1
|
Elkady N, Elgendy W, Badr MT, Aiad H, Samara M, Badr NM. Evaluation of the diagnostic utility of NCOA3, Maspin and VHL protein expression in pancreatic ductal adenocarcinoma: An immunohistochemical study. Ann Diagn Pathol 2024; 73:152356. [PMID: 38901088 DOI: 10.1016/j.anndiagpath.2024.152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal tumor with a high mortality rate. The distinction between PDAC and chronic pancreatitis is sometimes challenging on routine histopathological examination, highlighting the need to identify biomarkers that can facilitate this distinction. This retrospective study was conducted to evaluate the diagnostic utility of nuclear receptor co-activator 3 (NCOA3), Maspin and Von Hippel-Lindau protein (VHL) immunostaining in PDAC. Eighty cases of PDAC, 46 cases of chronic pancreatitis and 53 normal pancreatic tissue were immunohistochemically assessed using NCOA3, Maspin and VHL antibodies on sections from a tissue microarray. NCOA3, Maspin and VHL were positive in 90 %, 100 % and 35 %, of PDAC cases respectively, whereas NCOA3, Maspin and VHL expressions were positive in 3.8 %, 0 and 100 % of normal pancreatic tissue and in 15.2 %, 21.7 % and 97.8 % of chronic pancreatitis cases respectively. Significant differences were observed between PDAC and other groups regarding NCOA3, Maspin and VHL expression (p < 0.001). The H scores of NCOA3, Maspin and VHL could significantly distinguish between PDAC and normal cases with high sensitivity (90 %, 100 % and 98.75 % respectively) and specificity (100 %, 100 % and 96.23 % respectively). Similar findings were found in the distinction between PDAC and chronic pancreatitis (Sensitivity: 90 %, 95.25 % and 98.75 %; specificity: 100 %, 100 % and 93.48 % for NCOA3, Maspin and VHL respectively). In conclusion, NCOA3 and Maspin were found to be significantly expressed in PDAC compared to non-tumorous tissue while VHL was significantly expressed in non-tumorous tissue. A panel of NCOA3, Maspin and VHL could potentially distinguish PDAC from non-tumorous pancreatic tissue.
Collapse
Affiliation(s)
- Noha Elkady
- Faculty of Medicine, Menoufia University, Egypt.
| | - Walaa Elgendy
- National Liver Institute, Menoufia University, Egypt
| | | | - Hayam Aiad
- Faculty of Medicine, Menoufia University, Egypt
| | - Manar Samara
- National Liver Institute, Menoufia University, Egypt
| | | |
Collapse
|
2
|
Toyoda Y, Aiga K, Kometani M, Yoneda T. Acquisition of Interleukin-6 Production Ability Over Time With Pheochromocytoma. JCEM CASE REPORTS 2023; 1:luad106. [PMID: 37908215 PMCID: PMC10580424 DOI: 10.1210/jcemcr/luad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 11/02/2023]
Abstract
Pheochromocytoma is a tumor of chromaffin cells causing catecholamines overproduction. Interleukin-6 (IL-6), a cytokine, is central to inflammation and immunity. Few studies have reported IL-6-producing pheochromocytoma whose underlying mechanism has not been elucidated. Herein, we present a case of pheochromocytoma whose clinical manifestations changed, and IL-6 levels elevated over time. A 48-year-old woman was referred to our hospital for fever and hepatic dysfunction. Six years prior, a right adrenal tumor was detected during the examination for ovarian teratoma without C-reactive protein (CRP) elevation. Several imaging studies at our hospital showed no abnormalities except for an increase in the size of the adrenal tumor and hepatomegaly. In addition, antibiotics did not improve the fever. Laboratory tests showed elevated levels of CRP with IL-6 elevation. An enlarged adrenal tumor was detected. Administering doxazosin lowered the CRP and IL-6 levels, then IL-6-producing pheochromocytoma was suspected, and adrenalectomy was performed. After surgery, fever and hepatic function were improved, and the CRP and IL-6 levels were normalized. Immunostaining of the resected tissue showed IL-6 focal positivity, which meant the phenotype of tumor cells focally changed their phenotypes over time. IL-6-producing pheochromocytoma should be considered in patients with adrenal tumors and fever of unknown origin.
