uterine corpus endometrial cancer (UCEC). Methods: Micro RNA-seq was conducted to screen differentially expressed micro RNA in UCEC. Bioinformatic analysis was processed to predict the target of miR-765. RNA silencing or overexpressing and pharmacologic inhibitors were used to assess the functions of ERβ/miR-765/PLP2/Notch axis in UCEC cell proliferation and invasion in vivo and in vitro. In vivo imaging was performed to evaluate the metastasis of tumor in mice. Combined fluorescent in situ hybridization for miR-765 and immunofluorescent labeling for CD8 was carried out to prove the co-localization between miR-765 and CD8+ T cells. Exosomes derived from CD45RO-CD8+ T cells were isolated to detect the regulatory effects on UCEC. Results: miR-765 is characterized as the most downregulated miRNA in UCEC, and there is a negative correlation between miR-765 and Proteolipid protein 2 (PLP2) in UCEC lesion. Estrogen significantly down-regulates miR-765 level, and facilitates the development of UCEC by estrogen receptor (ER) β. Mechanistically, this process is mediated through the miRNAs (e.g., miR-3584-5p, miR-7-5p, miR-150-5p, and miR-124-3p) cluster-controlled regulation of the PLP2, which further regulates Ki-67 and multiple epithelial-mesenchymal transition (EMT)-related molecules (e.g, E-cadherin and Vimentin) in a Notch signaling pathway-dependent manner. Interestingly, the selective ER degrader Fulvestrant alleviates estrogen-mediated miR-765/PLP2 expression regulation and UCEC development in ERβ-dependent and -independent manners. Additionally, CD45RO-CD8+ T cell-derived exosomes release more miR-765 than that from CD45RO+CD8+ T cells. In therapeutic studies, these exosomes limit estrogen-driven disease development via regulation of the miR-765/PLP2 axis. Conclusions: This observation reveals novel molecular mechanisms underlying estrogen signaling and CD8+ T cell-released exosomes in UCEC development, and provides a potential therapeutic strategy for UCEC patients with aberrant ERβ/miR-765/PLP2/Notch signaling axis.
Collapse
|
19
|
Wang H, Yang Q, Li J, Chen W, Jin X, Wang Y. MicroRNA-15a-5p inhibits endometrial carcinoma proliferation, invasion and migration via downregulation of VEGFA and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2021; 21:310. [PMID: 33732386 PMCID: PMC7905532 DOI: 10.3892/ol.2021.12570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common malignant gynecological tumors. Dysregulation of microRNAs (miRNAs/miRs) is frequently identified in human tumors, playing key regulatory roles in tumor growth and metastasis. The present study aimed to explore the functions and potential mechanisms of miR-15a-5p in EC progression. RT-qPCR was used to detect the expression levels of miR-15a-5p and vascular endothelial growth factor A (VEGFA) mRNA. Western blot analysis was performed to examine the expression of related proteins. Functional assays, including proliferation and Transwell assays were performed to determine the roles of miR-15a-5p in EC progression. TargetScan and luciferase reporter assays were used to explore the potential target genes of miR-15a-5p. The results revealed that miR-15a-5p was underexpressed in EC tissue samples in comparison with that in matched normal tissue samples. The expression level of miR-15a-5p was associated with the clinicopathologic characteristics of EC patients. Notably, both in vitro and in vivo assays revealed that miR-15a-5p upregulation significantly inhibited EC growth and metastasis. Furthermore, bioinformatics analysis and dual luciferase reporter assay indicated that VEGFA was a candidate target of miR-15a-5p. Mechanistic investigation revealed that miR-15a-5p inhibited EC development via regulation of Wnt/β-catenin pathway and targeting of VEGFA. In summary, the present results demonstrated that miR-15a-5p could inhibit EC development and may serve as a promising therapeutic biomarker in EC.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingju Yang
- Department of Gynaecology, Linyi People's Hospital, Dezhou, Shandong 251500, P.R. China
| | - Jieping Li
- Department of Anesthesiology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Wenping Chen
- Department of Cardiothoracic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
20
|
Misir S, Hepokur C, Oksasoglu B, Yildiz C, Yanik A, Aliyazicioglu Y. Circulating serum miR-200c and miR-34a-5p as diagnostic biomarkers for endometriosis. J Gynecol Obstet Hum Reprod 2021; 50:102092. [PMID: 33601073 DOI: 10.1016/j.jogoh.2021.102092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Endometriosis is defined by the presence of endometrial glands and stroma grow in areas outside the uterus. A simple blood test for endometriosis-specific biomarkers would offer a more timely accurate diagnosis of the disease and could lead to earlier treatment intervention. Alterations in microRNA (miRNA) levels in blood may reflect changes during normal physiologic processes and have been related to several pathologic conditions, including gynecologic diseases. In the present study, we aim to evaluate the level of serum miR-34a-5p and miR-200c from women with and without endometriosis, and to explore the potential of miRNAs as reliable non-invasive biomarkers in the diagnosis of endometriosis. METHODS Expression levels of miRNAs were performed by quantitative real-time polymerase chain reaction (qRT-PCR). Serum cancer antigen 125 (CA-125) levels were analyzed by autoanalyzer. RESULTS miR-34a-5p expression levels were decreased and miR-200c expression levels were increased in the endometriosis patients compared to the control group. According to the areas under the ROC curve (AUC) values, miR-200c and miR-34a-5p may serve as biomarkers for the diagnosis of endometriosis. Serum miR-34a-5p and miR-200c had a sensitivity of 78.95 % and 100 % and a specificity of 49.12 % and 100 %, respectively, for the detection of endometriosis. CONCLUSION Serum miRNAs may provide a promising opportunity for diagnosis of endometriosis. Understanding the role of circulating miRNAs will serve a better comprehension of the systemic effects of endometriosis and offer options for new treatments. It is clear that more work is needed in this area.
