1
|
Angeli L, Morozova K, Dawid C, Scampicchio M, Stark TD. UPLC-ESI-TOF MS Profiling Discriminates Biomarkers in Authentic and Adulterated Italian Samples of Saffron ( Crocus sativus L.). ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1783-1794. [PMID: 39050589 PMCID: PMC11265267 DOI: 10.1021/acsfoodscitech.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Italian saffron (Crocus sativus L.) is gaining visibility due to its high quality and difference in growing area. In this study, the metabolite composition and quality of Italian saffron samples purchased from local producers and supermarkets were investigated using an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectrometry (MSe). Unsupervised statistical method (PCA) highlighted significant differences in the metabolomes, even if not related to the geographical origin. OPLS-DA revealed 9(S)-,10-(S)-,13-(S)-tri-hydroxy-11-(E)-octadecenoic acid as the most decisive compound to distinguish supermarket saffron, while oxidized crocins represented the most valuable markers to further describe the quality of saffron, even in locally produced samples. Known adulterations with paprika and turmeric were detected at a limit of 10%, and the increasing signals of cyclocurcumin was a significant biomarker for turmeric contamination. The results were underlined with conventional and kinetic antioxidant assays.
Collapse
Affiliation(s)
- Lucrezia Angeli
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Corinna Dawid
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Food
Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Matteo Scampicchio
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Timo D. Stark
- Food
Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
2
|
Bhooma V, Vassou SL, Kaliappan I, Parani M. Identification of adulteration in the market samples of saffron using morphology, HPLC, HPTLC, and DNA barcoding methods. Genome 2024; 67:43-52. [PMID: 37922517 DOI: 10.1139/gen-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Saffron, the stigma of Crocus sativus L., is the most expensive spice used for culinary, medicinal, dye, and cosmetics purposes. It is highly adulterated because of its limited production and high commercial value. In this study, 104 saffron market samples collected from 16 countries were tested using morphology, high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), and deoxyribonucleic acid (DNA) barcoding. Overall, 45 samples (43%) were adulterated. DNA barcoding identified the highest number of adulterated saffron (44 samples), followed by HPTLC (39 samples), HPLC (38 samples), and morphology (32 samples). Only DNA barcoding identified the adulterated samples containing saffron and other plants' parts as bulking agents. In addition, DNA barcoding identified 20 adulterant plant species, which will help develop quality control methods and market surveillance. Some of the adulterant plants are unsafe for human consumption. The HPLC method helped identify the saffron samples adulterated with synthetic safranal. HPLC and HPTLC methods will help identify the samples adulterated with other parts of the saffron plant (auto-adulteration).
Collapse
Affiliation(s)
- Varadharajan Bhooma
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Sophie Lorraine Vassou
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Madasamy Parani
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| |
Collapse
|
3
|
Eghbali S, Farhadi F, Askari VR. An overview of analytical methods employed for quality assessment of Crocus sativus (saffron). Food Chem X 2023; 20:100992. [PMID: 38144850 PMCID: PMC10740065 DOI: 10.1016/j.fochx.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
This paper reviews qualitative and quantitative analytical methodologies used for the appraisal of saffron quality, as the most expensive spice. Due to the chemical diversity of biologically active compounds of the Crocus genus, analytical methods with different features are required for their complete analysis. However, screening of the main components, such as carotenoids and flavonoids, appears to be sufficient for quality control, a more precise examination needs evaluation of minor compounds, including anthocyanins and fatty acids. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), ultraviolet-visible spectroscopy (UV), nuclear magnetic resonance spectroscopy (NMR), and thin-layer chromatography (TLC), are elementary and applicable methods in quality control analysis, whereas HPLC provides metabolite fingerprint and monitoring multi-compound instances at preparative and analytical levels. Combination approaches like metabolomics using different methods could classify saffron types, identify its adulterations, contaminants and provide a comprehensive metabolite map for quality control of selected compounds.