Collapse
Affiliation(s)
- Yohei Toyoda
- Department of Internal Medicine, Keiju Medical Centre, Nanao, Ishikawa 926-8605, Japan
| | - Ko Aiga
- Department of Health Promotion and Medicine of Future, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8641, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of Future, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of Future, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
3
|
Yuan C, Liu J, Liu L, Jia H, Gao Q, Wang X, Zhao J. TRIM7 suppresses cell invasion and migration through inhibiting HIF-1α accumulation in clear cell renal cell carcinoma. Cell Biol Int 2021; 46:554-567. [PMID: 34936717 DOI: 10.1002/cbin.11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 01/14/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy characterized by deregulated hypoxia-inducible factor signaling, genetic and epigenetic alterations. Metastasis is the leading cause of mortality from ccRCC, and understanding the underlying mechanism of this event will provide better strategies for its management. Here, we identify tripartite motif containing 7 (TRIM7) as a tumor suppressor in ccRCC cells, which negatively regulates hypoxia-inducible factor 1α (HIF-1α) signaling through targeting the proto-oncogene Src. We observed the downregulated expression of TRIM7 in clinical ccRCC tissues and its correlation with the poor prognosis. In Caki-1 cells, depletion of TRIM7 increased cell migration and invasion under normoxic and hypoxic conditions. TRIM7 markedly reduced the abundance of Src protein via the ubiquitin-proteasome pathway. Further study showed that TRIM7 affected HIF-1α accumulation through targeting either the Src-triggered PI3K/AKT/mTOR signaling pathway or reactive oxygen species production. Overall, our findings highlight a novel mechanism for negative regulation of HIF-1 signaling pathway by TRIM7 and define a promising therapeutic strategy for ccRCC by modulating TRIM7.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junli Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongying Jia
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Gao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingjie Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Jo MJ, Kim BG, Kim WY, Lee DH, Yun HK, Jeong S, Park SH, Kim BR, Kim JL, Kim DY, Lee SI, Oh SC. Cannabidiol Suppresses Angiogenesis and Stemness of Breast Cancer Cells by Downregulation of Hypoxia-Inducible Factors-1α. Cancers (Basel) 2021; 13:cancers13225667. [PMID: 34830821 PMCID: PMC8616476 DOI: 10.3390/cancers13225667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD), one of the compounds present in the marijuana plant, has antitumor properties. However, the effect of CBD on breast cancer remains unclear. The aim of this study was to assess the effects of CBD for the angiogenesis and stemness of breast cancer cells by decreasing the expression of hypoxia-induced factor-1α (HIF-1α) through the Src/von Hippel–Lindau tumor suppressor protein (VHL) interaction. CBD can suppress angiogenesis and stem cell-like properties of breast cancer through Src/VHL/HIF-1α signaling. Abstract To assess the effect of Cannabidiol (CBD) on the angiogenesis and stemness of breast cancer cells as well as proliferation. Methods: mRNA level and the amount of protein of vascular endothelial growth factor (VEGF) were determined by qRT-PCR and ELISA. The angiogenic potential of breast cancer cells under hypoxic conditions was identified by the HUVEC tube formation assay. The degradation of HIF-1α by CBD and the Src/von Hippel–Lindau tumor suppressor protein (VHL) interaction were assessed by a co-immunoprecipitation assay and Western blotting. To identify the stemness of mamospheres, they were evaluated by the sphere-forming assay and flow cytometry. Results: CBD can suppress angiogenesis and stem cell-like properties of breast cancer through Src/VHL/HIF-1α signaling. CBD may potentially be utilized in the treatment of refractory or recurrent breast cancer.
Collapse
Affiliation(s)
- Min Jee Jo
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Bu Gyeom Kim
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Woo Young Kim
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea;
- Correspondence: (W.Y.K.); (D.-H.L.); Tel.: +82-2-2626-3078 (W.Y.K.); +82-33-640-2347 (D.-H.L.)
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
- Correspondence: (W.Y.K.); (D.-H.L.); Tel.: +82-2-2626-3078 (W.Y.K.); +82-33-640-2347 (D.-H.L.)
