1
|
Saleem A, Afzal M, Naveed M, Makhdoom SI, Mazhar M, Aziz T, Khan AA, Kamal Z, Shahzad M, Alharbi M, Alshammari A. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules 2022; 27:8512. [PMID: 36500601 PMCID: PMC9736827 DOI: 10.3390/molecules27238512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants have played an essential role in the treatment of various diseases. Thymus vulgaris, a medicinal plant, has been extensively used for biological and pharmaceutical potential. The current study was performed to check the biopotential of active biological compounds. The GC-MS analysis identified 31 compounds in methanolic crude extract, among which thymol, carvacrol, p-cymene, and eugenol are the main phytoconstituents present in T. vulgaris. The HPLC analysis quantified that flavonoids and phenolic acids are present in a good concentration in the active fraction of ethyl acetate and n-butanol. FTIR confirmed the presence of functional groups such as phenols, a carboxylic group, hydroxy group, alcohols, and a benzene ring. Among both fractions, ethyl acetate showed high antioxidant activity in the DPPH (84.1 0.88) and ABTS (87.1 0.89) assays, respectively. The anti-inflammatory activity of the fractions was done in vitro and in vivo by using a carrageenan-induced paw edema assay, while the hexane-based extract showed high anti-inflammatory activity (57.1 0.54) in a dose-response manner. Furthermore, the lead compound responsible for inhibition in the denaturation of proteins is thymol, which exhibits the highest binding affinity with COX1 (-6.4 KJ/mol) and COX2 (-6.3 KJ/mol) inflammatory proteins. The hepatotoxicity analysis showed that plant-based phytoconstituents are safe to use and have no toxicity, with no necrosis, fibrosis, and vacuolar degeneration, even at a high concentration of 800 mg/kg body weight. Furthermore, the in silico analysis of HPLC phytochemical compounds against gastric cancer genes showed that chlorogenic acid exhibited anticancer activity and showed good drug-designing characteristics. Thrombolysis and hemolysis are the major concerns of individuals suffering from gastric cancer. However, the T. vulgaris fractions showed thrombolysis from 17.6 to 5.4%; similarly, hemolysis ranged from 9.73 to 7.1% at a concentration of 12 mg/mL. The phytoconstituents present in T. vulgaris have the potential for multiple pharmacological applications. This should be further investigated to isolate bioactive compounds that can be used for the treatment of different ailments.
Collapse
Affiliation(s)
- Ayesha Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Afzal
- Department of Basic and Applied Chemistry, Faculty of Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Modasrah Mazhar
- Department of Basic and Applied Chemistry, Faculty of Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18000, Pakistan
| | - Muhammad Shahzad
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
In Vitro Antioxidant, Antimicrobial, Anticoccidial, and Anti-Inflammatory Study of Essential Oils of Oregano, Thyme, and Sage from Epirus, Greece. Life (Basel) 2022; 12:life12111783. [PMID: 36362938 PMCID: PMC9693314 DOI: 10.3390/life12111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin−Ciocalteu method, while the antioxidant capacity was tested through the EOs’ ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs’ ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin−Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 μg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.
