1
|
DeRatt LG, Zhang Z, Pietsch EC, Cisar J, Wang A, Wang CY, Tanner A, Shaffer P, Jacoby E, Kazmi F, Shukla N, Philippar U, Attar RM, Edwards JP, Kuduk SD. Identification of isoquinolinone DHODH inhibitor isosteres. Bioorg Med Chem Lett 2024; 113:129965. [PMID: 39284456 DOI: 10.1016/j.bmcl.2024.129965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
DHODH inhibition represents an attractive approach to overcome differentiation blockade for the treatment of AML. In a previous communication, we described our efforts leading to the discovery of compound 3 (JNJ-74856665), an orally bioavailable, potent, and selective DHODH inhibitor for clinical development. Guided by the co-crystal structures bound to human DHODH, other fused six-membered constructs were explored as isosteric replacements of the isoquinolinone central core. The correct positioning of the nitrogen in these core systems proved to be essential in modulating potency. Herein is described the synthesis of these complexly functionalized cores and their profiling, leading to DHODH inhibitors that possess favorable properties suitable for further development.
Collapse
Affiliation(s)
| | - Zhuming Zhang
- Janssen Research and Development, Spring House, PA 19477, USA
| | | | - Justin Cisar
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Aihua Wang
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Chao-Yuan Wang
- Janssen Research and Development, Spring House, PA 19477, USA
| | | | - Paul Shaffer
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Faraz Kazmi
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Neetu Shukla
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Ulrike Philippar
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ricardo M Attar
- Janssen Research and Development, Spring House, PA 19477, USA
| | - James P Edwards
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Scott D Kuduk
- Janssen Research and Development, Spring House, PA 19477, USA.
| |
Collapse
|
2
|
Qureshi Z, Altaf F, Jamil A, Siddique R. Safety, Efficacy, and Predictive Factors of Venetoclax-Based Regimens in Elderly Acute Myeloid Leukemia Patients: A Meta-Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e835-e851. [PMID: 39218712 DOI: 10.1016/j.clml.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Venetoclax synergizes with low-intensity regimens such as hypomethylating agents (HMAs) and low-dose cytarabine (LDAC). However, less is known about the clinical activity of venetoclax combined with HMAs or LDAC. Therefore, the current study focused on assessing the clinical efficacy, safety, and predictive factors for response to these venetoclax-based regimens in elderly patients with acute myeloid leukemia (AML). A comprehensive search for literature related to our study objective was performed on PubMed, Embase, Web of Science, and Google Scholar databases. The statistical analyses were performed using Review Manager or the Comprehensive Meta-Analysis software. In addition, methodological quality evaluation of nonrandomized studies was conducted using the Newcastle Ottawa Scale, while bias assessment of randomized studies was performed with Cochrane's risk of bias tool. Twelve studies, including 1432 elderly AML patients treated with venetoclax-based regimens, were identified for review and analysis. The pooled analysis showed that the rate of complete response with or without incomplete blood count recovery (CR/CRi) and overall response rate (ORR) among patients treated with venetoclax and HMAs was 59% and 64%, respectively. On the other hand, an CR/CRi of 50% was observed in patients treated with venetoclax and LDAC. Furthermore, venetoclax combined with HMAs demonstrated a significant survival benefit over HMAs alone and intensive chemotherapy (HR: 0.57; 95% CI: 0.47-0.68; P < .00001). The most common grade ≥ 3 hematologic disorder, nonhematological event, and infection in AML patients treated with venetoclax and HMAs were febrile neutropenia (39%), hypokalemia (12%), and pneumonia (19%), respectively. Conversely, thrombocytopenia, hypokalemia, and pneumonia were more common in patients treated with venetoclax and LDAC (41%, 15%, and 12%, respectively). Venetoclax combined with HMAs or LDAC has good clinical activity and a manageable safety profile in elderly patients with AML.
Collapse
Affiliation(s)
- Zaheer Qureshi
- Department of Medicine, The Frank H. Netter MD School of Medicine at Quinnipiac University, Bridgeport, CT.
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre Watertown, Watertown, NY
| | | |
Collapse
|
3
|
Borate U, Seiter K, Potluri R, Mazumder D, Chevli M, Prebet T, Gaugler L, Strocchia M, Vasconcelos A, Sieluk J. Healthcare Utilization and Costs Among Patients with Acute Myeloid Leukemia Receiving Oral Azacitidine Maintenance Therapy Versus No Maintenance: A US Claims Database Study. Adv Ther 2024; 41:4049-4064. [PMID: 39240504 PMCID: PMC11480148 DOI: 10.1007/s12325-024-02947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION The substantial economic burden of acute myeloid leukemia (AML) could be reduced with post-remission maintenance therapies that delay relapse. Real-world healthcare resource utilization (HCRU) data and costs among patients with AML receiving oral azacitidine (Oral-AZA) maintenance therapy or no maintenance are not well understood. We characterize HCRU and costs among these patients in clinical practice in the USA. METHODS Data from IQVIA PharMetrics® Plus (January 1, 2016-June 30, 2022) were used. Patients ≥ 18 years who were newly diagnosed with AML, received first-line systemic induction therapy, and attained disease remission were eligible. Patients receiving Oral-AZA maintenance and those receiving no maintenance ("watch and wait" [W&W]) were matched 1:3 on baseline characteristics using propensity score matching (PSM) and followed until hematopoietic stem cell transplantation or end of continuous insurance enrollment, whichever occurred first. Outcomes included treatment patterns, inpatient and outpatient visits, and costs. RESULTS After PSM, the Oral-AZA cohort included 43 patients and the W&W cohort 129. Of the 43 patients receiving Oral-AZA, 88.4% started at the recommended dose of 300 mg and 11.6% at 200 mg. The Oral-AZA cohort had significantly (p = 0.0025) longer median (95% CI) time to relapse from the index maintenance date (median not reached [NR; 9.0 months-NR] vs 3.3 months [0.8 months-NR]), and fewer per person per month (PPPM) hospitalizations (0.23 vs 0.61; p = 0.0005) and overall outpatient visits (5.77 vs 7.58; p = 0.0391) than the W&W cohort. Despite higher AML drug costs PPPM in the Oral-AZA cohort ($16,401 vs $10,651 for W&W), total healthcare costs PPPM were lower ($25,786 vs $38,530 for W&W; p < 0.0001). CONCLUSIONS Patients with newly diagnosed AML treated with Oral-AZA maintenance in clinical practice had prolonged remission and lower HCRU and costs than patients receiving no maintenance therapy. These findings underscore the clinical and economic value of Oral-AZA in clinical practice.
Collapse
Affiliation(s)
- Uma Borate
- Division of Hematology, The Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA.
| | - Karen Seiter
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | - Jan Sieluk
- Bristol Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
4
|
Larue M, Labopin M, Schroeder T, Huang X, Blau IW, Schetelig J, Ganser A, Hamladji R, Bethge W, Kröger N, Socié G, Salmenniemi U, Sengeloev H, Dholaria B, Savani BN, Nagler A, Ciceri F, Mohty M. Long-term outcome of 2-year survivors after allogeneic hematopoietic cell transplantation for acute leukemia. Hemasphere 2024; 8:e70026. [PMID: 39440198 PMCID: PMC11494155 DOI: 10.1002/hem3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Information on late complications in patients with acute leukemia who have undergone allogeneic hematopoietic cell transplantation (HCT) is limited. We performed a left-truncated analysis of long-term survival in patients with acute leukemia who were alive and disease-free 2 years after HCT. We included 2701 patients with acute lymphoblastic leukemia (ALL) and 9027 patients with acute myeloid leukemia (AML) who underwent HCT between 2005 and 2012. The 10-year overall survival (OS) rate was 81.3% for ALL and 76.2% for AML, with the main causes of late mortality being relapse (ALL-33.9%, AML-44.9%) and chronic graft-versus-host disease (ALL-29%, AML-18%). At 10 years, HCT-related mortality was 16.8% and 20.4%, respectively. Older age and unrelated donor transplantation were associated with a worse prognosis for both types of leukemia. In addition, transplantation in the second or third complete remission and peripheral blood HSC for ALL are associated with worse outcomes. Similarly, adverse cytogenetics, female donor to male patient combination, and reduced intensity conditioning in AML contribute to poor prognosis. We conclude that 2-year survival in remission after HCT for acute leukemia is encouraging, with OS of nearly 80% at 10 years. However, the long-term mortality risk of HCT survivors remains significantly higher than that of the age-matched general population. These findings underscore the importance of tailoring transplantation strategies to improve long-term outcomes in patients with acute leukemia undergoing HCT.