Collapse
Affiliation(s)
- Sema Misir
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkiye.
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkiye
| | - Bugra Oksasoglu
- Sarkisla Public Hospital, Clinic Of Obstetrics and Gynecology, 58140 Sivas, Turkiye
| | - Caglar Yildiz
- Department of Gynecology and Obstetrics, Medical Faculty of Sivas Cumhuriyet University, 58140 Sivas, Turkiye
| | - Ali Yanik
- Department of Gynecology and Obstetrics, Medical Faculty of Sivas Cumhuriyet University, 58140 Sivas, Turkiye
| | - Yüksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkiye
| |
Collapse
|
21
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
22
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
23
|
Saglam O, Tang Z, Tang G, Medeiros LJ, Toruner GA. KAT6A amplifications are associated with shorter progression-free survival and overall survival in patients with endometrial serous carcinoma. PLoS One 2020; 15:e0238477. [PMID: 32877461 PMCID: PMC7467277 DOI: 10.1371/journal.pone.0238477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Somatic copy number alterations (CNA) are common in endometrial serous carcinoma (ESC). We used the Tumor Cancer Genome Atlas Pan Cancer dataset (TCGA Pan Can) to explore the impact of somatic CNA and gene expression levels (mRNA) of cancer-related genes in ESC. Results were correlated with clinico-pathologic parameters such as age of onset, disease stage, progression-free survival (PFS) and overall survival (OS) (n = 108). 1,449 genes with recurrent somatic CNA were identified, observed in 10% or more tumor samples. Somatic CNA and mRNA expression levels were highly correlated (r> = 0.6) for 383 genes. Among these, 45 genes were classified in the Tier 1 category of Cancer Genome Census-Catalogue of Somatic Mutations in Cancer. Eighteen of 45 Tier 1 genes had highly correlated somatic CNA and mRNA expression levels including ARNT, PIK3CA, TBLXR1, ASXL1, EIF4A2, HOOK3, IKBKB, KAT6A, TCEA1, KAT6B, ERBB2, BRD4, KEAP1, PRKACA, DNM2, SMARCA4, AKT2, SS18L1. Our results are in agreement with previously reported somatic CNA for ERBB2, BRD4 and PIK3C in ESC. In addition, AKT2 (p = 0.002) and KAT6A (p = 0.015) amplifications were more frequent in tumor samples from younger patients (<60), and CEBPA (p = 0.028) and MYC (p = 0.023) amplifications were more common with advanced (stage III and IV) disease stage. Patients with tumors carrying KAT6A and MYC amplifications had shorter PFS and OS. The hazard ratio (HR) of KAT6A was 2.82 [95 CI 1.12-7.07] for PFS and 3.87 [95 CI 1.28-11.68] for OS. The HR of MYC was 2.25 [95 CI 1.05-4.81] and 2.62[95 CI 1.07-6.41] for PFS and OS, respectively.
Collapse
Affiliation(s)
- Ozlen Saglam
- Department of Surgical Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Zhenya Tang
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guilin Tang
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - L. Jeffrey Medeiros
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gokce A. Toruner
- Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ciebiera M, Włodarczyk M, Zgliczyński S, Łoziński T, Walczak K, Czekierdowski A. The Role of miRNA and Related Pathways in Pathophysiology of Uterine Fibroids-From Bench to Bedside. Int J Mol Sci 2020; 21:ijms21083016. [PMID: 32344726 PMCID: PMC7216240 DOI: 10.3390/ijms21083016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of the female genital tract. Their prevalence usually is estimated at 30-40%, but may reach up to 70-80% in predisposed groups of women. UFs may cause various clinical issues which might constitute the major reason of the overall deterioration of the quality of life. The mechanisms leading to UFs formation and growth still remain poorly understood. The transformation of smooth muscle cells of the uterus into abnormal, immortal cells, capable of clonal division, is thought to be a starting point of all pathways leading to UF formation. Micro-ribonucleic acids (miRNAs) are non-coding single-stranded RNAs about 22 nucleotides in length, that regulate gene expression. One of recent advances in this field is the comprehension of the role of miRNAs in tumorigenesis. Alterations in the levels of miRNAs are related to the formation and growth of several tumors which show a distinct miRNA signature. The aim of this review is to summarize the current data about the role of miRNAs in the pathophysiology of UFs. We also discuss future directions in the miRNA research area with an emphasis on novel diagnostic opportunities or patient-tailored therapies. In our opinion data concerning the regulation of miRNA and its gene targets in the UFs are still insufficient in comparison with gynecological malignancies. The potential translational use of miRNA and derived technologies in the clinical care is at the early phase and needs far more evidence. However, it is one of the main areas of interest for the future as the use of miRNAs in the diagnostics and treatment of UFs is a new and exciting opportunity.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
- Correspondence: ; Tel.: +48-607-155-177
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszów, Poland;
| | - Klaudia Walczak
- Students’ Scientific Association at the Department of Endocrinology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Artur Czekierdowski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
25
|
Vashisht A, Alali Z, Nothnick WB. Deciphering the Role of miRNAs in Endometriosis Pathophysiology Using Experimental Endometriosis Mouse Models. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:79-97. [PMID: 33278008 DOI: 10.1007/978-3-030-51856-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Endometriosis is an enigmatic disease for which we still have a poor understanding on how and why the disease develops. In recent years, miRNAs, small noncoding RNAs which regulate gene expression posttranscriptionally, have been evaluated for their role in endometriosis pathophysiology. This review will provide a brief summary on the role of miRNAs in endometrial physiology and pathophysiology as related to endometriosis. We will then discuss mouse models used in endometriosis research and the incorporation of some of these models in studies which examined the role of miRNAs in endometriosis pathophysiology. We conclude with providing future prospective on the role of mouse models in dissecting the role of miRNAs in endometriosis pathophysiology.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zahraa Alali