Collapse
|
3
|
Pelvan E, Serhatlı M, Karaoğlu Ö, Karadeniz B, Pembeci Kodolbaş C, Aslı Öncü N, Çakırca G, Damarlı E, Başdoğan G, Mergen Duymaz G, Emir Akyıldız İ, Düz G, Acar S, Özhan Y, Sipahi H, Charehsaz M, Aydın A, Yesilada E, Alasalvar C. Development of propolis and essential oils containing oral/throat spray formulation against SARS-CoV-2 infection. J Funct Foods 2022; 97:105225. [PMID: 35996534 PMCID: PMC9385731 DOI: 10.1016/j.jff.2022.105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
A broad range of evidence has confirmed that natural products and essential oils might have the potential to suppress COVID-19 infection. Therefore, this study aimed to develop an oral/throat spray formulation for prophylactic use in the oral cavity or help treatment modalities. Based on a reference survey, several essential oils, a cold-pressed oil, and propolis were selected, and cytotoxicity and antiviral activity of each component and the developed spray formulation were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using Vero E6 cells. Anti-inflammatory, antimicrobial, and analgesic activities as well as mutagenicity and anti-mutagenicity of the formulation were analysed. Forty-three phenolics were identified in both propolis extract and oral/throat spray. The spray with 1:640-fold dilution provided the highest efficacy and the cytopathic effect was delayed for 54 h at this dilution, and the antiviral activity rate was 85.3%. A combination of natural products with essential oils at the right concentrations can be used as a supplement for the prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Müge Serhatlı
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Öznur Karaoğlu
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Bülent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | | | - Neşe Aslı Öncü
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Gamze Çakırca
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Emel Damarlı
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Günay Başdoğan
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | | | | | - Gamze Düz
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Sezer Acar
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | | |
Collapse
|
4
|
Aouf A, Bouaouina S, Abdelgawad MA, Abourehab MAS, Farouk A. In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples. Antibiotics (Basel) 2022; 11:1317. [PMID: 36289975 PMCID: PMC9598771 DOI: 10.3390/antibiotics11101317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
In the context of the globally growing problem of resistance to most used antibacterial agents, essential oils offer promising solutions against multidrug-resistant (MDR) bacterial pathogens. The present study aimed to evaluate the prevalence, etiology, and antibiotic-resistance profiles of bacteria responsible for pyogenic infections in Regional Military University Hospital of Constantine. Disc diffusion and broth microdilution (MIC) methods were used to evaluate the antimicrobial activity of essential oils from five Algerian aromatic plants growing wild in the north of Algeria-Salvia officinalis (Sage), Thymus vulgaris (Thyme), Mentha pulegium L. (Mentha), Rosmarinus officinalis (Rosemary), and Pelargonium roseum (Geranium)-against reference and MDR strains. During three months of the prospective study, 112 isolates out of 431 pus samples were identified. Staphylococcus aureus was the most predominant species (25%), followed by Klebsiella pneumoniae (21.42%), Pseudomonas aeruginosa (21%), and Escherichia coli (17.95%). Among pus isolates, 65 were MDR (58.03%). The radial streak-line assay showed that R. officinalis and M. pulegium L. had weak activity against the tested strains, whereas P. roseum showed no activity at all. Meanwhile, T. vulgaris was the most potent, with an inhibition zone of 12-26 mm and an MIC value ranging between 0.25 and 1.25%, followed by S. officinalis with an inhibition zone of 8-12 mm and an MIC value ranging between 0.62 and 2.5%. Generally, A. baumannii and S. aureus ATCC6538P were the most sensitive strains, whereas P. aeruginosa ATCC27853 was the most resistant strain to the oils. Gas chromatography-mass spectrometry analysis of chemical composition revealed the presence of borneol (76.42%) and thymol (17.69%) as predominant in thyme, whereas camphor (36.92%) and α- thujone (34.91%) were the major volatiles in sage. The in-silico study revealed that sesquiterpenes and thymol had the highest binding free energies against the vital enzymes involved in biosynthesis and repair of cell walls, proteins, and nucleic acids compared to monoterpenes. The results demonstrated that T. vulgaris and S. officinalis are ideal candidates for developing future potentially active remedies against MDR strains.