| | - Hye Kyeong Yun
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Seong Hye Park
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Dae Yeong Kim
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Sun Il Lee
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea;
| | - Sang Cheul Oh
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| |
Collapse
|
5
|
Minervini G, Pennuto M, Tosatto SCE. The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biol 2020; 10:200109. [PMID: 32603638 PMCID: PMC7574549 DOI: 10.1098/rsob.200109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The von Hippel–Lindau protein (pVHL) is a tumour suppressor mainly known for its role as master regulator of hypoxia-inducible factor (HIF) activity. Functional inactivation of pVHL is causative of the von Hippel–Lindau disease, an inherited predisposition to develop different cancers. Due to its impact on human health, pVHL has been widely studied in the last few decades. However, investigations mostly focus on its role in degrading HIFs, whereas alternative pVHL protein–protein interactions and functions are insistently surfacing in the literature. In this review, we analyse these almost neglected functions by dissecting specific conditions in which pVHL is proposed to have differential roles in promoting cancer. We reviewed its role in regulating phosphorylation as a number of works suggest pVHL to act as an inhibitor by either degrading or promoting downregulation of specific kinases. Further, we summarize hypoxia-dependent and -independent pVHL interactions with multiple protein partners and discuss their implications in tumorigenesis.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
6
|
Zhou Z, Song X, Chi JJ, Gius DR, Huang Y, Cristofanilli M, Wan Y. Regulation of KLF4 by posttranslational modification circuitry in endocrine resistance. Cell Signal 2020; 70:109574. [PMID: 32084531 PMCID: PMC7511032 DOI: 10.1016/j.cellsig.2020.109574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
Abstract
KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications. Here we report a new finding that KLF4 orchestrates estrogen receptor signaling and facilitates endocrine resistance. We also uncovered the underlying mechanism that alteration of KLF4 by posttranslational modifications such as phosphorylation and ubiquitylation changes tumor cell response to endocrine therapy drugs. IHC analyses using based on human breast cancer specimens showed the accumulation of KLF4 protein in ER-positive breast cancer tissues. Elevated KLF4 expression significantly correlated with prognosis and endocrine resistance. Our drug screening for suppressing KLF4 protein expression led to identification of Src kinase to be a critical player in modulating KLF4-mediated tamoxifen resistance. Depletion of VHL (von Hippel-Lindau tumor suppressor), a ubiquitin E3 ligase for KLF4, reduces tumor cell sensitivity to tamoxifen. We demonstrated phosphorylation of VHL by Src enhances proteolysis of VHL that in turn leads to upregulation of KLF4 and increases endocrine resistance. Suppression of Src-VHL-KLF4 cascade by Src inhibitor or enhancement of VHL-KLF4 ubiquitination by TAT-KLF4 (371-420AAa) peptides re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen treatment. Taken together, our findings demonstrate a novel role for KLF4 in modulating endocrine resistance via the Src-VHL-KLF4 axis.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Xinxin Song
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Junlong Jack Chi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David R Gius
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yi Huang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Yong Wan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
7
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
9
|
Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization. Proc Natl Acad Sci U S A 2017; 114:9948-9953. [PMID: 28851829 DOI: 10.1073/pnas.1705338114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.
Collapse
|
10
|
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 2016; 19:432-42. [PMID: 26854804 DOI: 10.1038/nn.4236] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.
Collapse
|
11
|
Powles T, Brown J, Larkin J, Jones R, Ralph C, Hawkins R, Chowdhury S, Boleti E, Bhal A, Fife K, Webb A, Crabb S, Geldart T, Hill R, Dunlop J, Hall PE, McLaren D, Ackerman C, Beltran L, Nathan P. A randomized, double-blind phase II study evaluating cediranib versus cediranib and saracatinib in patients with relapsed metastatic clear-cell renal cancer (COSAK). Ann Oncol 2016; 27:880-6. [PMID: 26802156 DOI: 10.1093/annonc/mdw014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Preclinical work suggests SRC proteins have a role in the development of resistance to vascular endothelial growth factor (VEGF) targeted therapy in metastatic clear-cell renal cancer (mRCC). This hypothesis was tested in this trial using the SRC inhibitor saracatinib and the VEGF inhibitor cediranib. PATIENTS AND METHODS Patients with disease progression after ≥1 VEGF-targeted therapy were eligible to participate in this double-blind, randomized (1:1) phase II study. The study compared the combination cediranib 30 mg once daily (o.d.) and saracatinib 175 mg o.d. (CS) (n = 69) or cediranib 45 mg o.d. and placebo o.d. (C) (n = 69). Archived tissue was used for biomarker analysis [SRC, focal adhesion kinase (FAK), von Hippel-Lindau, protein tyrosine phosphatase 1b and hypoxia-inducible factor 2α : n = 86]. The primary end point was progression-free survival (PFS) by RECIST v1.1. RESULTS Between 2010 and 2012, 138 patients were randomized across 16 UK sites. The characteristics of the two groups were well balanced. Partial responses were seen in 13.0% for C and 14.5% for CS (P > 0.05). There was no significant difference in PFS [5.4 months (3.6-7.3 months) for C and 3.9 (2.4-5.3 months) for CS; hazard ratio (HR) 1.18 (0.94-1.48)] or overall survival (OS) [14.2 months (11.2-16.8 months) for C and 10.0 (6.7-13.2 months) for CS; HR 1.28 (1.00-1.63)]. There was no significant difference in the frequency of key adverse events, dose reductions or drug discontinuations. None of the biomarkers were prognostic for PFS or OS. FAK overexpression correlated with an OS benefit [HR 2.29 (1.09-4.82), P > 0.05], but not PFS, for CS. CONCLUSIONS Saracatinib did not increase the efficacy of a VEGF-targeted therapy (cediranib) in this setting. Biomarker analysis did not identify consistent predictive biomarkers. CLINICALTRIALSGOV NCT00942877.