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Systematic large-scale meta-analysis identifies miRNA-429/200a/b and miRNA-141/200c clusters as biomarkers for necrotizing enterocolitis in newborn. Biosci Rep 2019; 39:BSR20191503. [PMID: 31383782 PMCID: PMC6757181 DOI: 10.1042/bsr20191503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a critical neonatal disease with a high mortality. The possibility that miRNAs may play an important role in NEC has raised great attention. Hence, the present study identified biomarkers that affected NEC in newborn progression through miRNA and gene expression profile analysis. miRNA chip GSE68054 and gene chip GSE46619 of NEC in newborn were analyzed to screen out differentially expressed miRNA and differentially expressed genes (DEGs). Next, target genes of differentially expressed miRNA were predicted, and differentially expressed miRNA-DEG regulatory network was constructed to select key miRNAs. After gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis on target genes of key miRNAs, the target genes enriched in pathways were extracted to establish differentially expressed miRNA-DEG-disease gene network for gene interaction analysis. Targetting relationship between miRNAs and target genes was verified. A total of 15 miRNAs were differentially expressed in NEC in newborn, amongst which miR-429/200a/b and miR-141/200c clusters were poorly expressed and might play a significant role in NEC in newborn. Besides, target genes of miR-429/200a/b and miR-141/200c clusters were enriched in 11 signaling pathways. Vascular endothelial growth factor (VEGFA), E-selectin (SELE), kinase insert domain receptor (KDR), fms-related tyrosine kinase 1 (FLT1), and hepatocyte growth factor (HGF) were highly expressed in NEC in newborn, which were negatively regulated by miR-429/200a/b and miR-141/200c clusters and shared close association with disease genes. miR-429/200a/b and miR-141/200c clusters are poorly expressed while their target genes (VEGFA, SELE, KDR, FLT1, and HGF) are highly expressed in NEC in newborn, which might be identified as important biomarkers for this disease.
Collapse
|
27
|
Satapathy S, Kumar C, Singh RK. MicroRNAs as Key Regulators of Ovarian Cancers. CELL MEDICINE 2019; 11:2155179019873849. [PMID: 32634196 PMCID: PMC6732848 DOI: 10.1177/2155179019873849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment can be realistically viewed as an active battle ground between
the host immune system and the growing tumor cells. This reactive space surrounding the
tumor possesses several possibilities and facilitates the progression of a tumor from a
neoplastic stage to that of metastasis. The contemporary approach of understanding the
cancer biology from a “within the cell” perspective has been largely challenged with
complex and intricate “outside the cell” events. Thus understanding the biology of the
tumor microenvironment has been of scientific and clinical interest. Small non-coding
microRNAs with a pleotropic and wide range of cellular gene targets can be reasonably
hypothesized to regulate the events of carcinogenesis and progression. MicroRNAs have been
investigated in different cancer models, and evidence of their involvement in the
regulation of the tumor microenvironment has been of much interest. In particular, a major
interest has been exploring the role of the tumor microenvironment in regulating the
interaction of cancer cells with surrounding stromal components and the effect of such
interactions on the cancer cells. Fine-tuned regulation by these microRNAs extends our
contemporary understanding of these small biomolecules in epigenetic regulations. This
review focuses on microRNAs that are dysregulated in ovarian carcinomas, their effect on
the components of the tumor microenvironment, and the correlation of their heterogeneous
expression profiles with disease severity and prognosis in patients. In addition, this
paper also discusses the differential expression of exosomal microRNAs that are known to
link the cancer cell with its microenvironment, facilitating the development of an
improved prognostic/diagnostic marker and effective therapeutic regime.
Collapse
Affiliation(s)
- Sandeep Satapathy
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Chanchal Kumar
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | |
Collapse
|
28
|
Ma L, Li Z, Li W, Ai J, Chen X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 2019; 16:1733-1748. [PMID: 31425004 DOI: 10.1080/15476286.2019.1657352] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detailed pathogenesis of endometriosis remains largely unclear despite decades of research. Recent studies have demonstrated that miRNAs plays an important role in endometriosis. The expression of miR-142-3p was decreased in ectopic endometrial tissues, while KLF9 and VEGFA expression levels were increased. Overexpression of miR-142-3p or knockdown of KLF9 significantly suppressed CRL-7566 cell proliferation and metastasis, induced cell apoptosis, and decreased both cell autophagy and vascularization. Additionally, KLF9 was confirmed to be a direct target of miR-142-3p and to directly bind to the promoter of the VEGFA gene, regulating its expression. Finally, intraperitoneal injection of miR-142-3p lentivirus significantly attenuated ectopic endometriotic lesions in vivo.miR-142-3p directly targeted KLF9, regulated VEGFA expression, and was protective against the growth of ectopic endometriotic lesions. Therefore, the miR-142-3p/KLF9/VEGFA signalling pathway may be a potential target in endometriosis treatment.