Collapse
Affiliation(s)
- Marion Larue
- Hematology DepartmentHôpital Saint‐Antoine, APHPParisFrance
- INSERM UMRs 938Sorbonne UniversityParisFrance
| | - Myriam Labopin
- Hematology DepartmentHôpital Saint‐Antoine, APHPParisFrance
- INSERM UMRs 938Sorbonne UniversityParisFrance
- EBMT ALWP OfficeHôpital Saint‐AntoineParisFrance
| | - Thomas Schroeder
- Department of Bone Marrow TransplantationUniversity HospitalEssenGermany
| | - Xiao‐jun Huang
- Institute of HematologyPeking University People's HospitalBeijingChina
| | - Igor W. Blau
- Department of Hematology, Oncology, and Transfusion MedicineCampus Benjamin Franklin, Charité UniversitätsmedizinBerlinGermany
| | - Johannes Schetelig
- Department I of Internal MedicineUniversity Hospital Carl Gustav Carus, Technical University DresdenDresdenGermany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
| | - Rose‐Marie Hamladji
- Service Hématologie Greffe de MoëlleCentre Pierre et Marie CurieAlgerAlgeria
| | - Wolfgang Bethge
- Department of Hematology and OncologyUniversitaet Tuebingen, Medizinische KlinikTuebingenGermany
| | - Nicolaus Kröger
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Gerard Socié
- Department of Hematology–BMTHospital St. LouisParisFrance
| | - Urpu Salmenniemi
- Department of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Henrik Sengeloev
- Bone Marrow Transplant Unit L 4043National University Hospital RigshospitaletCopenhagenDenmark
| | | | | | - Arnon Nagler
- EBMT ALWP OfficeHôpital Saint‐AntoineParisFrance
- Hematology DivisionChaim Sheba Medical CenterTel HashomerIsrael
| | - Fabio Ciceri
- EBMT ALWP OfficeHôpital Saint‐AntoineParisFrance
- Hematology and BMT UnitSan Raffaele Scientific InstituteMilanItaly
| | - Mohamad Mohty
- Hematology DepartmentHôpital Saint‐Antoine, APHPParisFrance
- INSERM UMRs 938Sorbonne UniversityParisFrance
- EBMT ALWP OfficeHôpital Saint‐AntoineParisFrance
| |
Collapse
|
5
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Atnaf A, Akelew Y, Abebaw D, Muche Y, Getachew M, Mengist HM, Tsegaye A. The role of long noncoding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-05987-3. [PMID: 39264436 DOI: 10.1007/s00277-024-05987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia (AML) is the abnormal proliferation of immature myeloid blast cells in the bone marrow. Currently, there are no universally recognized biomarkers for the early diagnosis, prognosis and effective treatment of AML to improve the overall survival of patients. Recent studies, however, have demonstrated that long noncoding RNAs (lncRNAs) are promising targets for the early diagnosis, prognosis and treatment of AML. A critical review of available data would be important to identify study gaps and provide perspectives. In this review, we explored comprehensive information on the potential use of lncRNAs as targets for the diagnosis, prognosis, and treatment of AML. LncRNAs are nonprotein-coding RNAs that are approximately 200 nucleotides long and play important roles in the regulation, metabolism and differentiation of tissues. In addition, they play important roles in the diagnosis, prognosis and treatment of different cancers, including AML. LncRNAs play multifaceted roles as oncogenes or tumor suppressor genes. Recently, deregulated lncRNAs were identified as novel players in the development of AML, making them promising prognostic indicators. Given that lncRNAs could have potential diagnostic marker roles, the lack of sufficient evidence identifying specific lncRNAs expressed in specific cancers hampers the use of lncRNAs as diagnostic markers of AML. The complex roles of lncRNAs in the pathophysiology of AML require further scrutiny to identify specific lncRNAs. This review, despite the lack of sufficient literature, discusses the therapeutic, diagnostic and prognostic roles of lncRNAs in AML and provides future insights that will contribute to studies targeting lncRNAs in the diagnosis, treatment, and management of AML.
Collapse
Affiliation(s)
- Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Ayvaz HB, Yenigül M, Gencer Akçok EB. Tomatidine, a Steroidal Alkaloid, Synergizes with Cisplatin to Inhibit Cell Viability and Induce Cell Death Selectively on FLT3-ITD+ Acute Myeloid Leukemia Cells. Cell Biochem Biophys 2024; 82:2889-2900. [PMID: 38987440 DOI: 10.1007/s12013-024-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a hematological cancer that frequently presents with a range of side effects and drug resistance during anticancer drug treatment. The current study aims to achieve increased efficacy by combining lower doses of cisplatin with increasing concentrations of tomatidine in AML cells to increase efficacy. METHODS Anti-proliferative effects of single and combination of cisplatin and tomatidine were assessed via MTT cell viability assay. The Annexin V/Propidium Iodide Double Staining method was used to measure the apoptotic effects of combined tomatidine and cisplatin treatment. Then, Western Blot analysis was performed to measure Poly (ADP-ribose) polymerase (PARP) and Caspase-3 protein expression levels. RESULTS Cisplatin treatment with lower concentrations displayed high cytotoxic effects on AML cells, compared with tomatidine. The combination of the Inhibitory Concentration (IC) 20 value of cisplatin and increasing doses of tomatidine exhibited a significant decrease in cell viability relative to single treatments. The combination index analysis revealed a mild synergistic effect of cisplatin IC20 and varying tomatidine doses. The apoptosis induced when cisplatin was combined with 500 µM tomatidine by almost 20%, while the percentage of apoptosis in combination with 1 mM tomatidine was measured by 50% for both cell lines. The upregulation of proapoptotic cleaved-PARP (3.2 and 1.08-fold for THP-1 and MOLM-13, respectively) and downregulation in Caspase-3 (0.23 and 0.13-fold for THP-1 and MOLM-13, respectively) was detected. CONCLUSIONS Together, the study indicated that when tomatidine combined with cisplatin on AML cell lines, a combinatorial anti-proliferative and apoptotic effect is observed. The combination of cisplatin with tomatidine may be a promising approach.
Collapse
Affiliation(s)
- Havva Berre Ayvaz
- Abdullah Gul University, Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Kayseri, Turkey
| | - Münevver Yenigül
- Abdullah Gul University, Graduate School of Engineering and Science, Bioengineering Department, Kayseri, Turkey
| | - Emel Başak Gencer Akçok
- Abdullah Gul University, Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Kayseri, Turkey.
| |
Collapse
|
8
|
DeRatt LG, Zhang Z, Pietsch C, Cisar JS, Zhang X, Wang W, Tanner A, Matico R, Shaffer P, Jacoby E, Kazmi F, Shukla N, Bush TL, Patrick A, Philippar U, Attar R, Edwards JP, Kuduk SD. Discovery of JNJ-74856665: A Novel Isoquinolinone DHODH Inhibitor for the Treatment of AML. J Med Chem 2024; 67:11254-11272. [PMID: 38889244 DOI: 10.1021/acs.jmedchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Acute myelogenous leukemia (AML), a heterogeneous disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway and preclinical findings demonstrated that DHODH is a metabolic vulnerability in AML as inhibitors can induce differentiation across multiple AML subtypes. As a result of virtual screening and structure-based drug design approaches, a novel series of isoquinolinone DHODH inhibitors was identified. Further lead optimization afforded JNJ-74856665 as an orally bioavailable, potent, and selective DHODH inhibitor with favorable physicochemical properties selected for clinical development in patients with AML and myelodysplastic syndromes (MDS).