Collapse
Affiliation(s)
- Abdelhakim Aouf
- Laboratory of Applied Microbiology, Faculty of Life Sciences and Nature, University of Ferhat Abbas, Setif 19000, Algeria
| | - Sarah Bouaouina
- Laboratory of Applied Microbiology, Faculty of Life Sciences and Nature, University of Ferhat Abbas, Setif 19000, Algeria
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Center, Cairo 12622, Egypt
| |
Collapse
|
5
|
Nasr AM, Mortagi YI, Elwahab NHA, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Kamal I. Upgrading the Transdermal Biomedical Capabilities of Thyme Essential Oil Nanoemulsions Using Amphiphilic Oligochitosan Vehicles. Pharmaceutics 2022; 14:pharmaceutics14071350. [PMID: 35890246 PMCID: PMC9317589 DOI: 10.3390/pharmaceutics14071350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Thymus vulgaris L. (thyme) essential oil (TEO) has gained much attention because of its long history of medicinal usage. However, the lack of precise chemical profiling of the TEO and methods to optimize the bioactivity and delivery of its constituents has hampered its research on quality control and biological function; (2) Methods: The current study aimed to analyze the TEO’s chemical composition using the GC-MS method and identify its key components. Another objective of this work is to study the impact of the protective layer of amphiphilic oligochitosan (AOC) on the physicochemical stability and transdermal potentials of TEO multilayer nanoemulsions formulated by the incorporation of TEO, Tween80, lecithin (Lec), and AOC; (3) Results: The AOC protective layer significantly improved the stability of TEO-based NEs as revealed by the constancy of their physicochemical properties (particle size and zeta potential) during storage for a week. Excessive fine-tuning of thyme extract NEs and the AOC protective layer’s persistent positive charge have been contributed to the thyme extract’s improved anti-inflammatory, transdermal, and anti-melanoma potentials; (4) Conclusions: the AOC-coated NEs could offer novel multifunctional nanoplatforms for effective transdermal delivery of lipophilic bioactive materials.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| | - Yasmin I. Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, Egypt;
| | - Nashwa H. Abd Elwahab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt;
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: or
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| |
Collapse
|
6
|
Ismail HTH. The ameliorative efficacy of Thymus vulgaris essential oil against Escherichia coli O157:H7-induced hematological alterations, hepatorenal dysfunction and immune-inflammatory disturbances in experimentally infected rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41476-41491. [PMID: 35088282 DOI: 10.1007/s11356-022-18896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The purpose of the present study was to evaluate the possible ameliorative role of Thymus vulgaris (T. vulgaris) essential oil against Escherichia coli O157:H7 (E. coli O157:H7) deleterious effects in both blood and different tissues of rats by assessing the hematological, biochemical and immune-inflammatory parameters besides the histopathological alterations in the different organs. Forty male rats were randomly divided into four equal groups as follows: group I served as control, group II orally inoculated with E. coli O157:H7 at a dose of 1.0 × 109 cfu/ml, group III orally received 250 mg/kg BW T. vulgaris oil daily for 7 days and group IV orally inoculated with E. coli O157:H7 as the same dose of group II and orally received T. vulgaris oil as the same dose and duration of group III. Bacterial challenge in groups II and IV was once at the beginning of experiment and administration of oil began after 72 h from bacterial inoculation. At the end of the study, blood was sampled and complete blood picture, liver and kidney function alongside immunoglobulins and cytokines concentrations were estimated and tissues of large intestine (colon), liver and kidneys were collected for histopathological examinations. The results revealed that there was an increase of red blood cells count, hematocrit value and hemoglobin concentration besides white blood cells and thrombocytes counts and substantial increment of serum markers of hepatorenal damage such as the activities of transaminases and concentrations of bilirubin (total, direct and indirect), total proteins, albumin, creatinine and urea in E. coli O157:H7-challenged group. Also, there was a considerable increase in serum immunoglobulins M and G, interleukin 6 and 8 and tumor necrosis factor alpha as well as decreased serum alkaline phosphatase activity. Moreover, T. vulgaris oil could partially improve the hematological, biochemical and histopathological alterations induced by E. coli O157:H7 without any significant alterations in all measured parameters when used alone. The study concluded that the T. vulgaris oil relatively diminished the alterations in hematological parameters, hepatic and renal function markers and immune-inflammatory variables alongside the histopathological changes in different organs induced by E. coli O157:H7. The ameliorative effects of T. vulgaris oil are mediated through its anti-inflammatory, antioxidant and immunomodulatory activities.