Collapse
Affiliation(s)
- Samira Eghbali
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Ryparova Kvirencova J, Navratilova K, Hrbek V, Hajslova J. Detection of botanical adulterants in saffron powder. Anal Bioanal Chem 2023; 415:5723-5734. [PMID: 37587313 PMCID: PMC10474180 DOI: 10.1007/s00216-023-04853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023]
Abstract
Saffron is a unique spice obtained by drying stigmas of saffron flowers (Crocus sativus L.). Due to its high price, economically motivated adulteration occurs relatively often. The presented study aimed to develop an effective strategy for the detection of the following potential botanical adulterants used for a saffron substitution or dilution: safflower (Carthamus tinctorius L.), calendula (Calendula officinalis L.), turmeric (Curcuma longa L.), achiote (Bixa orellana L.), red pepper (Capsicum spp.), mountain arnica (Arnica montana L.), beet (Beta vulgaris L.), and pomegranate (Punica granatum L.). A non-target screening strategy based on ultra-high performance reverse-phase liquid chromatography coupled to tandem high-resolution mass spectrometry (UHPLC-HRMS/MS) was employed for the analysis of an aqueous ethanol plant extract. By using multivariate statistical methods, principal components analysis (PCA), and partial least squares discriminant analysis (PLS-DA), for processing the generated "chemical fingerprints," metabolites unique to the investigated plants could be identified. To enable routine saffron authenticity control by target screening, an internal spectral database was developed; currently, it involves 82 unique markers. In this way, the detection addition as low as 1% (w/w) of all analyzed botanical adulterants in admixture with saffron was possible. The developed method was used to control 7 saffron powder samples from the Czech market, and none of the monitored adulterants were confirmed.
Collapse
Affiliation(s)
- Jana Ryparova Kvirencova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague (UCT Prague), Technicka 3, 166 28, Prague 8, Czech Republic
| | - Klara Navratilova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague (UCT Prague), Technicka 3, 166 28, Prague 8, Czech Republic
| | - Vojtech Hrbek
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague (UCT Prague), Technicka 3, 166 28, Prague 8, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague (UCT Prague), Technicka 3, 166 28, Prague 8, Czech Republic.
| |
Collapse
|
5
|
Dai H, Gao Q, Lu J, He L. Improving the Accuracy of Saffron Adulteration Classification and Quantification through Data Fusion of Thin-Layer Chromatography Imaging and Raman Spectral Analysis. Foods 2023; 12:2322. [PMID: 37372533 DOI: 10.3390/foods12122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crops of high value are frequently targeted by economic adulteration across the world. Saffron powder, being one of the most expensive spices and colorants on the market, is particularly vulnerable to adulteration with extraneous plant materials or synthetic colorants. However, the current international standard method has several drawbacks, such as being vulnerable to yellow artificial colorant adulteration and requiring tedious laboratory measuring procedures. To address these challenges, we previously developed a portable and versatile method for determining saffron quality using a thin-layer chromatography technique coupled with Raman spectroscopy (TLC-Raman). In this study, our aim was to improve the accuracy of the classification and quantification of adulterants in saffron by utilizing mid-level data fusion of TLC imaging and Raman spectral data. In summary, the featured imaging data and featured Raman data were concatenated into one data matrix. The classification and quantification results of saffron adulterants were compared between the fused data and the analysis based on each individual dataset. The best classification result was obtained from the partial least squares-discriminant analysis (PLS-DA) model developed using the mid-level fusion dataset, which accurately determined saffron with artificial adulterants (red 40 or yellow 5 at 2-10%, w/w) and natural plant adulterants (safflower and turmeric at 20-100%, w/w) with an overall accuracy of 99.52% and 99.20% in the training and validation group, respectively. Regarding quantification analysis, the PLS models built with the fused data block demonstrated improved quantification performance in terms of R2 and root-mean-square errors for most of the PLS models. In conclusion, the present study highlighted the significant potential of fusing TLC imaging data and Raman spectral data to improve saffron classification and quantification accuracy via the mid-level data fusion, which will facilitate rapid and accurate decision-making on site.