Collapse
Affiliation(s)
- Lindsey G DeRatt
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Zhuming Zhang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Christine Pietsch
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Justin S Cisar
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Xiaochun Zhang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Weixue Wang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Alexandra Tanner
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Rosalie Matico
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Paul Shaffer
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Faraz Kazmi
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Neetu Shukla
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Tammy L Bush
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Aaron Patrick
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Ulrike Philippar
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ricardo Attar
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Scott D Kuduk
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
9
|
Hybel TE, Jensen SH, Rodrigues MA, Hybel TE, Pedersen MN, Qvick SH, Enemark MH, Bill M, Rosenberg CA, Ludvigsen M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:6465. [PMID: 38928171 PMCID: PMC11203419 DOI: 10.3390/ijms25126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous blood cancer with a dismal prognosis. It emanates from leukemic stem cells (LSCs) arising from the genetic transformation of hematopoietic stem cells (HSCs). LSCs hold prognostic value, but their molecular and immunophenotypic heterogeneity poses challenges: there is no single marker for identifying all LSCs across AML samples. We hypothesized that imaging flow cytometry (IFC) paired with artificial intelligence-driven image analysis could visually distinguish LSCs from HSCs based solely on morphology. Initially, a seven-color IFC panel was employed to immunophenotypically identify LSCs and HSCs in bone marrow samples from five AML patients and ten healthy donors, respectively. Next, we developed convolutional neural network (CNN) models for HSC-LSC discrimination using brightfield (BF), side scatter (SSC), and DNA images. Classification using only BF images achieved 86.96% accuracy, indicating significant morphological differences. Accuracy increased to 93.42% when combining BF with DNA images, highlighting differences in nuclear morphology, although DNA images alone were inadequate for accurate HSC-LSC discrimination. Model development using SSC images revealed minor granularity differences. Performance metrics varied substantially between AML patients, indicating considerable morphologic variations among LSCs. Overall, we demonstrate proof-of-concept results for accurate CNN-based HSC-LSC differentiation, instigating the development of a novel technique within AML monitoring.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Sofie Hesselberg Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Thomas Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maya Nautrup Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Signe Håkansson Qvick
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Carina Agerbo Rosenberg
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
10
|
Kim N, Hahn S, Choi YJ, Cho H, Chung H, Jang JE, Lyu CJ, Lee ST, Choi JR, Cheong JW, Shin S. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int 2024; 24:174. [PMID: 38764048 PMCID: PMC11103850 DOI: 10.1186/s12935-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex hematologic malignancy characterized by uncontrolled proliferation of myeloid precursor cells within bone marrow. Despite advances in understanding of its molecular underpinnings, AML remains a therapeutic challenge due to its high relapse rate and clonal evolution. METHODS In this retrospective study, we analyzed data from 24 AML patients diagnosed at a single institution between January 2017 and August 2023. Comprehensive genetic analyses, including chromosomal karyotyping, next-generation sequencing, and gene fusion assays, were performed on bone marrow samples obtained at initial diagnosis and relapse. Clinical data, treatment regimens, and patient outcomes were also documented. RESULTS Mutations in core genes of FLT3, NPM1, DNMT3A, and IDH2 were frequently discovered in diagnostic sample and remained in relapse sample. FLT3-ITD, TP53, KIT, RUNX1, and WT1 mutation were acquired at relapse in one patient each. Gene fusion assays revealed stable patterns, while chromosomal karyotype analyses indicated a greater diversity of mutations in relapsed patients. Clonal evolution patterns varied, with some cases showing linear or branching evolution and others exhibiting no substantial change in core mutations between diagnosis and relapse. CONCLUSIONS Our study integrates karyotype, gene rearrangements, and gene mutation results to provide a further understanding of AML heterogeneity and evolution. We demonstrate the clinical relevance of specific mutations and clonal evolution patterns, emphasizing the need for personalized therapies and measurable residual disease monitoring in AML management. By bridging the gap between genetics and clinical outcome, we move closer to tailored AML therapies and improved patient prognoses.
Collapse
Affiliation(s)
- Namsoo Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seungmin Hahn
- Department of Pediatric Hematology-Oncology, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Chuhl Joo Lyu
- Department of Pediatric Hematology-Oncology, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
11
|
Ruiz M, Jindal K, Casey V, Soares LM, Manuguid F, Moehler T. Uptake of novel therapies into first-line treatment for acute myeloid leukemia patients: EU4 + UK perspective. Future Oncol 2024; 20:533-546. [PMID: 37975244 DOI: 10.2217/fon-2022-1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Aim: To explore the incorporation of novel agents in the first-line setting for acute myeloid leukemia patients. Materials & methods: Observational study based on data from a multi-country cross-sectional retrospective web-based survey sent to 518 physicians in Europe between 2020 and 2021. Information from 2040 patients was analyzed. Results: 604 patients (29.6%) received novel agents in both intensive and non-intensive setting. Comorbidities were not a barrier for the use of novel agents. The presence of tumor mutations was observed to be an important element for treatment decision. Conclusion: There is a progressive incorporation of novel agents for newly diagnosed acute myeloid leukemia patients.
Collapse
Affiliation(s)
- Magdalena Ruiz
- Hemato-Oncology Data Sciences, Safety & Medical, IQVIA Madrid & Frankfurt
| | - Kriti Jindal
- Global Oncology, Real-World & Analytics Solutions, IQVIA London
| | - Vicky Casey
- Data Science & Advanced Analytics, IQVIA London
| | | | | | - Thomas Moehler
- Hemato-Oncology Data Sciences, Safety & Medical, IQVIA Madrid & Frankfurt
| |
Collapse
|
12
|
Abduh MS. An overview of multiple myeloma: A monoclonal plasma cell malignancy's diagnosis, management, and treatment modalities. Saudi J Biol Sci 2024; 31:103920. [PMID: 38283805 PMCID: PMC10818257 DOI: 10.1016/j.sjbs.2023.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Multiple Myeloma (MM) is a plasma cell cancer with high mortality and morbidity rates. Its incidence rate has increased by 143% since 1975. Adipokines, cytokines, chemokines, and genetic variations influence the development and progression of MM. Chromosomal translocations cause mutations associated with MM. The pathogenesis of MM is complicated by novel issues like miRNAs, RANKL, Wnt/DKK1, Wnt, and OPG. Conventional diagnosis methods include bone marrow biopsy, sPEP or uPEP, sIFE and uIFE, and sFLC assay, along with advanced techniques such as FISH, SNPA, and gene expression technologies. A novel therapeutic strategy has been developed recently. Chemotherapy, hematopoietic stem cell transplantation, and a variety of drug classes in combination are used to treat patients with high-risk diseases. Alkylating agents, PIs, and IMiDs have all been developed as effective treatment options for MM in recent years. This review overviews the current recommendations for managing MGUS, SMM, MM, SP and NSMM and discusses practices in diagnosing and treating MM.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
14
|
Nouar NH, Yafour N, Youcef BY, Bouhass R, Chekkal M, Brahimi M, Bekadja MA, Sahraoui T. HLA-B*58 and HLA-B*27 Play a Role in the Development of Acute Leukemia: A Case Control Study. Asian Pac J Cancer Prev 2024; 25:169-173. [PMID: 38285781 PMCID: PMC10911740 DOI: 10.31557/apjcp.2024.25.1.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Acute leukemia (AL) constitutes a group of malignant hematological diseases with multifactor origins. Some human leukocyte alleles (HLA) may be important genetic risk factors for development of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). It is still unknown whether there is a relationship between ALL and AML with some alleles of the major histocompatibility complex. Our study looks specifically at western and southwest Algerian populations. METHOD Using the polymerase chain reaction with the sequence specific probe (PCR- SSP) method, we investigated the relationship of HLA-B alleles in 163 Algerian AL patients and 293 controls from the same ethnic origin. The study ran from 2013 - 2020. RESULTS Allele frequencies of HLA-B*27 and HLA-B*58 was higher in AL patients compared with control individuals; p=0.05 and p=0.03 respectively. Interestingly, all patients carrying HLA-B*27 allele and 88% of patients carrying HLA-B*58 allele had AML. However, there were no significant differences when we compared these results with the rest of AL group (HLA-B*X allele) (p=0.387). Response to induction chemotherapy treatment were comparable between the two patient groups 67% and 65% (p=0.978) respectively. CONCLUSION These results suggest that the HLA-B*27 and HLA-B*58, may be factors predisposing individuals to acute leukemia, in west and southwest Algerian patients. A large-scale study is still needed to confirm these findings.