Collapse
Affiliation(s)
- T Powles
- Department of Medical Oncology, The Royal Free NHS Foundation Trust, London Barts Cancer Institute, CRUK Experiment Cancer Medicine Centre, London
| | - J Brown
- Department of Medical Oncology, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Department of Medical Oncology, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire
| | - J Larkin
- Department of Medical Oncology, The Royal Marsden Hospital, London
| | - R Jones
- The Beatson Cancer Centre, University of Glasgow, Glasgow
| | - C Ralph
- Department of Medical Oncology, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire
| | - R Hawkins
- Department of Medical Oncology, The Christie Hospital, Manchester
| | - S Chowdhury
- Department of Medical Oncology, Guys and St Thomas' NHS Foundation Trust, London
| | - E Boleti
- Department of Medical Oncology, The Royal Free NHS Foundation Trust, London
| | - A Bhal
- Department of Oncology, University Hospital Bristol NHS Foundation trust, Bristol
| | - K Fife
- Addenbrooke's Cancer Centre, University of Cambridge, Cambridge
| | - A Webb
- Department of Medical Oncology, West Sussex Cancer Centre, Brighton
| | - S Crabb
- Cancer Sciences Unit, Southampton NHS Foundation Trust, Southampton
| | - T Geldart
- Department of Medical Oncology, Royal Bournemouth Hospital, Bournemouth
| | - R Hill
- Scottish Clinical Trials Research Unit (SCTRU), Partners in CaCTUS, Edinburgh
| | - J Dunlop
- Scottish Clinical Trials Research Unit (SCTRU), Partners in CaCTUS, Edinburgh
| | - P E Hall
- Barts Cancer Institute, CRUK Experiment Cancer Medicine Centre, London
| | - D McLaren
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh
| | - C Ackerman
- Barts Cancer Institute, CRUK Experiment Cancer Medicine Centre, London
| | - L Beltran
- Barts Cancer Institute, CRUK Experiment Cancer Medicine Centre, London
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
12
|
Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway. Eur J Pharmacol 2015; 751:81-8. [DOI: 10.1016/j.ejphar.2015.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 11/20/2022]
|
13
|
MacKay CE, Knock GA. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol 2014; 593:3815-28. [PMID: 25384773 DOI: 10.1113/jphysiol.2014.285304] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca(2+) concentration, including transient receptor potential channels, voltage-gated Ca(2+) channels and various types of K(+) channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Charles E MacKay
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
14
|
Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS One 2014; 9:e107674. [PMID: 25259869 PMCID: PMC4178035 DOI: 10.1371/journal.pone.0107674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.