Collapse
Affiliation(s)
- Haochen Dai
- Chenoweth Laboratory, Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Qixiang Gao
- Chenoweth Laboratory, Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Jiakai Lu
- Chenoweth Laboratory, Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Lili He
- Chenoweth Laboratory, Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, USA
| |
Collapse
|
6
|
Panara A, Gikas E, Thomaidis NS. Complete chemical characterization of Crocus sativus via LC-HRMS: Does trimming affect the chemical content of saffron? Food Chem 2023; 424:136452. [PMID: 37257282 DOI: 10.1016/j.foodchem.2023.136452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Saffron, a spice derived from Crocus sativus, which in Iran is subjected to different trimming, is known for its beneficial health effects and high market value. Authentication studies related to geographical origin and adulterants presence mainly exist in literature, however fraud due to trimming has not been reported. In the current research, chemical characterization of six saffron trims, namely Sargol, Negin, Pushal, Bunch, Style, and Powder, was accomplished through suspect and non-target screening employing LC-QToF-MS in both electrospray ionization modes. The samples were extracted using methanol:water (50:50,v:v) and 62 compounds were identified, including amino acids, vitamins, flavonoids, phenolics, carotenoids, cyclohexenones. A clear discrimination among the red trims (Pushal, Sargol and Negin), as well as between Style and Bunch using Multivariate Chemometrics techniques was achieved. Proline and isophorone were highlighted as authenticity markers. Finally, the effect of three harvesting year on the most contributing compounds for trimming discrimination has been evaluated.
Collapse
Affiliation(s)
- Anthi Panara
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
7
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
8
|
An overview on different detection methods of saffron (Crocus sativus L.) adulterants. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Husaini AM, Haq SAU, Shabir A, Wani AB, Dedmari MA. The menace of saffron adulteration: Low-cost rapid identification of fake look-alike saffron using Foldscope and machine learning technology. FRONTIERS IN PLANT SCIENCE 2022; 13:945291. [PMID: 36035668 PMCID: PMC9417335 DOI: 10.3389/fpls.2022.945291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Saffron authenticity is important for the saffron industry, consumers, food industry, and regulatory agencies. Herein we describe a combo of two novel methods to distinguish genuine saffron from fake in a user-friendly manner and without sophisticated instruments. A smartphone coupled with Foldscope was used to visualize characteristic features and distinguish "genuine" saffron from "fake." Furthermore, destaining and staining agents were used to study the staining patterns. Toluidine blue staining pattern was distinct and easier to use as it stained the papillae and the margins deep purple, while its stain is lighter yellowish green toward the central axis. Further to automate the process, we tested and compared different machine learning-based classification approaches for performing the automated saffron classification into genuine or fake. We demonstrated that the deep learning-based models are efficient in learning the morphological features and classifying samples as either fake or genuine, making it much easier for end-users. This approach performed much better than conventional machine learning approaches (random forest and SVM), and the model achieved an accuracy of 99.5% and a precision of 99.3% on the test dataset. The process has increased the robustness and reliability of authenticating saffron samples. This is the first study that describes a customer-centric frugal science-based approach to creating an automated app to detect adulteration. Furthermore, a survey was conducted to assess saffron adulteration and quality. It revealed that only 40% of samples belonged to ISO Category I, while the average adulteration percentage in the remaining samples was 36.25%. After discarding the adulterants from crude samples, their quality parameters improved significantly, elevating these from ISO category III to Category II. Conversely, it also means that Categories II and III saffron are more prone to and favored for adulteration by fraudsters.
Collapse
Affiliation(s)
- Amjad M. Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Asma Shabir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Amir B. Wani
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | | |
Collapse
|
10
|
Non-Targeted NMR Method to Assess the Authenticity of Saffron and Trace the Agronomic Practices Applied for Its Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of analytical methods aimed at tracing agri-food products and assessing their authenticity is essential to protect food commercial value and human health. An NMR-based non-targeted method is applied here to establish the authenticity of saffron samples. Specifically, 40 authentic saffron samples were compared with 18 samples intentionally adulterated by using turmeric and safflower at three different concentration levels, i.e., 5, 10, and 20 wt%. Statistical processing of NMR data furnished useful information about the main biomarkers contained in aqueous and dimethyl sulfoxide extracts, which are indicative of the presence of adulterants within the analyzed matrix. Furthermore, a discrimination model was developed capable of revealing the type of agronomic practice adopted during the production of this precious spice, distinguishing between organic and conventional cultivation. The main objective of this work was to provide the scientific community involved in the quality control of agri-food products with an analytical methodology able to extract useful information quickly and reliably for traceability and authenticity purposes. The proposed methodology turned out to be sensitive to minor variations in the metabolic composition of saffron that occur in the presence of the two adulterants studied. Both adulterants can be detected in aqueous extracts at a concentration of 5 wt%. A lower limit of detection was observed for safflower contained in organic extracts in which case the lowest detectable concentration was 20%.