Collapse
Affiliation(s)
- Narimane Habour Nouar
- Laboratory of Developmental Biology and Differentiation, BP 1510 El M’Naouer, Oran 1 Ahmed Ben Bella University, 31000, Oran, Algeria.
| | - Nabil Yafour
- Hospital and University Establishment November 1, 1954, Department of Hematology and Cellular Therapy, BP 4166 Ibn Rochd, University of Oran 1, Ahmed Ben Bella, Faculty of Medicine, 31000 Oran, Algeria.
| | - Bouali Youcef Youcef
- Hospital and University Establishment November 1, 1954, Immunology Department, 31000 Oran, Algeria.
| | - Rachid Bouhass
- Hospital and University Establishment November 1, 1954, Department of Hematology and Cellular Therapy, BP 4166 Ibn Rochd, University of Oran 1, Ahmed Ben Bella, Faculty of Medicine, 31000 Oran, Algeria.
| | - Mohammed Chekkal
- Hospital and University Establishment November 1, 1954, Hemobiology Blood Transfusion Service, Blood Bank. Sincerely, 31000 Oran, Algeria.
| | - Mohamed Brahimi
- Hospital and University Establishment November 1, 1954, Department of Hematology and Cellular Therapy, BP 4166 Ibn Rochd, University of Oran 1, Ahmed Ben Bella, Faculty of Medicine, 31000 Oran, Algeria.
| | - Mohamed Amine Bekadja
- Hospital and University Establishment November 1, 1954, Department of Hematology and Cellular Therapy, BP 4166 Ibn Rochd, University of Oran 1, Ahmed Ben Bella, Faculty of Medicine, 31000 Oran, Algeria.
| | - Tewfik Sahraoui
- Laboratory of Developmental Biology and Differentiation, BP 1510 El M’Naouer, Oran 1 Ahmed Ben Bella University, 31000, Oran, Algeria.
| |
Collapse
|
15
|
Kelesoglu N, Kori M, Yilmaz BK, Duru OA, Arga KY. Differential co-expression network analysis elucidated genes associated with sensitivity to farnesyltransferase inhibitor and prognosis of acute myeloid leukemia. Cancer Med 2023; 12:22420-22436. [PMID: 38069522 PMCID: PMC10757125 DOI: 10.1002/cam4.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease and the most common form of acute leukemia with a poor prognosis. Due to its complexity, the disease requires the identification of biomarkers for reliable prognosis. To identify potential disease genes that regulate patient prognosis, we used differential co-expression network analysis and transcriptomics data from relapsed, refractory, and previously untreated AML patients based on their response to treatment in the present study. In addition, we combined functional genomics and transcriptomics data to identify novel and therapeutically potential systems biomarkers for patients who do or do not respond to treatment. As a result, we constructed co-expression networks for response and non-response cases and identified a highly interconnected group of genes consisting of SECISBP2L, MAN1A2, PRPF31, VASP, and SNAPC1 in the response network and a group consisting of PHTF2, SLC11A2, PDLIM5, OTUB1, and KLRD1 in the non-response network, both of which showed high prognostic performance with hazard ratios of 4.12 and 3.66, respectively. Remarkably, ETS1, GATA2, AR, YBX1, and FOXP3 were found to be important transcription factors in both networks. The prognostic indicators reported here could be considered as a resource for identifying tumorigenesis and chemoresistance to farnesyltransferase inhibitor. They could help identify important research directions for the development of new prognostic and therapeutic techniques for AML.
Collapse
Affiliation(s)
| | - Medi Kori
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
- Department of Biochemistry, Faculty of MedicineMarmara UniversityIstanbulTürkiye
| | - Ozlem Ates Duru
- Department of Nutrition and Dietetics, School of Health SciencesNişantaşı UniversityIstanbulTürkiye
- Department of Chemical Engineering, Faculty of EngineeringBolu Abant İzzet Baysal UniversityBoluTürkiye
| | - Kazim Yalcin Arga
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
| |
Collapse
|
16
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Sim KM, Kim SY, Hwang S, Park S, Lee BR, Nam K, Oh S, Kim I. A new cyclin-dependent kinase-9 inhibitor A09-003 induces apoptosis in acute myeloid leukemia cells with reduction of myeloid cell leukemia sequence-1 protein. Chem Biol Interact 2023; 382:110554. [PMID: 37271215 DOI: 10.1016/j.cbi.2023.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Acute myeloid leukemia (AML) is the most common type of hematological disease in adults, and has a very poor outcome [1]. Based on its wide range of efficacy in AML models, a small-molecule inhibitor of the anti-apoptotic protein BCL-2, venetoclax (ABT-199/GDC-0199), was developed for clinical trials. However, venetoclax showed limited monotherapy activity [2]. The overexpression of myeloid cell leukemia sequence-1 protein (Mcl-1)-due to mutations in Fms-like tyrosine kinase 3 internal tandem duplication (FLT-3 ITD)-was considered to be the main reason for low efficacy of venetoclax in clinical trials [3-5]. To achieve venetoclax sensitization in AML, targeting CDK-9 with venetoclax is a promising therapeutic strategy. In this study, we developed A09-003 as a potent inhibitor of CDK-9, with an IC50 value of 16 nM. A09-003 inhibited cell proliferation in various leukemia cell lines. In particular, the proliferation inhibitory effect of A09-003 was most potent in MV4-11 and Molm-14 cells, harboring the FLT-3 ITD mutation with a high expression profile of Mcl-1. Marker analysis revealed that A09-003 reduced CDK-9 phosphorylation and reduced RNA polymerase II activity with decreased Mcl-1 expression. Finally, combining A09-003 with venetoclax induced apoptotic cell death in a synergistic manner. In summary, this study shows the potential of A09-003 in AML therapy.
Collapse
Affiliation(s)
- Kyoung Mi Sim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - So Young Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Supyong Hwang
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sojung Park
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Bo Ra Lee
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | | | - SeakHee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Inki Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, 88 Olympicro 43 gil, Songpa-Gu, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Alom MM, Faruqe MO, Molla MKI, Rahman MM. Exploring Prognostic Biomarkers of Acute Myeloid Leukemia to Determine Its Most Effective Drugs from the FDA-Approved List through Molecular Docking and Dynamic Simulation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1946703. [PMID: 37359050 PMCID: PMC10287530 DOI: 10.1155/2023/1946703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Acute myeloid leukemia (AML) is a blood cancer caused by the abnormal proliferation and differentiation of hematopoietic stem cells in the bone marrow. The actual genetic markers and molecular mechanisms of AML prognosis are unclear till today. This study used bioinformatics approaches for identifying hub genes and pathways associated with AML development to uncover potential molecular mechanisms. The expression profiles of RNA-Seq datasets, GSE68925 and GSE183817, were retrieved from the Gene Expression Omnibus (GEO) database. These two datasets were analyzed by GREIN to obtain differentially expressed genes (DEGs), which were used for performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI), and survival analysis. The molecular docking and dynamic simulation were performed to identify the most effective drug/s for AML from the drug list approved by the Food and Drug Administration (FDA). By integrating the two datasets, 238 DEGs were identified as likely to be affected by AML progression. GO enrichment analyses exhibited that the upregulated genes were mainly associated with inflammatory response (BP) and extracellular region (CC). The downregulated DEGs were involved in the T-cell receptor signalling pathway (BP), an integral component of the lumenal side of the endoplasmic reticulum membrane (CC) and peptide antigen binding (MF). The pathway enrichment analysis showed that the upregulated DEGs were mainly associated with the T-cell receptor signalling pathway. Among the top 15 hub genes, the expression levels of ALDH1A1 and CFD were associated with the prognosis of AML. Four FDA-approved drugs were selected, and a top-ranked drug was identified for each biomarker through molecular docking studies. The top-ranked drugs were further confirmed by molecular dynamic simulation that revealed their binding stability and confirmed their stable performance. Therefore, the drug compounds, enasidenib and gilteritinib, can be recommended as the most effective drugs against the ALDH1A1 and CFD proteins, respectively.
