1
|
Saxena S, Dufossé L, Deshmukh SK, Chhipa H, Gupta MK. Endophytic Fungi: A Treasure Trove of Antifungal Metabolites. Microorganisms 2024; 12:1903. [PMID: 39338577 PMCID: PMC11433805 DOI: 10.3390/microorganisms12091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering from an immune weakening disease like HIV. The refractory behavior of opportunistic fungi has necessitated the discovery of unconventional antifungals. The emergence of black fungus infection during COVID-19 also triggered the antifungal discovery program. Natural products are one of the alternative sources of antifungals. Endophytic fungi reside and co-evolve within their host plants and, therefore, offer a unique bioresource of novel chemical scaffolds with an array of bioactivities. Hence, immense possibilities exist that these unique chemical scaffolds expressed by the endophytic fungi may play a crucial role in overcoming the burgeoning antimicrobial resistance. These chemical scaffolds so expressed by these endophytic fungi comprise an array of chemical classes beginning from cyclic peptides, sesquiterpenoids, phenols, anthraquinones, coumarins, etc. In this study, endophytic fungi reported in the last six years (2018-2023) have been explored to document the antifungal entities they produce. Approximately 244 antifungal metabolites have been documented in this period by different groups of fungi existing as endophytes. Various aspects of these antifungal metabolites, such as antifungal potential and their chemical structures, have been presented. Yet another unique aspect of this review is the exploration of volatile antifungal compounds produced by these endophytic fungi. Further strategies like epigenetic modifications by chemical as well as biological methods and OSMAC to induce the silent gene clusters have also been presented to generate unprecedented bioactive compounds from these endophytic fungi.
Collapse
Affiliation(s)
- Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (ChemBioPro Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France
| | - Sunil K. Deshmukh
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- R&D Division, Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, Maharashtra, India
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
2
|
Huang BB, Gao MW, Li G, Ouyang MA, Chen QJ. Design, Synthesis, Structure-Activity Relationship, and Three-Dimensional Quantitative Structure-Activity Relationship of Fusarium Acid Derivatives and Analogues as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18566-18577. [PMID: 37971433 DOI: 10.1021/acs.jafc.3c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In research related to fungicides, the development of compounds from natural products with high antifungal activity has attracted considerable attention. Fusaric acid (FA), an alkaloid isolated from the metabolites of Fusarium oxysporum, is an important precursor for developing pharmacologically active herbicides. In our previous work, we reported that FA has a wide range of inhibitory activities against 14 plant pathogenic fungi. In particular, it exhibited excellent antifugal effects on Colletotrichum higginsianum (EC50 = 31.7 μg/mL). Herein, to explore the practical application in the agricultural field, the design and synthesis of three series of FA derivatives and their inhibitory activities against plant pathogenic fungi were examined. Results demonstrated that the optimized FA derivatives had excellent inhibitory activities against C. higginsianum, Helminthosporium (Harpophora maydis), and Pyricularia grisea. In particular, the inhibitory activities were considerably improved when the 5-butyl groups of FA were substituted. The EC50 of C. higginsianum and P. grisea was only 1.2 and 12.0 μg/mL when 5-butylalkyl groups were substituted with 5-([1,1'-biphenyl]-4-yl) and 5-phenyl, respectively. Moreover, the safety index of target compounds, which was obtained from the treatment index of medicines, on rice seeds was evaluated. Finally, 16 leading compounds (H4, H22-H24, H27, H29, H30-H34, H37, H45, H50, H52, and H53) were obtained; they had considerable potential for additional modification and optimization as agricultural fungicides. Moreover, three-dimensional quantitative structure-activity relationship models were developed for obtaining a systematic structure-activity relationship profile to explore the possibility of more potent FA derivatives as novel fungicides.
Collapse
Affiliation(s)
- Bin Bin Huang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming Wei Gao
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming-An Ouyang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Qi-Jian Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
3
|
Zhou J, Yang C, Meng Q, Fu S. Characterization of Secondary Metabolites from Mycelial Cultures of Black Morel Mushroom Morchella importuna (Ascomycota). Int J Med Mushrooms 2023; 25:49-54. [PMID: 36749056 DOI: 10.1615/intjmedmushrooms.2022046927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Species of the genus Morchella are highly prized worldwide for their excellent flavor and high medicinal value. In recent years, artificial cultivations of medicinal fungi with many advantages have elicited great interest as a promising alternative to produce certain valuable metabolites. Therefore, the secondary metabolites of fermented M. importuna belonging to the black morel clade isolated from China were investigated. The strain was cultured in a fermentation tank in PDB liquid medium by two-step method. The mycelia and fermentation broth were extracted by ethyl acetate. The secondary metabolites were separated and purified by repeated silica gel column chromatography. Structures of compounds were determined by NMR data and references. One new natural compound (1) and six known compounds (2-7) were obtained. Compounds 1, 2, 4, and 5 were first isolated from genus Morchella and compounds 3, 6, and 7 are first isolated from species M. importuna.