Collapse
|
11
|
Intraperitoneal Lavage with Crocus sativus Prevents Postoperative-Induced Peritoneal Adhesion in a Rat Model: Evidence from Animal and Cellular Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5945101. [PMID: 34956439 PMCID: PMC8702342 DOI: 10.1155/2021/5945101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Postoperative peritoneal adhesions are considered the major complication following abdominal surgeries. The primary clinical complications of peritoneal adhesion are intestinal obstruction, infertility, pelvic pain, and postoperative mortality. In this study, regarding the anti-inflammatory and antioxidant activities of Crocus sativus, we aimed to evaluate the effects of Crocus sativus on the prevention of postsurgical-induced peritoneal adhesion. Male Wistar-Albino rats were used to investigate the preventive effects of C. sativus extract (0.5%, 0.25% and 0.125% w/v) against postsurgical-induced peritoneal adhesion compared to pirfenidone (PFD, 7.5% w/v). We also investigated the protective effects of PFD (100 μg/ml) and C. sativus extract (100, 200, and 400 μg/ml) in TGF-β1-induced fibrotic macrophage polarization. The levels of cell proliferation and oxidative, antioxidative, inflammatory and anti-inflammatory, fibrosis, and angiogenesis biomarkers were evaluated both in vivo and in vitro models. C. sativus extract ameliorates postoperational-induced peritoneal adhesion development by attenuating oxidative stress [malondialdehyde (MDA)]; inflammatory mediators [interleukin- (IL-) 6, tumour necrosis factor- (TNF-) α, and prostaglandin E2 (PGE2)]; fibrosis [transforming growth factor- (TGF-) β1, IL-4, and plasminogen activator inhibitor (PAI)]; and angiogenesis [vascular endothelial growth factor (VEGF)] markers, while propagating antioxidant [glutathione (GSH)], anti-inflammatory (IL-10), and fibrinolytic [tissue plasminogen activator (tPA)] markers and tPA/PAI ratio. In a cellular model, we revealed that the extract, without any toxicity, regulated the levels of cell proliferation and inflammatory (TNF-α), angiogenesis (VEGF), anti-inflammatory (IL-10), M1 [inducible nitric oxide synthase (iNOS)] and M2 [arginase-1 (Arg 1)] biomarkers, and iNOS/Arg-1 ratio towards antifibrotic M1 phenotype of macrophage, in a concentration-dependent manner. Taken together, the current study indicated that C. sativus reduces peritoneal adhesion formation by modulating the macrophage polarization from M2 towards M1 cells.
Collapse
|
12
|
Multivariate Statistical Analysis Uncovers Spectrum–Effect Relationship between HPLC Fingerprints and Antioxidant Activity of Saffron. J CHEM-NY 2021. [DOI: 10.1155/2021/7352938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Crocus sativus L. is commonly used as functional food and medicinal herb in traditional Chinese medicine. In this study, the spectrum–effect relationship was established between HPLC fingerprints and in vitro antioxidant activity of saffron to improve the quality evaluation method of saffron. The fingerprints of 21 batches of saffron collected from different regions were assessed, and the data were further analyzed by chemometric methods, including similarity analysis, hierarchical clustering analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The spectrum–effect relationship between fingerprints and antioxidant effect of saffron was analyzed by grey relational analysis and partial least square methods to figure out the antioxidant component of saffron. Thirteen common peaks of 21 batches of saffron were included in the analysis, and peak 3 (picrocrocin), peak 7 (crocin I), and peak 10 (crocin II) were identified as the main active components responsible for antioxidant efficacy. Besides, a multi-index quality control method was developed for simultaneous determination of these three antioxidant components in saffron. Taken together, this study provided new strategies for the quality control and the development of new bioactive products of saffron in the future.