Collapse
Affiliation(s)
- Md. Murshid Alom
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Khademul Islam Molla
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Motiur Rahman
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
19
|
Montesinos P, Kota V, Brandwein J, Bousset P, Benner RJ, Vandendries E, Chen Y, McMullin MF. A phase IV study evaluating QT interval, pharmacokinetics, and safety following fractionated dosing of gemtuzumab ozogamicin in patients with relapsed/refractory CD33-positive acute myeloid leukemia. Cancer Chemother Pharmacol 2023; 91:441-446. [PMID: 36892676 PMCID: PMC9996548 DOI: 10.1007/s00280-023-04516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE Gemtuzumab ozogamicin (GO) is indicated for treatment of relapsed/refractory (R/R) acute myeloid leukemia (AML). The QT interval, pharmacokinetics (PK), and immunogenicity following the fractionated GO dosing regimen have not been previously assessed. This phase IV study was designed to obtain this information in patients with R/R AML. METHODS Patients aged ≥ 18 years with R/R AML received the fractionated dosing regimen of GO 3 mg/m2 on Days 1, 4, and 7 of each cycle, up to 2 cycles. The primary endpoint was mean change from baseline in QT interval corrected for heart rate (QTc). RESULTS Fifty patients received ≥ 1 dose of GO during Cycle 1. The upper limit of the 2-sided 90% confidence interval for least squares mean differences in QTc using Fridericia's formula (QTcF) was < 10 ms for all time points during Cycle 1. No patients had a post-baseline QTcF > 480 ms or a change from baseline > 60 ms. Treatment-emergent adverse events (TEAEs) occurred in 98% of patients; 54% were grade 3-4. The most common grade 3-4 TEAEs were febrile neutropenia (36%) and thrombocytopenia (18%). The PK profiles of both conjugated and unconjugated calicheamicin mirror that of total hP67.6 antibody. The incidence of antidrug antibodies (ADAs) and neutralizing antibodies was 12% and 2%, respectively. CONCLUSION Fractionated GO dosing regimen (3 mg/m2/dose) is not predicted to pose a clinically significant safety risk for QT interval prolongation in patients with R/R AML. TEAEs are consistent with GO's known safety profile, and ADA presence appears unassociated with potential safety issues. TRIAL REGISTRY Clinicaltrials.gov ID: NCT03727750 (November 1, 2018).
Collapse
Affiliation(s)
- Pau Montesinos
- Department of Hematology, Hospital Universitario y Politècnico La Fe, Avda. Fernando Abril Martorell, 106-Torre A, 4º planta, 46026, Valencia, Spain.
| | - Vamsi Kota
- Department of Medicine: Hematology and Oncology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Joseph Brandwein
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Ying Chen
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, USA
| | - Mary Frances McMullin
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
20
|
Sharan J, Mohapatra S, Chhabra G, Padhi S, Biswal S, Barhate UH, Jena AK. Gingival hyperplasia: An initial oral manifestation of acute myeloid leukemia. J Indian Soc Periodontol 2023; 27:201-206. [PMID: 37152465 PMCID: PMC10159087 DOI: 10.4103/jisp.jisp_54_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 05/22/2022] [Indexed: 05/09/2023] Open
Abstract
Various systemic diseases can manifest oral signs and symptoms early, which may be crucial for diagnosis and outlining the treatment plan. This case report highlights the presentation of acute leukemia (a malignancy of white blood cells) in a young female. An 11-year-old girl presented with gingival overgrowth and bleeding from the gingiva, weakness, and recent history of weight loss. A detailed workup consisting of complete blood count, bone marrow examination, flow cytometric immunophenotyping, cytogenetics, and molecular studies were carried out. The investigations confirmed the infiltration of blast cells of myelomonocytic origin, and a confirmatory diagnosis of acute myeloid leukemia (French-American-British classification M5) was made. The patient was put on induction chemotherapy and responded well. She developed febrile neutropenia following chemotherapy, which was managed conservatively. Gingival overgrowth subsided after the chemotherapy, and at the time of discharge, she was asymptomatic and hemodynamically stable. The oral health-care professionals must recognize that gingival overgrowth/enlargement may represent an initial manifestation of an underlying systematic disease.
Collapse
Affiliation(s)
- Jitendra Sharan
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sonali Mohapatra
- Department of Hemato-Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Gaurav Chhabra
- Department of Pathology with Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Somanath Padhi
- Department of Pathology with Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sandhya Biswal
- Department of Pathology with Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Uday Hemant Barhate
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ashok Kumar Jena
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
21
|
Wang C, Nistala R, Cao M, Pan Y, Behrens M, Doll D, Hammer RD, Nistala P, Chang HM, Yeh ETH, Kang X. Dipeptidylpeptidase 4 promotes survival and stemness of acute myeloid leukemia stem cells. Cell Rep 2023; 42:112105. [PMID: 36807138 PMCID: PMC10432577 DOI: 10.1016/j.celrep.2023.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023] Open
Abstract
Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ravi Nistala
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Madelaine Behrens
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Donald Doll
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Puja Nistala
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology and Toxicology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
22
|
Teixeira A, Carreira L, Abalde-Cela S, Sampaio-Marques B, Areias AC, Ludovico P, Diéguez L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers (Basel) 2023; 15:cancers15051362. [PMID: 36900154 PMCID: PMC10000116 DOI: 10.3390/cancers15051362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís Carreira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Anabela C. Areias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| |
Collapse
|
23
|
Ameri M, Alipour M, Madihi M, Nezafat N. Identification of intrinsically disordered regions in hub genes of acute myeloid leukemia: A bioinformatics approach. Biotechnol Appl Biochem 2022; 69:2304-2322. [PMID: 34812529 DOI: 10.1002/bab.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/30/2021] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Over the past decades, there has been a great challenge in the treatment of AML. A combination of gene expression profiling with computational approaches can lead to the identification of hub genes in AML. However, it is important to study the structure of these hub genes considering their importance in the protein-protein interaction (PPI) network of specific cancer. In this study, we designed an integrated method to analyze the presence of intrinsically disordered regions (IDRs) in selected hub genes of AML. A gene expression profile of AML was obtained from Gene Expression Omnibus (GEO) database. Further analysis identified differentially expressed genes (DEGs) in AML. Additionally, the top 15 hub genes following construction and analysis of the PPI network of DEGs were selected. Validation of hub genes revealed that there is a reverse relationship between overexpression of FLT3, PPBP, and PF4 genes and the survival of AML patients. Based on IDRs investigation, FLT3 and PF4 are partially disordered, while PPBP is mostly disordered. Through clustering the network into structural modules, we identified two important modules in the PPI network of DEGs that showed the important position of PPBP in module 1. Based on further analysis of protein flexibility and its important role in biological processes, we suggest that PPBP can be considered as a potential drug target in AML.
Collapse
Affiliation(s)
- Mehrdad Ameri
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Madihi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Rungjirajittranon T, Siriwannangkul T, Kungwankiattichai S, Leelakanok N, Rotchanapanya W, Vittayawacharin P, Mekrakseree B, Kulchutisin K, Owattanapanich W. Clinical Outcomes of Acute Myeloid Leukemia Patients Harboring the RUNX1 Mutation: Is It Still an Unfavorable Prognosis? A Cohort Study and Meta-Analysis. Cancers (Basel) 2022; 14:5239. [PMID: 36358658 PMCID: PMC9659296 DOI: 10.3390/cancers14215239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/05/2024] Open
Abstract
Acute myeloid leukemia (AML) with mutated RUNX1 (RUNX1mut) is considered to have an unfavorable prognosis. However, recent studies have reported comparable survival outcomes with wild-type RUNX1 (RUNX1wt). To assess the clinical outcomes of AML with and without RUNX1mut, we performed a prospective cohort study and systematic review and meta-analysis. The study enrolled 135 patients (27 with RUNX1mut; 108 with RUNX1wt). There were no significant differences in the median OS and RFS of the RUNX1mut and RUNX1wt groups (9.1 vs. 12.2 months; p = 0.268 and 7.8 vs. 14.6 months; p = 0.481, respectively). A subgroup analysis of de novo AML patients with intermediate-risk cytogenetics showed similar outcomes. Our meta-analysis pooled data from 23 studies and our study. The complete remission rate was significantly lower in the RUNX1mut group (pooled odds ratio: 0.42). The OS, RFS, and event-free survival rates also favored the RUNX1wt group (pooled risk ratios: 1.36, 1.37, and 1.37, respectively). A subgroup analysis of de novo AML patients with intermediate-risk cytogenetics demonstrated nearly identical OS and RFS outcomes. This study confirms that patients with AML and RUNX1mut had poor prognoses. Nonetheless, in de novo AML with intermediate-risk cytogenetics, the survival outcomes of both groups were comparable.