Collapse
|
15
|
Zhang S, Zhou X, Wang B, Zhang K, Liu S, Yue K, Zhang L, Wang X. Loss of VHL expression contributes to epithelial-mesenchymal transition in oral squamous cell carcinoma. Oral Oncol 2014; 50:809-17. [PMID: 24998140 DOI: 10.1016/j.oraloncology.2014.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/18/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Loss of Von Hippel-Lindau (VHL) gene expression has been implicated in the development of human cancers. However, its function in oral squamous cell carcinoma (OSCC) remains undefined. The aim of this study was to clarify the VHL expression in OSCC and to explore the underlying mechanisms of VHL in modulating the epithelial-mesenchymal transition (EMT) in OSCC. MATERIALS AND METHODS The expression of VHL, HIF-1α and EMT related proteins in OSCC tissues were evaluated by immunohistochemistry. The correlation of VHL with clinico-pathological characteristics, prognosis and EMT related proteins were analyzed. The roles of VHL on the cell morphology, proliferation, migration, and invasion were determined by MTT, scratch and transwell invasion assay in Tscca and Tca8113P160 cells. The EMT related proteins were determined by Western blot and immunofluorescence (IF) methods. RESULTS Loss of VHL expression was closely associated with pathologic grading, lymph node metastasis, poor prognosis, and EMT in OSCC. After re-expression of VHL, there was a cell morphologic change and motivation, proliferation, invasion of the cells were inhibited. The expression of Snail, N-cadherin and MMP-2/9, HIF-1α and VEGF were down-regulated in both the cell lines after transfection with VHL plasmid, while E-cadherin was up-regulated. Moreover, the effect of VHL suppressing β-catenin accumulation in nucleus was proved by Western blot and IF. CONCLUSION VHL was significantly correlated with EMT process of OSCC. β-Catenin was an important downstream gene of VHL besides HIF-1α, which could induce the EMT process in OSCC.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bo Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Kailiang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Su Liu
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lun Zhang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
16
|
Abstract
SIGNIFICANCE Here, we review recent advances with regard to the role of Src kinase in the regulation of cytoskeleton organization, cell adhesion, and motility, focusing on redox circuitries engaging this kinase for anchorage and motility, control of cell survival to anoikis, as well as metabolic deregulation, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that, alongside the well-known phosphorylation/dephosphorylation control, cysteine oxidation is a further mechanism of enzyme activation for both c-Src kinase and its oncogenic counterparts. Indeed, mounting evidence portrays redox regulation of Src kinase as a compulsory outcome in growth factors/cytokines signaling, integrin engagement, motility and invasiveness of tissues, receptor cross-talking at plasmamembrane, as well as during carcinogenesis and progression toward tumor malignancy or fibrotic disease. In addition, the kinase is an upstream regulator of NADPH oxidase-driven oxidants, a critical step for invadopodia formation and metastatic spread. CRITICAL ISSUES Not satisfactorily unraveled yet, the exact role of Src kinase in redox cancer biology needs to be implemented with studies that are aimed at clarifying (i) the exact hierarchy between oxidants sources, Src redox-dependent activation and the regulation of cell motility, and (ii) the actual susceptibility of invading cells to redox-based treatments, owing to the well-recognized ability of cancer cells to find new strategies to adapt to new environments. FUTURE DIRECTIONS Once these critical issues are addressed, redox circuitries involving Src kinase should potentially be used as both biomarkers and targets for personalized therapies in the fight against cancer or fibrotic diseases.
Collapse
Affiliation(s)
- Elisa Giannoni
- 1 Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence, Italy
| | | |
Collapse
|
17
|
David JM, Owens TA, Inge LJ, Bremner RM, Rajasekaran AK. Gramicidin A Blocks Tumor Growth and Angiogenesis through Inhibition of Hypoxia-Inducible Factor in Renal Cell Carcinoma. Mol Cancer Ther 2014; 13:788-99. [DOI: 10.1158/1535-7163.mct-13-0891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 2013; 49:3914-23. [PMID: 23992642 DOI: 10.1016/j.ejca.2013.07.148] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/05/2013] [Accepted: 07/20/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Vasculogenic mimicry (VM) has been reported in various malignant tumours and is known to play an important role in cancer progression and metastasis. However, the impact of VM on the overall survival of human cancer patients remains controversial. The goal of this study was to evaluate whether VM is associated with 5-year survival of human cancer patients. METHODS Twenty-two eligible clinical studies with data on both tumour cell-dominant VM and the 5-year survival of 3062 patients involved in 15 types of cancers were pooled in the meta-analysis. RESULTS The 5-year overall survival of VM-positive and -negative cancer patients was 31% and 56%, respectively. The relative risk (RR) of the 5-year survival of VM-positive patients was significantly higher than that of VM-negative cases (RR=1.531; 95% confidence interval (CI): 1.357-1.726; P<0.001). Notably, metastatic melanoma patients demonstrated a higher VM rate (45.3%) than patients with primary melanoma (23.1%) and showed worse 5-year survival, suggesting that VM contributes to tumour metastasis and poor prognosis in cancer patients. Subgroup analysis indicated that a poor 5-year survival was significantly associated with eight types of VM-positive malignant tumours, such as lung, colon, liver cancers, sarcomas and melanoma; but was not associated with the seven other types of cancers, such as prostate cancer. Heterogeneity and publication biases were found among the 22 studies, mainly due to the divergent characteristics of cancers and extremely low survival rate in six types of malignant tumours. CONCLUSION VM-positive cancer patients show a poor 5-year overall survival compared with VM-negative malignant tumour cases, particularly in metastatic cancer.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | |
Collapse
|
19
|
BC-box protein domain-related mechanism for VHL protein degradation. Proc Natl Acad Sci U S A 2013; 110:18168-73. [PMID: 24145437 DOI: 10.1073/pnas.1311382110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor VHL (von Hippel-Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor. Gam1 associates with both Cullin2 and Cullin5 to form CRL complexes targeting the host protein SUMO enzyme SAE1 for proteasomal degradation. We show that Gam1 protein expression induces VHL protein degradation leading to hypoxia-inducible factor 1α stabilization and induction of its downstream targets. We also characterize the CRL-dependent mechanism that drives VHL protein degradation via proteasome. Interestingly, expression of Suppressor of Cytokine Signaling (SOCS) domain-containing viral proteins and cellular BC-box proteins leads to VHL protein degradation, in a SOCS domain-containing manner. Our work underscores the exquisite ability of viral domains to uncover new regulatory mechanisms by hijacking key cellular proteins.