Collapse
Affiliation(s)
- Lin Ma
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zaiyi Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weihao Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Ai
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxuan Chen
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
29
|
Zhou TE, Zhu T, Rivera JC, Omri S, Tahiri H, Lahaie I, Rouget R, Wirth M, Nattel S, Lodygensky G, Ferbeyre G, Nezhady M, Desjarlais M, Hamel P, Chemtob S. The Inability of the Choroid to Revascularize in Oxygen-Induced Retinopathy Results from Increased p53/miR-Let-7b Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2340-2356. [PMID: 31430465 DOI: 10.1016/j.ajpath.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.
Collapse
Affiliation(s)
- Tianwei E Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada.
| | - Tang Zhu
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - José C Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Houda Tahiri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Rouget
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Gregory Lodygensky
- Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Mohammad Nezhady
- Department of Pathology and Cell Biology, University of Montréal, Montréal, Québec, Canada
| | - Michel Desjarlais
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Hamel
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
30
|
Zhang H, Li G, Sheng X, Zhang S. Upregulation of miR‑33b promotes endometriosis via inhibition of Wnt/β‑catenin signaling and ZEB1 expression. Mol Med Rep 2019; 19:2144-2152. [PMID: 30664209 PMCID: PMC6390049 DOI: 10.3892/mmr.2019.9870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the role and mechanisms of microRNA (miR)‑33b in endometriosis (Ems). Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), MTT assays, flow cytometry, caspase‑3/9 activity assays and western blotting were performed in the present study. Initially, miR‑33b expression in an Ems rat model was investigated by RT‑qPCR and was demonstrated to be upregulated in Ems tissue samples of rats compared with the control group. In addition, miR‑33b upregulation inhibited cell growth and enhanced apoptosis in an Ems model (primary cell cultures) compared with the control group. In addition, miR‑33b up‑regulation reduced Wnt/β‑catenin signaling pathway and suppressed zinc finger E‑box‑binding homeobox 1 (ZEB1) protein expression in the in vitro Ems model (primary cell cultures) compared with the control group. Furthermore, small interfering‑ZEB1 ameliorated the effects of miR‑33b downregulation on Ems cell growth in the in vitro Ems model. Additionally, a Wnt agonist reduced the effects of miR‑33b upregulation on Ems cell growth in the in vitro Ems model. In conclusion, the present study demonstrated that upregulation of miR‑33b may promote Ems through Wnt/β‑catenin by ZEB1 expression.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Jinan, Shandong 250002, P.R. China
| | - Guang Li
- Department of Gynecology Ward 1, Linyi City People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiugui Sheng
- Department of Gynecology, Chinese Academy of Medical Sciences Tumor Hospital, Beijing 100021, P.R. China
| | - Shiqian Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
31
|
Liang J, Deng G, Huang H. The activation of BDNF reduced inflammation in a spinal cord injury model by TrkB/p38 MAPK signaling. Exp Ther Med 2018; 17:1688-1696. [PMID: 30783437 PMCID: PMC6364215 DOI: 10.3892/etm.2018.7109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the pro-inflammation effects of brain-derived neurotrophic factor (BDNF) signaling in promoting inflammation following spinal cord injury (SCI) in rats. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of BDNF in SCI rats. The Basso, Beattie and Bresnahan (BBB) test was used and the water content of spinal cord were assessed to determine the effects of BDNF on SCI. BDNF expression was increased in SCI rats. In an in vitro model, overexpression of BDNF induced the protein expression of tyrosine kinase receptor B (TrkB) and suppressed that of phosphorylated (p-)p38, and reduced inflammation, as indicated by tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-18, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 levels. Conversely, the TrkB inhibitor ANA-12 suppressed the protein expression of TrkB and induced that of p-p38, and promoted inflammation (as indicated by TNF-α, IL-1β, IL-6, IL-18, iNOS and COX-2 levels) in an in vitro model of SCI by BDNF overexpression. In addition, the p38 inhibitor TA-0, suppressed p38 protein expression and reduced inflammation in an in vitro model of SCI by BDNF overexpression. Together, these data suggest that the pro-inflammation effects of BDNF/TrkB promoted inflammation in SCI through p38 signaling in rats.
Collapse
Affiliation(s)
- Jiedong Liang
- Department of Orthopedics, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Gui Deng
- Department of Orthopedics, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - He Huang
- Department of Orthopedics, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
32
|
A Two-Cohort RNA-seq Study Reveals Changes in Endometrial and Blood miRNome in Fertile and Infertile Women. Genes (Basel) 2018; 9:genes9120574. [PMID: 30477193 PMCID: PMC6315937 DOI: 10.3390/genes9120574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
The endometrium undergoes extensive changes to prepare for embryo implantation and microRNAs (miRNAs) have been described as playing a significant role in the regulation of endometrial receptivity. However, there is no consensus about the miRNAs involved in mid-secretory endometrial functions. We analysed the complete endometrial miRNome from early secretory (pre-receptive) and mid-secretory (receptive) phases from fertile women and from patients with recurrent implantation failure (RIF) to reveal differentially expressed (DE) miRNAs in the mid-secretory endometrium. Furthermore, we investigated whether the overall changes during early to mid-secretory phase transition and with RIF condition could be reflected in blood miRNA profiles. In total, 116 endometrial and 114 matched blood samples collected from two different population cohorts were subjected to small RNA sequencing. Among fertile women, 91 DE miRNAs were identified in the mid-secretory vs. early secretory endometrium, while no differences were found in the corresponding blood samples. The comparison of mid-secretory phase samples between fertile and infertile women revealed 21 DE miRNAs from the endometrium and one from blood samples. Among discovered novel miRNAs, chr2_4401 was validated and showed up-regulation in the mid-secretory endometrium. Besides novel findings, we confirmed the involvement of miR-30 and miR-200 family members in mid-secretory endometrial functions.