Collapse
Affiliation(s)
- Tarinee Rungjirajittranon
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Theerapat Siriwannangkul
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Smith Kungwankiattichai
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | | | - Pongthep Vittayawacharin
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
25
|
Su X, Ma G, Bai X, Zhang J, Li M, Zhang F, Sun T, Ma D, Lu F, Ji C. The prognostic marker FLVCR2 associated with tumor progression and immune infiltration for acute myeloid leukemia. Front Cell Dev Biol 2022; 10:978786. [PMID: 36313565 PMCID: PMC9597318 DOI: 10.3389/fcell.2022.978786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.
Collapse
Affiliation(s)
- Xiuhua Su
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
26
|
Abohassan M, Alshahrani M, Alshahrani MY, Rajagopalan P. Insilco and Invitro approaches identify novel dual PI3K/AKT pathway inhibitors to control acute myeloid leukemia cell proliferations. Med Oncol 2022; 39:249. [PMID: 36209300 DOI: 10.1007/s12032-022-01846-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Acute myeloid leukemia (AML) is characterized by disruption of intracellular signaling due to aberration of extracellular signaling pathways, namely PI3K/AKT cascade, by dysregulating erythropoiesis and myelopoiesis. Therefore, inhibition of PI3K/AKT, either individually, or by dual inhibitors, is shown to be effective in suppression of tumorigenesis. To increase the therapeutic viability and decrease adverse effects, including cytotoxicity due to off-target kinase inhibitions, customized targeted pharmacological agents are needed that would have greater treatment potential. In this work, using an interdisciplinary approach, we have identified dual inhibitors targeted to PI3K and AKT to significantly repress the cell proliferation in AML cancers. Diversity-based high-throughput virtual screening (D-HTVS) technique followed by conventional docking approach identified small molecules from ChemBridge library, having high binding affinity for PI3KCG subunit. Further computational screening of top identified PI3K-specific lead molecules predicts dual inhibitors with high binding affinity for AKT. To rule out the possibility for cross-reaction/off-target effects of identified small molecules, lead compounds having nil or negligible binding to PI3KCA- and PI3KCB subunits were chosen. Computational screening, enzyme inhibition and cell proliferation assays show compound C16,5-{[(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)amino]methylene}-1-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione has better affinity for PI3KCG, delta, and AKT kinases compared to their respective known/established inhibitors, and has significant anti-cell proliferation activity in AML cells with a GI50 values of 77.25 nM and 49.65 nM in THP-1 and HL-60 cells, respectively. This work proposes a novel dual inhibitor that selectively targets PI3K/AKT and suppresses cell proliferation in AML cells as a potential lead molecule for treating AML cancers.
Collapse
Affiliation(s)
- Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
27
|
Ullah H, Zhang B, Sharma NK, McCrea PD, Srivastava Y. In-silico probing of AML related RUNX1 cancer-associated missense mutations: Predicted relationships to DNA binding and drug interactions. Front Mol Biosci 2022; 9:981020. [PMID: 36090034 PMCID: PMC9454315 DOI: 10.3389/fmolb.2022.981020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
The molecular consequences of cancer associated mutations in Acute myeloid leukemia (AML) linked factors are not very well understood. Here, we interrogated the COSMIC database for missense mutations associated with the RUNX1 protein, that is frequently mis-regulated in AML, where we sought to identify recurrently mutated positions at the DNA-interacting interface. Indeed, six of the mutated residues, out of a total 417 residues examined within the DNA binding domain, evidenced reduced DNA association in in silico predictions. Further, given the prominence of RUNX1’s compromised function in AML, we asked the question if the mutations themselves might alter RUNX1’s interaction (off-target) with known FDA-approved drug molecules, including three currently used in treating AML. We identified several AML-associated mutations in RUNX1 that were calculated to enhance RUNX1’s interaction with specific drugs. Specifically, we retrieved data from the COSMIC database for cancer-associated mutations of RUNX1 by using R package “data.table” and “ggplot2” modules. In the presence of DNA and/or drug, we used docking scores and energetics of the complexes as tools to evaluate predicted interaction strengths with RUNX1. For example, we performed predictions of drug binding pockets involving Enasidenib, Giltertinib, and Midostaurin (AML associated), as well as ten different published cancer associated drug compounds. Docking of wild type RUNX1 with these 13 different cancer-associated drugs indicates that wild-type RUNX1 has a lower efficiency of binding while RUNX1 mutants R142K, D171N, R174Q, P176H, and R177Q suggested higher affinity of drug association. Literature evidence support our prediction and suggests the mutation R174Q affects RUNX1 DNA binding and could lead to compromised function. We conclude that specific RUNX1 mutations that lessen DNA binding facilitate the binding of a number of tested drug molecules. Further, we propose that molecular modeling and docking studies for RUNX1 in the presence of DNA and/or drugs enables evaluation of the potential impact of RUNX1 cancer associated mutations in AML.
Collapse
Affiliation(s)
- Hanif Ullah
- Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoyun Zhang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan, India
| | - Pierre D. McCrea
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yogesh Srivastava
- University of Chinese Academy of Sciences, Beijing, China
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Genome Regulation Laboratory; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Yogesh Srivastava,
| |
Collapse
|
28
|
Kang JB, Chen L, Leng XJ, Wang JJ, Cheng Y, Wu SH, Ma YY, Yang LJ, Cao YH, Yang X, Tong ZJ, Wu JZ, Wang YB, Zhou H, Liu JC, Ding N, Dai WC, Yu YC, Xue X, Sun SL, Dai XB, Chang L, Wang XL, Li NG, Shi ZH. Synthesis and biological evaluation of 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine covalent inhibitors as potential agents for the treatment of acute myeloid leukemia. Bioorg Med Chem 2022; 70:116937. [PMID: 35863236 DOI: 10.1016/j.bmc.2022.116937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation has been strongly associated with increased risk of relapse, and the irreversible covalent FLT3 inhibitors had the potential to overcome the drug-resistance. In this study, a series of simplified 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine derivatives containing two types of Michael acceptors (vinyl sulfonamide, acrylamide) were conveniently synthesized to target FLT3 and its internal tandem duplications (ITD) mutants irreversibly. The kinase inhibitory activities showed that compound C14 displayed potent inhibition activities against FLT3 (IC50 = 256 nM) and FLT3-ITD by 73 % and 25.34 % respectively, at the concentration of 1 μM. The antitumor activities indicated that C14 had strong inhibitory activity against the human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 507 nM) harboring FLT3-ITD mutant, as well as MV4-11 (IC50 = 325 nM) bearing FLT3-ITD mutation. The biochemical analyses showed that these effects were related to the ability of C14 to inhibit FLT3 signal pathways, and C14 could induce apoptosis in MV4-11 cell as demonstrated by flow cytometry. Fortunately, C14 showed very weak potency against FLT3-independent human cervical cancer cell line HL-60 (IC50 > 10 μM), indicating that it might have no off-target toxic effects. In light of these data, compound C14 represents a novel covalent FLT3 kinase inhibitor for targeted therapy of AML.