Collapse
|
20
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta Rev Cancer 2013; 1836:273-86. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The INhibitor of Growth 1 (ING1) is stoichiometric member of histone deacetylase (HDAC) complexes and functions as an epigenetic regulator and a type II tumor suppressor. It impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. Down regulation and mislocalization of ING1 have been reported in diverse tumor types and Ser/Thr phosphorylation has been implicated in both of these processes. Here we demonstrate that both in vitro and in vivo, the tyrosine kinase Src is able to physically associate with, and phosphorylate ING1, which results in a nuclear to cytoplasmic relocalization of ING1 in cells and a decrease of ING1 stability. Functionally, Src antagonizes the ability of ING1 to induce apoptosis, most likely through relocalization of ING1 and down regulation of ING1 levels. These effects were due to both kinase-dependent and kinase-independent properties of Src, and were most apparent at elevated levels of Src expression. These findings suggest that Src may play a major role in regulating ING1 levels during tumorigenesis in those cancers in which high levels of Src expression or activity are present. These data represent the first report of tyrosine kinase-mediated regulation of ING1 levels and suggest that kinase activation can impact chromatin structure through the ING1 epigenetic regulator.
Collapse
|
22
|
Ward C, Langdon SP, Mullen P, Harris AL, Harrison DJ, Supuran CT, Kunkler IH. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 2013; 39:171-9. [PMID: 23063837 DOI: 10.1016/j.ctrv.2012.08.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 01/08/2023]
Abstract
Radiation and drug resistance remain major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Metabolic reprogramming is a recently recognised hallmark of cancer with the hypoxic acidic extracellular environment as a major driver of invasion and metastases. Nearly 40% of all breast cancers and 50% of locally advanced breast cancers are hypoxic and their altered metabolism is strongly linked to resistance to radiotherapy and systemic therapy. The dependence of metabolically adapted breast cancer cells on alterations in cell function presents a wide range of new therapeutic targets such as carbonic anhydrase IX (CAIX). This review highlights preclinical approaches to evaluating an array of targets against tumour metabolism in breast cancer and early phase clinical studies on efficacy.
Collapse
Affiliation(s)
- Carol Ward
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pelekanou V, Notas G, Kampa M, Tsentelierou E, Radojicic J, Leclercq G, Castanas E, Stathopoulos EN. ERα36, a new variant of the ERα is expressed in triple negative breast carcinomas and has a specific transcriptomic signature in breast cancer cell lines. Steroids 2012; 77:928-34. [PMID: 22198466 DOI: 10.1016/j.steroids.2011.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/15/2022]
Abstract
Triple negative breast cancer is deprived of estrogen receptor alpha (ERα), progesterone receptor (PR) and HER-2 protein. It constitutes the most heterogeneous and aggressive group of breast carcinomas, for which identification of novel characteristics and characterization of putative targets becomes very demanding. In the present work we have assayed the expression of ERα36, a recently identified ERα variant of 36kDa, in a series of triple negative breast cancers, in relation to the clinical behavior and other clinico-pathological features of the tumors. While widely expressed within the cytoplasm in almost all tumors, we found that exclusively the membrane/submembrane expression of the receptor exhibits a correlation with patient's survival. Moreover, membrane ERα36 correlates in an inverse manner with the expression of miRNA210, a pro-angiogenic miR, with high prognostic relevance in triple negative carcinomas. A thorough transcriptomic, pharmacological-based approach in breast cancer cell lines, revealed an early (direct) transcriptional signature of the receptor activation, related to immune system processes and T-cell differentiation, RNA biosynthesis, regulation of metabolism, VEGF signaling and regulation of the cell cycle, with a down-regulation of CREB, NFκB and STATs transcription factors. Finally, ERα36 expression is not limited within breast cancer epithelial linen, but is equally identified in tumor vasculature, peritumoral fat tissue, lymphocytic infiltrate and stromal fibroblasts. In light of the above, ERα36 could represent a major counterpart in triple negative breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Metabolic Networks and Pathways
- MicroRNAs/metabolism
- Middle Aged
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/mortality
- Neoplasms, Hormone-Dependent/pathology
- Oligonucleotide Array Sequence Analysis
- Proportional Hazards Models
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Statistics, Nonparametric
- Transcriptome
Collapse
Affiliation(s)
- Vassiliki Pelekanou