Collapse
|
33
|
Chuang TD, Khorram O. Regulation of Cell Cycle Regulatory Proteins by MicroRNAs in Uterine Leiomyoma. Reprod Sci 2018; 26:250-258. [PMID: 29642801 DOI: 10.1177/1933719118768692] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objective of this study was to determine whether miR-93, miR-29c, and miR-200c, which we previously reported to be downregulated in leiomyomas, target cell cycle regulatory proteins that influence cell proliferation. Based on TargetScan algorithm 3 cell cycle regulatory proteins namely, E2F transcription factor 1 (E2F1), Cyclin D1 (CCND1) and CDK2 which were predicted to be targets of these miRNAs were further analyzed. In 30 hysterectomy specimens, we found the expression of E2F1 and CCND1 messenger RNA (mRNA) was increased in leiomyoma as compared to matched myometrium, with no significant changes in CDK2 mRNA levels. There was a significant increase in the abundance of all 3 proteins in leiomyoma in comparison with matched myometrium. Using luciferase reporter assay, we demonstrated E2F1 and CCND1 are targets of miR-93 and CDK2 is a target of miR-29c and miR-200c. We confirmed these findings through transfection studies in which transfection of primary leiomyoma cells with miR-93 resulted in a significant decrease in the expression of E2F1 and CCND1 mRNA and protein levels, whereas knockdown of miR-93 had the opposite effect. Similarly, overexpression of miR-29c and miR-200c in leiomyoma cells inhibited the expression of CDK2 protein and mRNA, whereas knockdown of this microRNAs (miRNA) had the opposite effect. Transfection of miR-29c, miR-200c, and miR-93 in primary leiomyoma cells resulted in a time-dependent inhibition of cell proliferation and cell motility. These results collectively indicate that the 3 miRNAs known to be downregulated in fibroid tumors are critical in regulation of cell proliferation because of their effects on 3 key cell cycle regulatory proteins, which are overexpressed in uterine leiomyomas.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, CA, USA
| | - Omid Khorram
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, CA, USA
| |
Collapse
|
34
|
miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. J Transl Med 2018; 98:339-359. [PMID: 29200203 DOI: 10.1038/labinvest.2017.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary fibrosis triggered during the early stage of acute respiratory distress syndrome (ARDS) contributes to poor prognosis in patients. However, whether microRNAs (miRNAs) can serve as therapeutic targets for early pulmonary fibrosis during ARDS is still largely unknown. In this study, we evaluated the effects and mechanisms of miR-200s and its targets ZEB1/2 in lung tissue. An early pulmonary fibrosis mouse model caused by ARDS was established via a lipopolysaccharide (LPS) three-hit regimen. Lentiviral packaged miR-200b/c cDNA or ZEB1/2 shRNA was intratracheally administered into the lungs of C57BL/6 mice 1 day before an LPS injection was administered. In vitro, following a 30-min pretreatment with miR-200b/c or SB203580/SIS3, RLE-6TN cells were stimulated by LPS or LPS + transforming growth factor-β (TGF-β) for 24 h. miR-200b/c and E-cadherin protein expression declined, whereas ZEB1/2 mRNA and protein and vimentin and α-smooth muscle actin (α-SMA) protein levels gradually increased during the development of pulmonary fibrosis. Furthermore, both the overexpression of miR-200b/c and the silencing of ZEB1/2 significantly alleviated pulmonary inflammation and fibrosis, reduced vimentin and α-SMA expression, and increased E-cadherin protein levels. In RLE-6TN cells, LPS combined with TGF-β exerts synergistic effects of increasing vimentin and α-SMA protein levels, increasing p38 and smad3 phosphorylation and reducing E-cadherin protein levels, which were reversed by pretreatment with miR-200b/c or SB203580/SIS3. Our findings demonstrate that miR-200b/c was downregulated, whereas ZEB1/2 was upregulated in the development of LPS-induced early pulmonary fibrosis. miR-200b/c exerts a protective effect by targeting ZEB1/2, which may be associated with the inhibition of p38 MAPK and TGF-β /smad3 signaling pathways.
Collapse
|
35
|
Prognostic role of NF-YA splicing isoforms and Lamin A status in low grade endometrial cancer. Oncotarget 2018; 8:7935-7945. [PMID: 27974701 PMCID: PMC5352372 DOI: 10.18632/oncotarget.13854] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Although most cases of low grade (G1) endometrial cancer (EC) do not behave aggressively, in rare instances, can progress in a highly aggressive manner. In this study we analyzed formalin-fixed, paraffin-embedded (FFPE) EC tissues to find novel clinical and biological features to help diagnosis and treatment of G1 ECs s in order to better stratify patient risk of recurrence. A retrospective cohort of FFPE specimens from patients with EC (n=87) and benign tissue specimens (NE) from patients who underwent a hysterectomy to treat other benign disease (n = 13) were collected. Total RNA and proteins were extracted and analyzed, respectively, by quantitative PCR and western blotting. NF-YAs is expressed and lamin A is down-modulated in all high grade (G2 and G3) ECs. In G1 ECs, NF-YAs expression is heterogeneous being expressed only in a subset of these tumours. Interestingly, the G1 ECs that express NF-YAs display low levels of lamin A similar to those present in G2 and G3 ECs. Of note, this pattern of NF-YAs and lamin A expression correlates with tumor aggressiveness assessed by comparative analysis with estrogen receptor (ER) status and epithelial-mesenchymal transition (EMT) markers thus suggesting its potential role as biomarker of tumour aggressiveness in G1 EC. In all grade ECs, lamin A is strongly downmodulated, being its expression inversely correlated with tumor aggressiveness and its loss of expression. We identified NF-YAs and lamin A expression levels as novel potential biomarkers useful to identify G1 ECs patients with risk of recurrence.