Collapse
Affiliation(s)
- Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yang Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Li-Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu-Hao Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Bin Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
29
|
Pan J, Jiang Y, Li C, Jin T, Yu K, Jin Z. Characteristics of Pyroptosis-Related Subtypes and Novel Scoring Tool for the Prognosis and Chemotherapy Response in Acute Myeloid Leukemia. Front Oncol 2022; 12:898236. [PMID: 35756629 PMCID: PMC9229173 DOI: 10.3389/fonc.2022.898236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is usually associated with poor prognosis and low complete remission (CR) rate due to individual biological heterogeneity. Pyroptosis is a special form of inflammatory programmed cell death related to the progression, treatment response, and prognosis of multiple tumors. However, the potential connection of pyroptosis-related genes (PRGs) and AML still remains unclear. We described the genetic and transcriptional alterations of PRGs in 151 AML samples and presented a consensus clustering of these patients into two subtypes with distinct immunological and prognostic characteristics. Cluster A, associated with better prognosis, was characterized by relatively lower PRG expression, activated immune cells, higher immune scores in the tumor microenvironment (TME), and downregulation of immunotherapy checkpoints. Subsequently, a PRG score was constructed to predict overall survival (OS) of AML patients by using univariate and multivariate Cox regression analysis, and its immunological characteristics and predictive capability were further validated by 1,054 AML samples in external datasets. Besides an immune-activated status, low-PRG score cohorts exhibited higher chemotherapeutic drug sensitivity and significant positive correlation with the cancer stem cell (CSC) index. Combined with age, clinical French-American-British (FAB) subtypes, and PRG score, we successfully constructed a nomogram to effectively predict the 1-/3-/5-year survival rate of AML patients, and the predictive capability was further validated in multiple external datasets with a high area under the curve (AUC) value. The various transcriptomic analysis helps us screen significant pyroptosis-related signatures of AML and provide a new clinical application of PRG scores in predicting the prognosis and benefits of treatment for AML patients.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyan Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Jin
- Department of Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Gatua M, Navari M, Ong’ondi M, Onyango N, Kaggia S, Rogena E, Visani G, Abinya NA, Piccaluga PP. Molecular Profiling of Kenyan Acute Myeloid Leukemia Patients. Front Genet 2022; 13:843705. [PMID: 35836575 PMCID: PMC9274457 DOI: 10.3389/fgene.2022.843705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is an infrequent disease, and it is associated with high morbidity and mortality. It harbors a unique configuration of cytogenetic abnormalities and molecular mutations that can be detected using microscopic and molecular methods respectively. These genetic tests are core elements of diagnosis and prognostication in high-income countries. They are routinely incorporated in clinical decision making, allowing for the individualization of therapy. However, these tests are largely inaccessible to most patients in Kenya and therefore no data has been reported on this group of patients. The main purpose of this study is to describe the cytogenetic and molecular abnormalities of acute myeloid leukemia patients seen at the hemato-oncology unit of Kenyatta National Hospital. A cross-sectional descriptive study was carried out over a 3-month period on ten patients with a diagnosis of AML. Social demographics and clinical data were collected through a study proforma. A peripheral blood sample was collected for conventional metaphase G-banding technique and next generation sequencing. Particularly, targeted DNA sequencing (Illumina myeloid panel) and whole exome sequencing (WES) were performed. Cytogenetic analysis failed in 10/10 cases. Targeted sequencing was successfully obtained in 8 cases, whereas WES in 7. Cytogenetic studies yielded no results. There were 20 mutations detected across 10 commonly mutated genes. All patients had at least one clinically relevant mutation. Based on ELN criteria, NGS identified three patients with high-risk mutations, affecting TP53 (n = 2) and RUNX1 (n = 1). One patient was classified as favorable (PML-RARA) while 4 were standard risk. However, WT1 mutations associated with unfavorable prognosis were recorded in additional 2 cases. WES showed concordant results with targeted sequencing while unveiling more mutations that warrant further attention. In conclusion, we provide the first molecular profiling study of AML patients in Kenya including application of advanced next generation sequencing technologies, highlighting current limitations of AML diagnostics and treatment while confirming the relevance of NGS in AML characterization.
Collapse
Affiliation(s)
- Mercy Gatua
- Biobank of Research, IRCCS S. Orsola-Malpighi Academic Hospital, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, University of Bologna School of Medicine, Bologna, Italy
- Kenyatta National Hospital, Nairobi, Kenya
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Noel Onyango
- Nairobi Hospital, University of Nairobi, Nairobi, Kenya
| | - Serah Kaggia
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Emily Rogena
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Giuseppe Visani
- Hematology and Stem Cell Transplantation, AORMN, Pesaro, Italy
| | | | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS S. Orsola-Malpighi Academic Hospital, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, University of Bologna School of Medicine, Bologna, Italy
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
- Nanchang University, Nanchang, China
- *Correspondence: Pier Paolo Piccaluga,
| |
Collapse
|
31
|
Central Diabetes Insipidus Induced by Acute Myeloid Leukemia with DNMT3A Mutation. Case Rep Endocrinol 2022; 2022:2750146. [PMID: 35656122 PMCID: PMC9152344 DOI: 10.1155/2022/2750146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Central diabetes insipidus (CDI) is an uncommon complication of acute myeloid leukemia (AML). Patients present with polyuria either preceding or at the time of diagnosis of AML. We describe the case of a 36-year-old male who presented with a subacute onset of polyuria, polydipsia, nocturia, and fatigue. After an extensive workup, he was diagnosed with AML/CMML (chronic myelomonocytic leukemia) with a normal karyotype with DNMT3A, CBFB, and PTPN11 mutations. Further workup of the polyuria with a water deprivation test helped confirm the diagnosis of CDI along with MRI findings suggestive of hypophysitis. In this report, we analyze the clinical workup for AML and CDI and report the possibility of extramedullary leukemic infiltration associated with DNMT3A mutation, which has been reported as one of the mechanisms in the existing literature. We also discuss other theories hypothesized to cause CDI in AML patients with abnormal karyotypes. Our patient progressed to AML from CMML-2 after a cycle of decitabine, with confirmed gingival and presumed central nervous system (CNS) involvement. He is in minimal residual disease (MRD)-negative complete remission after induction with a CNS-active acute lymphoblastic leukemia-2 regimen. He also received double umbilical cord blood transplantation, conditioned with cyclophosphamide, fludarabine, thiotepa, and total body irradiation (TBI) of 4 Gy. This was complicated by engraftment syndrome for which he is currently being managed. CDI of the patient was corrected by desmopressin administration.
Collapse
|
32
|
El-Meligui YM, Hassan NM, Kassem AB, Gouda NA, Mohanad M, Hamouda MA, Salahuddin A. Impact of HOXB4 and PRDM16 Gene Expressions on Prognosis and Treatment Response in Acute Myeloid Leukemia Patients. Pharmgenomics Pers Med 2022; 15:663-674. [PMID: 35782688 PMCID: PMC9241994 DOI: 10.2147/pgpm.s368640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common type of leukemia among adults and is characterized by various genetic abnormalities. HOXB4 and PRDM16 are promising markers of AML. Our objective is to assess the potential roles of HOXB4 and PRDM16 as prognostic and predictive markers in newly diagnosed AML patients and determine the correlation between their expressions and other prognostic markers as FLT3-ITD, NPM1 exon 12 mutations, response to treatment, and patient’s survival. Methods This study included 83 de novo AML adult patients. All patients were subjected to clinical, morphological, cytochemical, and molecular analysis to detect HOXB4 and PRDM16 gene expressions and FLT3-ITD, NPM1 exon 12 mutations. Results The results showed that a low expression of HOXB4 was found in 31.3% of AML patients, whereas a high expression of PRDM16 was evident in 33.8% of AML patients. FLT3-ITD mutations were detected in 6 patients (7.2%), while NPM1 exon 12 mutations were detected in 7 patients (19.4%) out of 36 patients with intermediate genetic risk. Out of the 50 patients who achieved complete remission (CR), relapse occurred in 16% of the cases. Low expression of HOXB4 and high expression of PRDM16 were associated with CR of 32% and 28%, respectively, and a short overall survival (OS) and disease-free survival (DFS). Conclusion Further larger study should be conducted to verify that high PRDM16 and low HOXB4 gene expressions could be used as a poor prognostic predictor for AML. The correlation between PRDM16 and HOXB4 gene expressions and FLT3-ITD and NPM1 exon 12 mutations might have a role on CR, relapse, OS, and, however, this should be clarified in analysis with a larger number of samples.