- Laboratories of Pathology, University of Crete, School of Medicine, Heraklion, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Increased expression of the von Hippel-Lindau gene in the implantation site of human tubal pregnancy. Mol Cell Biochem 2012; 368:173-9. [PMID: 22714833 DOI: 10.1007/s11010-012-1357-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to investigate the expression of the von Hippel-Lindau (VHL) gene in tissues of human fallopian tube and tubal pregnancy. Twenty patients undergoing salpingectomy for tubal pregnancy were recruited into the study group. Tissues of tubal pregnancy were separated into both the implantation and non-implantation sites as the implantation group and the non-implantation group, respectively. Samples of ampullary fallopian tube during mid-secretory phase were collected from twenty patients with benign uterine disease as the control group. Immunohistochemistry, real-time reverse transcription polymerase chain reaction, and Western blotting analysis were performed to detect expressions of VHL mRNA and protein. The results showed that VHL immunostaining appeared in the cytoplasm of tubal epithelial cells. Expression of VHL mRNA in the implantation group was higher than that in the non-implantation group or the control group (P < 0.01). Intensity of VHL protein in the implantation group was increased compared with that in the non-implantation group (P < 0.05) or in the control group (P < 0.01). There was no difference on expressions of VHL mRNA and protein between the non-implantation group and the control group (P > 0.05). In conclusion, VHL mRNA and protein are present in human tubal tissues. The VHL gene expression is increased in the implantation site of tubal pregnancy, and locally elevated expression of the VHL gene might be associated with human tubal pregnancy.
Collapse
|
25
|
Park JJ, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer. BMC Cancer 2012; 12:81. [PMID: 22390300 PMCID: PMC3313899 DOI: 10.1186/1471-2407-12-81] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/06/2012] [Indexed: 01/24/2023] Open
Abstract
Background KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF) of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM), KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1), which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression. Methods We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8) and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6) were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level. Results We demonstrated that Hypoxia-inducible factor 1α (HIF-1α) and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL) protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α. Conclusions These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF expression.
Collapse
Affiliation(s)
- Jung-Jin Park
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Nowon-Ku, Seoul 139-706, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
27
|
Bjorge JD, Pang AS, Funnell M, Chen KY, Diaz R, Magliocco AM, Fujita DJ. Simultaneous siRNA targeting of Src and downstream signaling molecules inhibit tumor formation and metastasis of a human model breast cancer cell line. PLoS One 2011; 6:e19309. [PMID: 21541295 PMCID: PMC3082570 DOI: 10.1371/journal.pone.0019309] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
Background Src and signaling molecules downstream of Src, including signal transducer and activator of transcription 3 (Stat3) and cMyc, have been implicated in the development, maintenance and/or progression of several types of human cancers, including breast cancer. Here we report the ability of siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc to inhibit the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S, a widely used model for breast cancer research. Methodology/Results Src and its downstream signaling partners were specifically targeted and knocked-down using siRNA. Changes in the growth properties of the cultured cancer cells/tumors were documented using assays that included anchorage-dependent and -independent (in soft agar) cell growth, apoptosis, and both primary and metastatic tumor growth in the mouse tumor model. siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc inhibited the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S. This knock-down resulted in reduced growth in monolayer and soft agar cultures, and a reduced ability to form primary tumors in NOD/SCID mice. In addition, direct intra-tumoral injection of siRNAs targeting these signaling molecules resulted in a substantial inhibition of tumor metastases as well as of primary tumor growth. Simultaneous knock-down of Src and Stat3, and/or Myc exhibited the greatest effects resulting in substantial inhibition of primary tumor growth and metastasis. Conclusions/Significance These findings demonstrate the effectiveness of simultaneous targeting of Src and the downstream signaling partners Stat3 and/or cMyc to inhibit the growth and oncogenic properties of a human cancer cell line. This knowledge may be very useful in the development of future therapeutic approaches involving targeting of specific genes products involved in tumor growth and metastasis.