Collapse
|
13
|
Girme A, Saste G, Pawar S, Ghule C, Mirgal A, Patel S, Tiwari A, Ghoshal S, Bharate SB, Bharate SS, Reddy DS, Vishwakarma RA, Hingorani L. Quantitative Determination and Characterization of a Kashmir Saffron ( Crocus sativus L.)-Based Botanical Supplement Using Single-Laboratory Validation Study by HPLC-PDA with LC-MS/MS and HPTLC Investigations. ACS OMEGA 2021; 6:23460-23474. [PMID: 34549144 PMCID: PMC8444316 DOI: 10.1021/acsomega.1c03470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 05/14/2023]
Abstract
Food ingredients hold a higher nutritional value as a botanical supplement playing a vital role in modifying and maintaining the physiological conditions that improve human health benefits. The Kashmir saffron (Crocus sativus L; KCS) obtained from dried stigmas is known for its aroma precursors and apocarotenoid derivatives, imparting a wide range of medicinal values and therapeutic benefits. In the present study, a simultaneous determination of apocarotenoids and flavonoids in stigma-based botanical supplements was carried out using analytical investigations. The high-performance thin-layer chromatography-based qualitative analysis of the raw material (stigmas, stamens, and tepals) and stigma extract has been carried out to identify apocarotenoids and flavonoids. The rapid HPLC-PDA method for the simultaneous quantification of KCS apocarotenoids was robust, precise (<5.0%), linear (R 2 > 0.99), and accurate (80-110%) as per the single-laboratory validation data. Furthermore, the combined-expanded uncertainty (95%; K = 2) was calculated and found as 0.0035-0.007% (<5.0%) as per the EURACHEM guide for this HPLC analysis. Additionally, an untargeted identification of 36 compounds in the botanical supplement was based on the elution order, UV-vis spectra, mass fragmentation pattern, and standards by ESI-MS/MS analysis with comprehensive chromatographic fingerprinting. Thus, these analytical approaches enable a composite profile of the stigma-based extract as a potential supplement for human health benefits.
Collapse
Affiliation(s)
- Aboli Girme
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Ganesh Saste
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Sandeep Pawar
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Chetana Ghule
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Amit Mirgal
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Saurabh Patel
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Anshuly Tiwari
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Sautik Ghoshal
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| | - Sandip B. Bharate
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sonali S. Bharate
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - D. Srinivasa Reddy
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Lal Hingorani
- Analytical
Development and Innovation Center, Pharmanza
Herbal Pvt. Ltd., Anand 388435, Gujarat, India
- Pharmacognosy
and Botany Center, Pharmanza Herbal Pvt.
Ltd., Anand 388435, Gujarat, India
| |
Collapse
|
14
|
Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chem 2021; 367:130739. [PMID: 34371278 DOI: 10.1016/j.foodchem.2021.130739] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Saffron is a spice revered for its unique flavor and health attributes often subjected to fraudulence. In this study, molecular networking as a visualization tool for UPLC/MS dataset of saffron and its common substitutes i.e. safflower and calendula (n = 21) was employed for determining genuineness of saffron and detecting its common substitutes i.e. safflower and calendula. Saffron was abundant in flavonol-O-glycosides and crocetin esters versus richness of flavanones/chalcones glycosides in safflower and cinnamates/terpenes in calendula. OPLS-DA identified differences in UPLC/MS profiles of different saffron accessions where oxo-hydroxy-undecenoic acid-O-hexoside was posed as saffron authentication marker and aided in discrimination between Spanish saffron of high quality from its inferior grade i.e. Iranian saffron along with crocetin di-O-gentiobiosyl ester and kaempferol-O-sophoroside. Kaempferol-O-neohesperidoside and N,N,N,-p-coumaroyl spermidine were characteristic safflower metabolites, whereas, calendulaglycoside C and di-O-caffeoyl quinic acid were unique to calendula. UV/VIS fingerprint spectral regions of picrocrocin (230-260 nm) and crocin derivatives (400-470 nm) were posed as being discriminatory of saffron authenticity and suggestive it can replace UPLC/MS in saffrom quality determination.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany; Department of Biochemistry, St. Petersburg State University, St Petersburg, Russia
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, the American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
15
|
Photoacoustic Laser System for Food Fraud Detection. SENSORS 2021; 21:s21124178. [PMID: 34207037 PMCID: PMC8235699 DOI: 10.3390/s21124178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Economically motivated adulterations of food, in general, and spices, in particular, are an emerging threat to world health. Reliable techniques for the rapid screening of counterfeited ingredients in the supply chain need further development. Building on the experience gained with CO2 lasers, the Diagnostic and Metrology Laboratory of ENEA realized a compact and user-friendly photoacoustic laser system for food fraud detection, based on a quantum cascade laser. The sensor has been challenged with saffron adulteration. Multivariate data analysis tools indicated that the photoacoustic laser system was able to detect adulterants at mass ratios of 2% in less than two minutes.