Collapse
|
36
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
37
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
38
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
39
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
40
|
Choi PW, Ng SW. The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017; 18:ijms18061207. [PMID: 28587302 PMCID: PMC5486030 DOI: 10.3390/ijms18061207] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Shu-Wing Ng
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Jiang T, Dong P, Li L, Ma X, Xu P, Zhu H, Wang Y, Yang B, Liu K, Liu J, Xue J, Lv R, Su P, Kong G, Chang Y, Zhao C, Wang L. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol Rep 2017; 38:151-158. [PMID: 28534959 DOI: 10.3892/or.2017.5659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
This study was specifically designed to confirm the hypothesis that microRNA-200c (miR-200c) affects the development of cisplatin (DDP) resistance in human gastric cancer cells by targeting zinc finger E-box binding homeobox 2 (ZEB2). A total of 50 gastric cancer tissues and their corresponding normal adjacent tissue samples were collected. Then, the expression levels of miR-200c and ZEB2 in both gastric cancer specimens and cells were detected using the quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical methods. A dual‑luciferase reporter gene assay was conducted to evaluate the effect of miR-200c on the 3'-untranslated region (3'UTR) luciferase activity of ZEB2. SGC7901/DDP cells were transfected with miR-200c mimics and ZEB2 siRNA, respectively. Subsequently, changes in cellular proliferation and apoptosis were detected through the methyl thiazolyl tetrazolium assay and flow cytometric analysis, respectively. We also carried out a western blot analysis assay in order to detect the expression of apoptosis-related genes and ZEB2. miR-200c was significantly downregulated and ZEB2 was significantly upregulated in both gastric cancer tissues and SGC7901/DDP cells when compared with those in normal tissues and SGC7901 cells (P<0.01). The dual luciferase reporter gene assay showed that miR-200c could specifically bind with the 3'UTR of ZEB2 and significantly suppress the luciferase activity by 42% (P<0.01). Upregulation of miR-200c or downregulation of ZEB2 enhanced the sensitivity of SGC7901/DDP cells to DDP. miR‑200c was significantly downregulated in both gastric cancer tissues and cells, while the expression of ZEB2 exhibited the opposite trend. Our study further demonstrated that miR-200c could enhance the sensitivity of SGC7901/DDP cells to DDP through targeted regulation of ZEB2 expression in gastric cancer tissues.
Collapse
Affiliation(s)
- Tao Jiang
- Henan Key Laboratory - Esophageal Cancer Laboratory for Cancer Research, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Long Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Pei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - He Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Yanqiu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Baotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Kuangge Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Jinwei Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Runzhe Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Panke Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Guoqiang Kong
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Yongchao Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Chonggao Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Lidong Wang
- Henan Key Laboratory - Esophageal Cancer Laboratory for Cancer Research, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
42
|
Chen HX, Xu XX, Tan BZ, Zhang Z, Zhou XD. MicroRNA-29b Inhibits Angiogenesis by Targeting VEGFA through the MAPK/ERK and PI3K/Akt Signaling Pathways in Endometrial Carcinoma. Cell Physiol Biochem 2017; 41:933-946. [PMID: 28222438 DOI: 10.1159/000460510] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The purpose of this study is to explore the effects of microRNA-29b (miR-29b) regulating MAPK/ERK and PI3K/Akt signaling pathways on angiogenesis in endometrial carcinoma (EC) by targeting VEGFA. METHODS Between February 2013 and April 2015, 126 EC patients admitted to the Second Affiliated Hospital of Nanchang University were randomly selected, with 126 EC tissues and the corresponding adjacent normal tissues collected after surgery. The human EC cell lines RL-95-2 and HEC-1-B and human endometrial cells were assigned to the normal group (human endometrial cells), the blank group (untransfected RL-95-2 or HEC-1-B cells), the pMIR-control group (RL-95-2 or HEC-1-B cells transfected with an empty vector), the pMIR-miR-29b group (RL-95-2 or HEC-1-B cells transfected with the miR-29b plasmid), LNA-control group (RL-95-2 or HEC-1-B cells transfected with an oligonucleotide inhibitors control), the LNA-miR-29b inhibitors group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors), the LNA-miR-29b inhibitors + PD98059 group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors and PD98059, an inhibitor of the MAPK/ERK signaling pathway) and the LNA-miR-29b inhibitors + wortmannin group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors and wortmannin, an inhibitor of the PI3K/Akt signaling pathway). qRT-PCR and Western blotting were conducted to detect the miR-29b expression and the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2. Immunohistochemistry (IHC) was performed to determine the microvessel density (MVD) expression in the EC tissues, adjacent normal tissues and nude-mice. RESULTS Compared with the adjacent normal tissues, miR-29b expression was down-regulated, the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were up-regulated, and MVD expression was increased in the EC tissues. Compared with the normal group, miR-29b expression was down-regulated, while the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were up-regulated in the other groups. Compared with the blank, pMIR-control and LNA-control groups, miR-29b expression was increased, while mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were decreased in the pMIR-miR-29b group. The LNA-miR-29b inhibitors group exhibited elevated miR-29b expression and decreased mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 (All P < 0.05). Additionally, miR-29b expression was reduced in the LNA-miR-29b inhibitors + PD98059 and LNA-miR-29b inhibitors + wortmannin groups. In comparison to the normal group, MVD expression was elevated in the other groups. Compared with the blank, pMIR-control, LNA-control, LNA-miR-29b inhibitors + PD98059 and LNA-miR-29b inhibitors + wortmannin groups, MVD expression was decreased in the pMIR-miR-29b group but increased in the LNA-miR-29b inhibitors group. CONCLUSION Our results indicate that miR-29b negatively modulates the MAPK/ERK and PI3K/Akt signaling pathways to inhibit angiogenesis in EC by targeting VEGFA.