Collapse
Affiliation(s)
- Hager Tarek H Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, Zagazig City, Postal Code 44511, Sharkia Province, Egypt.
| |
Collapse
|
7
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
8
|
Kessler JC, Vieira VA, Martins IM, Manrique YA, Afonso A, Ferreira P, Mandim F, Ferreira ICFR, Barros L, Rodrigues AE, Dias MM. Obtaining Aromatic Extracts from Portuguese Thymus mastichina L. by Hydrodistillation and Supercritical Fluid Extraction with CO 2 as Potential Flavouring Additives for Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030694. [PMID: 35163959 PMCID: PMC8838556 DOI: 10.3390/molecules27030694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Humans often respond to sensory impulses provided by aromas, and current trends have generated interest in natural sources of fragrances rather than the commonly used synthetic additives. For the first time, the resulting aroma of a selected culture of Thymus mastichina L. was studied as a potential food ingredient. In this context, dried (DR) and fresh (FR) samples were submitted to carbon dioxide (CO2) supercritical extraction (SFE) and hydrodistillation (HD) methods. The extracts were characterised according to their volatile composition by GC-MS, cytotoxicity against a non-tumour cell culture, and sensory attributes (odour threshold and olfactive descriptors). The most abundant aromas were quantified, and the analysis performed by GC-MS revealed an abundance of terpenoids such as thymol chemotype, followed by the precursors α-terpinene and p-cymene. DR and FR extracts (EX) obtained from SFE-CO2 show the highest content of thymol, achieving 52.7% and 72.5% of the isolated volatile fraction. The DR essential oil (EO) contained the highest amount of terpenoids, but it was also the most cytotoxic extract. In contrast, SFE-CO2 products showed the lowest cytotoxic potential. Regarding FR-OE, it had the lowest extraction yield and composition in aroma volatiles. Additionally, all samples were described as having green, fresh and floral sensory notes, with no significant statistical differences regarding the odour detection threshold (ODT) values. Finally, FR-EX of T. mastichina obtained by SFE-CO2 presented the most promising results regarding food application.
Collapse
Affiliation(s)
- Júlia C. Kessler
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Vanessa A. Vieira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Isabel M. Martins
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-508-1686
| | - Yaidelin A. Manrique
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Andreia Afonso
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Patrícia Ferreira
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Filipa Mandim
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6748052. [PMID: 34950215 PMCID: PMC8692021 DOI: 10.1155/2021/6748052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023]
Abstract
Medicinal and aromatic plants present important active compounds that have potential for use in food, pharmaceutical, and agriculture industries. In this sense, the present work aimed to conduct a literature review on the potential applications of essential oils from Lamiaceae species. Antioxidant, anti-inflammatory, and antimicrobial activities were evaluated. The importance of this study is demonstrated as a way to theoretically provide information on the use of different plants belonging to the Lamiaceae family, especially with regard to the physical, chemical, and biological properties of its essential oils.