Collapse
|
16
|
Kumari L, Jaiswal P, Tripathy SS. Various techniques useful for determination of adulterants in valuable saffron: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Di Donato F, D’Archivio AA, Maggi MA, Rossi L. Detection of Plant-Derived Adulterants in Saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01941-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Rapid Determination of Saffron Grade and Adulteration by Thin-Layer Chromatography Coupled with Raman Spectroscopy. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01828-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem 2020; 307:125527. [DOI: 10.1016/j.foodchem.2019.125527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
|
20
|
Shawky E, Abu El-Khair RM, Selim DA. NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus L.) stigmas. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Morozzi P, Zappi A, Gottardi F, Locatelli M, Melucci D. A Quick and Efficient Non-Targeted Screening Test for Saffron Authentication: Application of Chemometrics to Gas-Chromatographic Data. Molecules 2019; 24:molecules24142602. [PMID: 31319572 PMCID: PMC6680955 DOI: 10.3390/molecules24142602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
Saffron is one of the most adulterated food products all over the world because of its high market prize. Therefore, a non-targeted approach based on the combination of headspace flash gas-chromatography with flame ionization detection (HS-GC-FID) and chemometrics was tested and evaluated to check adulteration of this spice with two of the principal plant-derived adulterants: turmeric (Curcuma longa L.) and marigold (Calendula officinalis L.). Chemometric models were carried out through both linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA) from the gas-chromatographic data. These models were also validated by cross validation (CV) and external validation, which were performed by testing both models on pure spices and artificial mixtures capable of simulating adulterations of saffron with the two adulterants examined. These models gave back satisfactory results. Indeed, both models showed functional internal and external prediction ability. The achieved results point out that the method based on a combination of chemometrics with gas-chromatography may provide a rapid and low-cost screening method for the authentication of saffron.
Collapse
Affiliation(s)
- Pietro Morozzi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Alessandro Zappi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Fernando Gottardi
- COOP ITALIA Soc. Cooperativa, Casalecchio di Reno, 40033 Bologna, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Dora Melucci
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
22
|
An integrated approach combining HPLC, GC/MS, NIRS, and chemometrics for the geographical discrimination and commercial categorization of saffron. Food Chem 2018; 253:284-292. [DOI: 10.1016/j.foodchem.2018.01.140] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
|
23
|
|
24
|
Bosmali I, Ordoudi S, Tsimidou M, Madesis P. Greek PDO saffron authentication studies using species specific molecular markers. Food Res Int 2017; 100:899-907. [DOI: 10.1016/j.foodres.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
|
25
|
Villa C, Costa J, Oliveira MBP, Mafra I. Novel quantitative real-time PCR approach to determine safflower (Carthamus tinctorius) adulteration in saffron (Crocus sativus). Food Chem 2017; 229:680-687. [DOI: 10.1016/j.foodchem.2017.02.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
|
26
|
Petrakis EA, Cagliani LR, Polissiou MG, Consonni R. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting. Food Chem 2014; 173:890-6. [PMID: 25466103 DOI: 10.1016/j.foodchem.2014.10.107] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/10/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w).
Collapse
Affiliation(s)
- Eleftherios A Petrakis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Laura R Cagliani
- Institute for the Study of Macromolecules, NMR Laboratory, National Council of Research, v. Bassini 15, 20133 Milan, Italy
| | - Moschos G Polissiou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Roberto Consonni
- Institute for the Study of Macromolecules, NMR Laboratory, National Council of Research, v. Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
27
|
Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|