Collapse
|
43
|
Peng Y, Chen FF, Ge J, Zhu JY, Shi XE, Li X, Yu TY, Chu GY, Yang GS. miR-429 Inhibits Differentiation and Promotes Proliferation in Porcine Preadipocytes. Int J Mol Sci 2016; 17:ijms17122047. [PMID: 27941616 PMCID: PMC5187847 DOI: 10.3390/ijms17122047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial regulatory molecules for adipogenesis. They contribute to the controlling of proliferation and differentiation of preadipocytes. Previous studies revealed an important role of miR-429 in cell invasion, migration, and apoptosis. Our previous work has shown that the expression of miR-429 in subcutaneous fat can be observed in newly born (3-day-old) Rongchang piglets rather than their adult counterparts (180-day-old). This expression pattern suggests that miR-429 might be functionally related to postnatal adipogenesis. However, we currently lack a mechanistic understanding of miR-429 within the context of preadipocyte differentiation. In this study, we investigated the function of miR-429 in porcine subcutaneous and intramuscular preadipocyte proliferation and differentiation. In our porcine preadipocyte differentiation model, miR-429 expression decreased remarkably upon adipogenic induction. Overexpression of miR-429 notably down-regulated the expression of adipogenic marker genes: PPARγ, aP2, FAS and impaired the triglyceride accumulation, while the expression of lipolytic gene ATGL was not affected. In addition, we observed that miR-429 significantly promoted the proliferation of porcine preadipocytes. We also found that miR-429 could directly bind to the 3′-UTRs of KLF9 and p27, which have been well documented to promote preadipocyte differentiation and repress cell cycle progression. Taken together, our data support a novel role of miR-429 in regulating porcine preadipocyte differentiation and proliferation, and KLF9 and p27 are potent targets of miR-429 during these processes.
Collapse
Affiliation(s)
- Ying Peng
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Fen-Fen Chen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China.
| | - Jing Ge
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Jia-Yu Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Xin-E Shi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Xiao Li
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Tai-Yong Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Gui-Yan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
44
|
Gov E, Arga KY. Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network. IET Syst Biol 2016; 10:219-228. [PMID: 27879476 PMCID: PMC8687357 DOI: 10.1049/iet-syb.2016.0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/26/2024] Open
Abstract
Transcriptional regulation of gene expression is an essential cellular process that is arranged by transcription factors (TFs), microRNAs (miRNA) and their target genes through a variety of mechanisms. Here, we set out to reconstruct a comprehensive transcriptional regulatory network of Homo sapiens consisting of experimentally verified regulatory information on miRNAs, TFs and their target genes. We have performed topological analyses to elucidate the transcriptional regulatory roles of miRNAs and TFs. When we thoroughly investigated the network motifs, different gene regulatory scenarios were observed; whereas, mutual TF-miRNA regulation (interactive cooperation) and hierarchical operation where miRNAs were the upstream regulators of TFs came into prominence. Otherwise, biological process specific subnetworks were also constructed and integration of gene and miRNA expression data on ovarian cancer was achieved as a case study to observe dynamic patterns of the gene expression. Meanwhile, both co-operation and hierarchical operation types were determined in active ovarian cancer and process-specific subnetworks. In addition, the analysis showed that multiple signals from miRNAs were integrated by TFs. Our results demonstrate new insights on the architecture of the human transcriptional regulatory network, and here we present some lessons we gained from deciphering the reciprocal interplay between miRNAs, TFs and their target genes.
Collapse
Affiliation(s)
- Esra Gov
- Department of Bioengineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Goztepe, Istanbul, Turkey.