Collapse
|
10
|
Chaib S, Benali N, Arhab R, Sadraoui Ajmi I, Bendaoued H, Romdhane M. Preparation of Thymus vulgaris Essential Oil Microcapsules by Complex Coacervation and Direct Emulsion: Synthesis, Characterization and Controlled Release Properties. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05223-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Characterization of an Endemic Plant Origanum grosii from Morocco: Trace Element Concentration and Antihyperglycemic Activities. J CHEM-NY 2021. [DOI: 10.1155/2021/8840998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Origanum genus is one of the most widely used herbs in folk medicine for its biological properties. The present investigation aims to characterize, for the first time, endemic Origanum grosii collected from the Taounate region, Morocco. This characterization was realized by determining the concentration of metals in different parts of the plant (flowers, leaves, and stems) by ICP-MS, and the results were studied statistically by Principal Component Analysis (PCA). Phytochemical screening with the dosage of polyphenols and flavonoids has been conducted. To know more about this species, antihyperglycemic tests have been performed to highlight the presence or absence of the antidiabetic effect for this plant. An Oral Glucose Tolerance Test (OGTT) has been performed on normal mice which were divided into two groups of six mice each. Group 1 (control group) was treated with distilled water, and group 2 was treated with an aqueous extract of O. grosii by gavage at 150 mg/kg. Digestive enzyme α-amylase inhibition assay has also been evaluated to study the inhibition effect of the studied extract using acarbose as a control. The results showed that the leaves exhibited a high concentration of trace elements (Ca, Mg, and K) and total absence of heavy metals, which were found in small quantities (Cr, Ni, and B) on the stems, and this makes the plant safe to use. On the other hand, tannins, flavonoids, triterpenes, and steroids were the major families strongly present in this species. The antidiabetic results showed that O. grosii have significantly reduced postprandial hyperglycemia after glucose loading in normal rats. It showed also that this species has a significant antihyperglycemic activity reflected by the inhibition of α-amylase. The one responsible for this property could be the synergy between the trace elements and the nature of the chemical families of O. grosii species, which can make this plant useful in the management of postprandial hyperglycemia.
Collapse
|
12
|
Miguel MG, da Silva CI, Farah L, Castro Braga F, Figueiredo AC. Effect of Essential Oils on the Release of TNF-α and CCL2 by LPS-Stimulated THP‑1 Cells. PLANTS (BASEL, SWITZERLAND) 2020; 10:E50. [PMID: 33379375 PMCID: PMC7824467 DOI: 10.3390/plants10010050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Plants and their constituents have been used to treat diverse ailments since time immemorial. Many plants are used in diverse external and internal formulations (infusions, alcoholic extracts, essential oils (EOs), etc.) in the treatment of inflammation-associated diseases, such as those affecting the respiratory tract or causing gastrointestinal or joint problems, among others. To support the traditional uses of plant extracts, EOs have been assessed for their alleged anti-inflammatory properties. However, the effect of EOs on the release of cytokines and chemokines has been much less reported. Considering their traditional use and commercial relevance in Portugal and Angola, this study evaluated the effect of EOs on the in vitro inhibition of the cytokine tumor necrosis factor-α (TNF-α) and the chemokine (C-C motif) ligand 2 (CCL2) by lipopolysaccharide (LPS)-stimulated human acute monocytic leukemia cells (THP-1 cells). Twenty EOs extracted from eighteen species from seven families, namely from Amaranthaceae (Dysphania ambrosioides), Apiaceae (Foeniculum vulgare), Asteraceae (Brachylaena huillensis, Solidago virgaurea), Euphorbiaceae (Spirostachys africana), Lamiaceae (Lavandula luisieri, Mentha cervina, Origanum majorana, Satureja montana, Thymbra capitata, Thymus mastichina, Thymus vulgaris, Thymus zygis subsp. zygis), Myrtaceae (Eucalyptus globulus subsp. maidenii, Eucalyptus radiata, Eucalyptus viminalis) and Pinaceae (Pinus pinaster) were assayed for the release of CCL2 and TNF-α by LPS-stimulated THP-1 cells. B. huillensis, S. africana, S. montana, Th. mastichina and Th. vulgaris EOs showed toxicity to THP-1 cells, at the lowest concentration tested (10 μg/mL), using the tetrazolium dye assay. The most active EOs in reducing TNF-α release by LPS-stimulated THP-1 cells were those of T. capitata (51% inhibition at 20 μg/mL) and L. luisieri (15-23% inhibition at 30 μg/mL and 78-83% inhibition at 90 μg/mL). L. luisieri EO induced a concentration-dependent inhibition of CCL2 release by LPS‑stimulated THP-1 cells (23%, 54% and 82% inhibition at 10, 30 and 90 μg/mL, respectively). These EOs are potentially useful in the management of inflammatory diseases mediated by CCL2 and TNF‑α, such as atherosclerosis and arthritis.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development (MED), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Carina Isabel da Silva
- Mediterranean Institute for Agriculture, Environment and Development (MED), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Luana Farah
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, Brazil; (L.F.); (F.C.B.)