Collapse
Affiliation(s)
- Jeffrey D. Bjorge
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andy S. Pang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Funnell
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ke Yun Chen
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roman Diaz
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anthony M. Magliocco
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donald J. Fujita
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Lee HY, Lee T, Lee N, Yang EG, Lee C, Lee J, Moon EY, Ha J, Park H. Src activates HIF-1α not through direct phosphorylation of HIF-1α specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway. Carcinogenesis 2011; 32:703-12. [PMID: 21335603 DOI: 10.1093/carcin/bgr034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-Inducible Factor (HIF)-1α/β heterodimer is a master transcription factor for several genes involved in angiogenesis, glycolysis, pH balance and metastasis. These HIF-1 target genes help tumors to overcome forthcoming metabolic obstacles as they grow. Under normoxic condition, the HIF-1α subunit is hydroxylated by its specific prolyl-4 hydroxylase 2, given the acronym PHD2. Hydroxylated HIF-1α becomes a target for von Hippel-Lindau (VHL), which functions as an E3 ubiquitin ligase. Src prevents hydroxylation-dependent ubiquitinylation of HIF-1α, thus stabilizing it under normoxic conditions. We found that active Src does not directly phosphorylate any tyrosine residue of PHD2. In vitro hydroxylation reaction showed that the presence of the purified active Src protein does not inhibit the hydroxylation activity of the purified PHD2 enzymes. Instead of directly inhibiting PHD2, Src recruits several downstream-signaling pathways to intercept hydroxylation-dependent ubiquitinylation of HIF-1α. Using biochemical and genetic inhibition, we demonstrated that Src requires reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/Rac complex for stabilization of HIF-1α. We found that excess vitamin C treatment attenuates Src-induced HIF-1α activation. HIF-1α-hydroxylation-dependent VHL pull-down assay showed that Src inhibits cellular PHD2 activity by inducing ROS production in a mechanism involving Rac1-dependent NADPH oxidase. Src-induced ROS reduces cellular vitamin C, which is required for the activity of PHD2, thus Src can block VHL recruitment of HIF-1α, leading to stabilization of HIF-1α.
Collapse
Affiliation(s)
- Ho-Youl Lee
- Department of Life Science, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tyrosine kinases play significant roles in tumor progression and therapy resistance. Inhibitors of tyrosine kinases are on the forefront of targeted therapy. For prostate cancer, tyrosine kinases play an additional role in the development of castration-resistant disease state, the most troubling aspect of prostate cancinogenesis which presently defies any effective treatment. Among the 30 or so tyrosine kinases expressed in a typical prostate cancer cell, nearly one third of them have been implicated in prostate carcinogenesis. Interestingly, most of them channel signals through a trio of non-receptor tyrosine kinases, Src/Etk/FAK, referred here as Src tyrosine kinase complex. This complex has been shown to play a significant role in the aberrant activation of androgen receptor (AR) mediated by growth factors (e.g., epidermal growth factor (EGF)), cytokines (interleukin (IL)-6), chemokines (IL-8), and neurokines (gastrin-releasing peptide). These factors are induced and released from the prostate cancer to the stromal cells upon androgen withdrawal. The Src kinase complex has the ability to phosphorylate androgen receptor, resulting in the nuclear translocation and stabilization of un-liganded androgen receptor. Indeed, tyrosine kinase inhibitors targeting Src can inhibit androgen-independent growth of prostate cancer cells in vitro and in preclinical xenograft model. While effective in inducing growth arrest and inhibiting metastasis of castration-resistant tumors, Src inhibitors rarely induce a significant level of apoptosis. This is also reflected by the general ineffectiveness of tyrosine kinase inhibitors as monotherapy in clinical trials. One of the underlying causes of apoptosis resistance is "autophagy," which is induced by tyrosine kinase inhibitors and by androgen withdrawal. Autophagy is a self-digesting process to regenerate energy by removal of long-lived proteins and retired organelles to provide a survival mechanism to cells encountering stresses. Excessive autophagy, sometimes, could lead to type II programmed cell death. We demonstrated that autophagy blockade sensitizes prostate cancer cells toward Src tyrosine kinase inhibitor. Thus, a combination therapy based on Src tyrosine kinase inhibitor and autophagy modulator deserves further attention as a potential treatment for relapsed prostate cancer.
Collapse
Affiliation(s)
- Hsing-Jien Kung
- UC Davis Cancer Center, UCDMC, Res III, Rm. 2400, 4645 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|