| |
Collapse
|
45
|
Zhou C, Zhang T, Liu F, Zhou J, Ni X, Huo R, Shi Z. The differential expression of mRNAs and long noncoding RNAs between ectopic and eutopic endometria provides new insights into adenomyosis. MOLECULAR BIOSYSTEMS 2016; 12:362-70. [PMID: 26662114 DOI: 10.1039/c5mb00733j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenomyosis, defined as ectopic endometrial tissue within the myometrium, can often be misdiagnosed as multiple uterine leiomyomata or endometrial thickening. We therefore performed a combined mRNA and long noncoding (lnc)RNA microarray and bioinformatic analysis of eutopic and ectopic endometria in women with adenomyosis to better understand its pathogenesis and help in the development of a semi-invasive diagnostic test. A total of 586 mRNAs were increased and 305 mRNAs decreased in the ectopic endometrium of adenomyosis compared with the eutopic endometrium, while 388 lncRNA transcripts were up-regulated and 188 down-regulated in ectopic compared with paired eutopic endometrial tissue. Bioinformatic analysis suggested a series of metabolic and molecular abnormalities in adenomyosis, which have many similarities with endometriosis. Furthermore, our study constitutes the first known report of lncRNA expression patterns in human adenomyosis ectopic and eutopic endometrial tissue.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Ting Zhang
- Wuxi Maternity and Child Health Hospital, Wuxi city, China
| | - Fei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Ji Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Xiaobei Ni
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China. and State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Sulaiman SA, Ab Mutalib NS, Jamal R. miR-200c Regulation of Metastases in Ovarian Cancer: Potential Role in Epithelial and Mesenchymal Transition. Front Pharmacol 2016; 7:271. [PMID: 27601996 PMCID: PMC4993756 DOI: 10.3389/fphar.2016.00271] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Among the gynecological malignancies, ovarian cancer is the most fatal due to its high mortality rate. Most of the identified cases are epithelial ovarian cancer (EOC) with five distinct subtypes: high-grade serous carcinoma, low-grade serous carcinoma, mucinous carcinoma, endometrioid carcinoma, and clear-cell carcinoma. Lack of an early diagnostic approach, high incidence of tumor relapse and the heterogenous characteristics between each EOC subtypes contribute to the difficulties in developing precise intervention and therapy for the patients. MicroRNAs (miRNAs) are single-stranded RNAs that have been shown to function as tumor suppressors or oncomiRs. The miR-200 family, especially miR-200c, has been shown to be implicated in the metastasis and invasion of ovarian carcinoma due to its functional regulation of epithelial-to-mesenchymal transition (EMT). This mini review is aimed to summarize the recent findings of the miR-200c functional role as well as its validated targets in the metastasis cascade of ovarian cancer, with a focus on EMT regulation. The potential of this miRNA in early diagnosis and its dual expression status are also discussed.
Collapse
Affiliation(s)
- Siti A Sulaiman
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Preliminary Analysis of the Expression of Selected Proangiogenic and Antioxidant Genes and MicroRNAs in Patients with Non-Muscle-Invasive Bladder Cancer. J Clin Med 2016; 5:jcm5030029. [PMID: 26927195 PMCID: PMC4810100 DOI: 10.3390/jcm5030029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme contributing to the development and progression of different cancer types. HO-1 plays a role in pathological angiogenesis in bladder cancer and contributes to the resistance of this cancer to therapy. It also regulates the expression of microRNAs in rhabdomyosarcoma and non-small cell lung cancer. The expression of HO-1 may be regulated by hypoxia inducible factors (HIFs) and Nrf2 transcription factor. The expression of HO-1 has not so far been examined in relation to Nrf2, HIF-1α, and potential mediators of angiogenesis in human bladder cancer. We measured the concentration of proinflammatory and proangiogenic cytokines and the expression of cytoprotective and proangiogenic mRNAs and miRNAs in healthy subjects and patients with bladder cancer. HO-1 expression was upregulated together with HIF-1α, HIF-2α, and Nrf2 in bladder cancer in comparison to healthy tissue. VEGF was elevated both at mRNA and protein level in the tumor and in sera, respectively. Additionally, IL-6 and IL-8 were increased in sera of patients affected with urothelial bladder cancer. Moreover, miR-155 was downregulated whereas miR-200c was elevated in cancer biopsies in comparison to healthy tissue. The results indicate that the increased expression of HO-1 in bladder cancer is paralleled by changes in the expression of other potentially interacting genes, like Nrf2, HIF-1α, HIF-2α, IL-6, IL-8, and VEGF. Further studies are necessary to also elucidate the potential links with miR-155 and miR-200c.
Collapse
|
48
|
Regulation of epithelial-mesenchymal transition in endometrial cancer: connecting PI3K, estrogen signaling, and microRNAs. Clin Transl Oncol 2016; 18:1056-1061. [PMID: 26856598 DOI: 10.1007/s12094-016-1492-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) prognosis is dependent on many factors such as time of diagnosis, histological type, and degree of invasion. Type I EC has a more favorable prognosis as it is less prone to myometrial invasion, which is believed to be the first step in the metastatic cascade. Type II EC displays a more aggressive and motile phenotype, and therefore has a poorer prognosis. Recent work suggests that despite the epithelial nature of Type I and Type II endometrial tumors, both are capable of undergoing an epithelial-mesenchymal transition (EMT), which may facilitate myometrial invasion and metastasis. Activation of the PI3K/Akt pathway has been shown to contribute to EMT through the upregulation of EMT-associated factors. Recent research has also linked estrogen signaling and microRNAs to the regulatory mechanisms that drive EMT in EC. Understanding the intricate relationships between these pathways will provide a better understanding of metastatic progression in EC.
Collapse
|
49
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
50
|
The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2016; 6:6472-98. [PMID: 25762624 PMCID: PMC4466628 DOI: 10.18632/oncotarget.3052] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of small non-coding RNAs that negatively regulate protein-coding gene expression post-transcriptionally via base pairing between the 5′ seed region of a miRNA and the 3′ untranslated region (3′UTR) of a messenger RNA (mRNA). Recent evidence has supported the critical role that miRNAs play in many diseases including cancer. The miR-200 family consisting of 5 members (miR-200a, -200b, -200c, -141, -429) is an emerging miRNA family that has been shown to play crucial roles in cancer initiation and metastasis, and potentially be important for the diagnosis and treatment of cancer. While miR-200s were found to be critically involved in the metastatic colonization to the lungs in mouse mammary xenograft tumor models, a large number of studies demonstrated their strong suppressive effects on cell transformation, cancer cell proliferation, migration, invasion, tumor growth and metastasis. This review aims to discuss research findings about the role of the miR-200 family in cancer initiation, each step of cancer metastatic cascade, cancer diagnosis and treatment. A comprehensive summary of currently validated miR-200 targets is also presented. It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.
Collapse
|