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, Brazil; (L.F.); (F.C.B.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
13
|
In Vitro Antifungal and Topical Anti-Inflammatory Properties of Essential Oil from Wild-Growing Thymus vulgaris (Lamiaceae) Used for Medicinal Purposes in Algeria: A New Source of Carvacrol. Sci Pharm 2020. [DOI: 10.3390/scipharm88030033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to investigate the Thymus vulgaris essential oil (TVEO) as an antifungal agent in aromatherapy and/or as an active ingredient in the prevention or management of topical inflammatory diseases. The chemical composition of TVEO was determined with gas chromatography and revealed the presence of 25 compounds. Carvacrol was found to be the major component (56.8%). Antifungal action of TVEO was determined in vitro by using different methods. By the disc diffusion method, TVEO showed more potent antifungal activity against Candida strains than the positive control. The diameter of inhibition zone (DIZ) varied from 34 to 60 mm for Candida yeasts. Significantly higher antifungal activity was observed in the vapor phase at lower quantities. Candida albicans and C. parapsilosis were the most susceptible strains to the oil vapor with DIZ varying from 35 to 90 mm. The minimum inhibitory concentrations (MIC) of yeast were determined with an agar dilution method and revealed that MIC varied from 0.3 to 0.15 µL/mL for yeast species. The topical anti-inflammatory potential of TVEO was also explored in vivo with the croton oil-induced ear edema assay. TVEO exhibited a potent anti-inflammatory effect at all doses (100, 10 and 2 mg/kg), which were statistically similar (p > 0.05) to the positive control. This activity was also confirmed at the cellular level with histopathology analysis. Our results suggest the potential application of this carvacrol-rich TVEO in the prevention and management of fungal infections and topical inflammation and deserve further investigation for clinical applications. Furthermore, while the mode of action remains mainly undetermined and should be studied.
Collapse
|
14
|
Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, Pereira Galúcio JM, Taube PS, Leal Costa CM, Neves Cruz J, de Aguiar Andrade EH, Guerreiro de Faria LJ. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020; 10:biom10070988. [PMID: 32630297 PMCID: PMC7407208 DOI: 10.3390/biom10070988] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Spice plants have a great influence on world history. For centuries, different civilizations have used them to condiment the foods of kings and nobles and applied them as embalming preservatives, perfumes, cosmetics, and medicines in different regions of the world. In general, these plants have formed the basis of traditional medicine and some of their derived substances have been utilized to treat different human diseases. Essential oils (EOs) obtained from these plants have been also used as therapeutic agents and have shown supportive uses in remedial practices. The discovery and development of bioactive compounds from these natural products, based on their traditional uses, play an important role in developing the scientific evidence of their potential pharmaceutical, cosmetic, and food applications. In the present review, using recent studies, we exhibit a general overview of the main aspects related to the importance of spice plants widely used in traditional medicine: Cinnamomum zeylanicum (true cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (oregano), Piper nigrum (black pepper), Rosmarinus officinalis (rosemary), and Thymus vulgaris (thyme); and we discuss new findings of the bioactive compounds obtained from their EOs, their potential applications, as well as their molecular mechanisms of action, focusing on their antioxidant activity. We also exhibit the main in vitro methods applied to determine the antioxidant activities of these natural products.