Collapse
Affiliation(s)
- Jinquan Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi, People's Republic of China
| | - Cailing Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, People's Republic of China
| | - Qingfeng Meng
- Department of Public Health, Zunyi Medical University, Zunyi, People's Republic of China; Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
4
|
Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND, Abo-Dahab NF. Cytotoxic Potential of Alternaria tenuissima AUMC14342 Mycoendophyte Extract: A Study Combined with LC-MS/MS Metabolic Profiling and Molecular Docking Simulation. Curr Issues Mol Biol 2022; 44:5067-5085. [PMID: 36286059 PMCID: PMC9600980 DOI: 10.3390/cimb44100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Breast, cervical, and ovarian cancers are among the most serious cancers and the main causes of mortality in females worldwide, necessitating urgent efforts to find newer sources of safe anticancer drugs. The present study aimed to evaluate the anticancer potency of mycoendophytic Alternaria tenuissima AUMC14342 ethyl acetate extract on HeLa (cervical cancer), SKOV-3 (ovarian cancer), and MCF-7 (breast adenocarcinoma) cell lines. The extract showed potent effect on MCF-7 cells with an IC50 value of 55.53 μg/mL. Cell cycle distribution analysis of treated MCF-7 cells revealed a cell cycle arrest at the S phase with a significant increase in the cell population (25.53%). When compared to control cells, no significant signs of necrotic or apoptotic cell death were observed. LC-MS/MS analysis of Alternaria tenuissima extract afforded the identification of 20 secondary metabolites, including 7-dehydrobrefeldin A, which exhibited the highest interaction score (-8.0156 kcal/mol) in molecular docking analysis against human aromatase. Regarding ADME pharmacokinetics and drug-likeness properties, 7-dehydrobrefeldin A, 4'-epialtenuene, and atransfusarin had good GIT absorption and water solubility without any violation of drug-likeness rules. These findings support the anticancer activity of bioactive metabolites derived from endophytic fungi and provide drug scaffolds and substitute sources for the future development of safe chemotherapy.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY 40506, USA
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| | - Fatimah S. Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Ashraf A. Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Hadeel S. Alabdulhadi
- Research Assistant Internship Program, Vice Rectorate for Graduate Studies and Scientific Research, King Saud University, Deanship of Scientific Research, Riyadh 4545, Saudi Arabia
| | - Noura D. Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| |
Collapse
|
5
|
Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022; 27:6549. [PMID: 36235086 PMCID: PMC9571366 DOI: 10.3390/molecules27196549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Plants are subjected to multifaceted stresses that significantly jeopardize crop production. Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in plants and enhance crop production, they pollute the environment and cause several health issues in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms, for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes could sustain crop production and resolve the issues regarding crop yield caused by bacterial and fungal pathogens. The collated literature review indicates that future research is necessary to identify potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the tenable agricultural production.
Collapse
Affiliation(s)
| | | | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | | |
Collapse
|
6
|
Xu K, Li XQ, Zhao DL, Zhang P. Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. Front Microbiol 2021; 12:689527. [PMID: 34234763 PMCID: PMC8255633 DOI: 10.3389/fmicb.2021.689527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Plant diseases caused by phytopathogenic fungi can lead to huge losses in the agricultural fields and therefore remain a continuous threat to the global food security. Chemical-based fungicides contributed significantly in securing crop production. However, indiscriminate application of fungicides has led to increased chemical resistance and potential risks to human health and environment. Thus, there is an urgent need for searching for new bioactive natural products and developing them into new biopesticides. Fungal endophytes, microorganisms that reside in the fresh tissues of living plants, are regarded as untapped sources of novel natural products for exploitation in agriculture and/or medicine. Chemical examination of endophytic fungi has yielded enormous antifungal natural products with potential use in the development of biopesticides. This review summarizes a total of 132 antifungal metabolites isolated from fungal endophytes in the past two decades. The emphasis is on the unique chemical diversity of these metabolic products, together with their relevant antifungal properties. Moreover, some "star molecules," such as griseofulvin and trichothecene, as well as their synthetic derivatives that possess high potential as candidates of new natural fungicides, are also presented herein.
Collapse
Affiliation(s)
| | | | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Zhao S, Tian K, Li Y, Ji W, Liu F, Khan B, Yan W, Ye Y. Enantiomeric Dibenzo-α-Pyrone Derivatives from Alternaria alternata ZHJG5 and Their Potential as Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15115-15122. [PMID: 33289556 DOI: 10.1021/acs.jafc.0c04106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three pairs of enantiomeric dibenzo-α-pyrone derivatives (1-3) including two pairs of new racemates (±)-alternaone A (1) and (±)-alternaone B (2) and one new enantiomer (-)-alternatiol (3), together with five known compounds (4-8) were isolated from the fungus Alternaria alternata ZHJG5. Their structures were confirmed by spectroscopic data and single-crystal X-ray diffraction analysis. All enantiomers were separated via chiral high-performance liquid chromatography, with their configurations determined by electronic circular dichroism calculation. Biogenetically, a key epoxy-rearrangement step was proposed for the formation of skeletons in 1-3; (+) 1, (-)-1, and 5 presented moderate antibacterial inhibition on phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. In the antifungal test, compounds 7 and 8 showed a moderate protective effect against Botrytis cinerea in vivo.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yu Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Fang Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| |
Collapse
|
8
|
Zhao M, Guo DL, Liu GH, Fu X, Gu YC, Ding LS, Zhou Y. Antifungal Halogenated Cyclopentenones from the Endophytic Fungus Saccharicola bicolor of Bergenia purpurascens by the One Strain-Many Compounds Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 68:185-192. [PMID: 31815467 DOI: 10.1021/acs.jafc.9b06594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Da-Le Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Guang-Hui Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xian Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Berkshire RG42 6EY, U.K
| | - Li-Sheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|