Collapse
Affiliation(s)
- Lidiane Diniz do Nascimento
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - Angelo Antônio Barbosa de Moraes
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Kauê Santana da Costa
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - João Marcos Pereira Galúcio
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Paulo Sérgio Taube
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Cristiane Maria Leal Costa
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Lênio José Guerreiro de Faria
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| |
Collapse
|
15
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
16
|
Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G, Režek Jambrak A. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 2018; 113:245-262. [PMID: 30195519 DOI: 10.1016/j.foodres.2018.06.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Market interest in aromatic plants from the Mediterranean is continuously growing mainly due to their medicinal and bioactive compounds (BACs) with other valuable constituents from essential oils (EOs). From ancient times, these plants have been important condiments for traditional Mediterranean cuisine and remedies in folk medicine. Nowadays, they are considered as important factors for food quality and safety, due to prevention of various deteriorative factors like oxidations and microbial spoilage. EOs have different therapeutic benefits (e.g. antioxidant, anti-inflammatory, antimicrobial, and antifungal), while BACs mostly affect nutritive, chemical, microbiological, and sensory quality of foods. Currently, many plant extracts are used for functional (healthy) foods, which additionally fuels consumer and industrial interest in sustainable and non-toxic routes for their production. EO yields from dried plants are below 5%. Their extraction is strongly dependent on the hydrophobic or lipophilic character of target molecules, hence the common use of organic solvents. Similarly, BACs encompass a wide range of substances with varying structures as reflected by their different physical/chemical qualities. Thus, there is a need to identify optimal non-toxic extraction method(s) for isolation/separation of EO/BCs from plants. Various innovative non-thermal extractions (e.g. ultrasound-, high-pressure-, pulsed electric fields assisted extraction, etc.) have been proposed to overcome the above mentioned limitations. These techniques are "green" in concept, as they are shorter, avoid toxic chemicals, and are able to improve extract yields and quality with reduced consumption of energy and solvents. This research provides an overview of such extractions of both BAC and EOs from Mediterranean herbs, sustained by innovative and non-conventional energy sources.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tea Bilušić
- Department for Food Technology and Biotechnology, University of Chemistry and Technology, Ruđera Boškovića 35, 21 000 Split, Croatia
| | - Greta Krešić
- Department of Food and Nutrition, Faculty of Tourism and Hospitality Management, University of Rijeka, Primorska 42, 51410 Opatija
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Farid Chemat
- Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Team Extraction, 84000 Avignon Cedex, France
| | - Gustavo Barbosa-Cánovas
- Center for NonThermal Processing of Food, Biological Systems Engineering, Washington State University, L.J. Smith Hall 220, Pullman, WA 99164-6120, USA
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Gömöri C, Vidács A, Kerekes EB, Nacsa-Farkas E, Böszörményi A, Vágvölgyi C, Krisch J. Altered Antimicrobial and Anti-biofilm Forming Effect of Thyme Essential Oil due to Changes in Composition. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The antimicrobial and anti-biofilm forming effect of thyme (Thymus vulgaris) essential oil (TEO) with different compositions was evaluated. Normally the main component in this TEO is thymol, but in 2014 we found that the proportions of γ-terpinene and p-cymene (the precursors in thymol biosynthesis) increased and that of thymol decreased. This altered composition led to changes in the antimicrobial and anti-biofilm forming capacity of the essential oil depending also on the type of microorganisms. In the case of bacteria, minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations either decreased or increased. In the case of yeasts, minimal fungicidal concentrations (MFC) increased 4- and 8-fold for TEO containing p-cymene as the main component. On the contrary, MIC values decreased for all the tested moulds. Anti-biofilm forming activity of TEO containing p-cymene as its main component decreased in almost all cases and P. fluorescens biofilm forming capacity was even enhanced.
Collapse
Affiliation(s)
- Csilla Gömöri
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Anita Vidács
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, Szeged, H-6724, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Elvira Nacsa-Farkas
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Andrea Böszörményi
- Semmelweis University, Department of Pharmacognosy, Üllői út 26, Budapest, H-1085, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, Szeged, H-6724, Hungary
| |
Collapse
|