Collapse
Affiliation(s)
- Yomna M El-Meligui
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amira B Kassem
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Correspondence: Amira B Kassem, Email
| | - Nora A Gouda
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Manal A Hamouda
- Clinical Pharmacy Department, Faculty of Pharmacy, Menoufia University, Shibin El Kom, Egypt
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
33
|
Jasinski-Bergner S, Blümke J, Bauer M, Skiebe SL, Mandelboim O, Wickenhauser C, Seliger B. Novel approach to identify putative Epstein-Barr-virus microRNAs regulating host cell genes with relevance in tumor biology and immunology. Oncoimmunology 2022; 11:2070338. [PMID: 35529676 PMCID: PMC9067544 DOI: 10.1080/2162402x.2022.2070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
The human Epstein-Barr virus is associated with several human solid and hematopoietic malignancies. However, the underlying molecular mechanisms including virus-encoded microRNAs (miRs), which lead to the malignant transformation of infected cells and immune evasion of EBV-associated tumors, have not yet been characterized. The expression levels of numerous known EBV-specific miRs and their suitability as diagnostic and/or prognostic markers were determined in different human EBV-positive tissues followed by in silico analyses to identify putative EBV-miR-regulated target genes, thereby offering a suitable screening strategy to overcome the limited available data sets of EBV-miRs and their targeted gene networks. Analysis of microarray data sets from healthy human B cells and malignant-transformed EBV-positive B cells of patients with Burkitt's lymphoma revealed statistically significant (p < 0.05) deregulated genes with known functions in oncogenic properties, immune escape and anti-tumoral immune responses. Alignments of in vivo and in silico data resulted in the prediction of putative candidate EBV-miRs and their target genes. Thus, a combinatorial approach of bioinformatics, transcriptomics and in situ expression analyses is a promising tool for the identification of EBV-miRs and their potential targets as well as their eligibility as markers for EBV detection in different EBV-associated human tissue.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Saskia Luise Skiebe
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem91120, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
34
|
Saadi MI, Tahmasebijaroubi F, Noshadi E, Rahimikian R, Karimi Z, Owjfard M, Niknam A, Abdolyousefi EN, Salek S, Tabrizi R, Jamali E. Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation. South Asian J Cancer 2022; 11:346-352. [PMID: 36756106 PMCID: PMC9902101 DOI: 10.1055/s-0042-1742593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Elham JamaliObjectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients. Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method. Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French-American-British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression. Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Esmat Noshadi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Rahimikian
- Department of Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahed Karimi
- Hematology and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| | - Ahmad Niknam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Salek
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran,Non Communicable Diseases Research Center (NCDC), Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Jamali
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| |
Collapse
|
35
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|
36
|
Russell-Smith TA, Gurskyte L, Muresan B, Mamolo CM, Gezin A, Cappelleri JC, Heeg B. Efficacy of non-intensive therapies approved for relapsed/refractory acute myeloid leukemia: a systematic literature review. Future Oncol 2022; 18:2029-2039. [PMID: 35196866 DOI: 10.2217/fon-2021-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: De novo relapsed and/or refractory acute myeloid leukemia (rrAML) has limited treatment options for patients not eligible ('unfit') to receive intensive chemotherapy-based interventions. The authors aimed to summarize outcomes for licensed therapies in this setting. Materials & methods: A systematic literature review identified licensed therapies in this setting. A feasibility assessment was made to conduct a network meta-analysis to evaluate comparative efficacy. Results: Seven unique trials were identified. Median survival months were 13.8 for gemtuzumab ozogamicin (GO), 9.3 for gilteritinib (FLT3 mutated rrAML), 5.6 for low-dose cytarabine and 3.2 for best supportive care; transplant rates with gilteritinib and GO were 25.5% and 19%, respectively. A network meta-analysis was not feasible. Conclusion: There remains a high unmet need in de novo rrAML patients not eligible for intensive therapy, with GO and gilteritinib (only FLT3 mutated AML) providing the best current options.
Collapse
Affiliation(s)
| | - Laura Gurskyte
- Ingress Health, a company of Cytel, Weena 316-318, 3012 NJ, Rotterdam, The Netherlands
| | - Bogdan Muresan
- Ingress Health, a company of Cytel, Weena 316-318, 3012 NJ, Rotterdam, The Netherlands
| | | | - Ana Gezin
- Ingress Health, a company of Cytel, Weena 316-318, 3012 NJ, Rotterdam, The Netherlands
| | | | - Bart Heeg
- Ingress Health, a company of Cytel, Weena 316-318, 3012 NJ, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Rostami M, kharajo RS, Parsa-kondelaji M, Ayatollahi H, Sheikhi M, Keramati MR. Altered expression of NEAT1 variants and P53, PTEN, and BCL2 genes in Patients with Acute Myeloid Leukemia. Leuk Res 2022; 115:106807. [DOI: 10.1016/j.leukres.2022.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
38
|
Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia 2022; 36:403-415. [PMID: 34381181 DOI: 10.1038/s41375-021-01375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs' infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.
Collapse
|
39
|
Small Non-Coding RNAs in Leukemia. Cancers (Basel) 2022; 14:cancers14030509. [PMID: 35158777 PMCID: PMC8833386 DOI: 10.3390/cancers14030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
In 2020, more than 60,500 people were diagnosed with leukemia in the USA, and more than 23,000 died. The incidence of leukemia is still rising, and drug resistance development is a serious concern for patients' wellbeing and survival. In the past two decades, small non-coding RNAs have been studied to evaluate their functions and possible role in cancer pathogenesis. Small non-coding RNAs are short RNA molecules involved in several cellular processes by regulating the expression of genes. An increasing body of evidence collected by many independent studies shows that the expression of these molecules is tissue specific, and that their dysregulation alters the expression of genes involved in tumor development, progression and drug response. Indeed, small non-coding RNAs play a pivotal role in the onset, staging, relapse and drug response of hematological malignancies and cancers in general. These findings strongly suggest that small non-coding RNAs could function as biomarkers and possible targets for therapy. Thus, in this review, we summarize the regulatory mechanisms of small non-coding RNA expression in different types of leukemia and assess their potential clinical implications.
Collapse
|
40
|
Next-Generation Sequencing Revealed a Distinct Immunoglobulin Repertoire with Specific Mutation Hotspots in Acute Myeloid Leukemia. BIOLOGY 2022; 11:biology11020161. [PMID: 35205028 PMCID: PMC8869405 DOI: 10.3390/biology11020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Identifying new molecular targets is of great importance for prognosis prediction and target therapy of acute myeloid leukemia (AML). We previously reported on frequent expression of immunoglobulin (Ig) in myeloblasts. In this study, we investigated the clinical significance of Ig expression in sorted myeloblasts from 59 AML patients. We found that a higher level of AML-derived Ig expression correlated with a significantly shorter disease-free survival. Furthermore, we performed a comprehensive analysis of AML-derived Ig repertoire by next-generation sequencing (NGS) in 16 patients. The transcripts of AML-derived Ig shared some features with B cell-derived Ig, such as a typical V(D)J recombination and high mutation rates. However, they also showed distinct features. In contrast to the huge diversity of classical Ig, the VH-D-JH rearrangements used by AML-derived Ig were biased in each AML patient. In particularly, the Vκ-Jκ rearrangements were skewed in both AML blasts and normal peripheral blood mononucleated cells (PBMCs). However, AML-derived IGK showed high somatic mutation rates (>2%), while IGK in normal PBMCs rarely displayed hypermutation (<2%). More importantly, we identified five mutation hotspots at serine codons of IGKV3-20 in AML blasts, which may be involved in leukemogenesis and serve as a novel marker for disease monitoring and target therapy. Abstract Immunoglobulin (Ig) is known as a hallmark of B-lymphocytes exerting antibody functions. However, our previous studies demonstrated that myeloblasts from acute myeloid leukemia (AML) patients could also express Ig with distinct roles. Here, we quantified Ig (IGHG and IGK) transcripts by real-time PCR and performed a comprehensive analysis of Ig repertoire (both heavy chains and light chains) in AML blasts. We found that Ig was frequently expressed by AML blasts. A higher level of AML-derived IGHG expression correlated with a significantly shorter disease-free survival. Next-generation sequencing revealed dysregulated transcripts of all five Ig classes (IGHA, IGHD, IGHE, IGHG, and IGHM) and two Ig types (IGK and IGL) in AML. VH-D-JH rearrangements in myeloblasts were biased with individual specificity rather than generally diverse as in B-cells. Compared to AML-derived IgH, AML-derived IGK was more conserved among different AML samples. The frequently shared Vκ-Jκ patterns were IGKV3-20*01/IGKJ1*01, IGKV2D-28*01/IGKJ1*01, and IGKV4-1*01/IGKJ1*01. Moreover, AML-derived IGK was different from classical IGK in B-cells for the high mutation rates and special mutation hotspots at serine codons. Findings of the distinct Ig repertoire in myeloblasts may facilitate the discovery of a new molecular marker for disease monitoring and target therapy.
Collapse
|
41
|
Ahmed OM, Ahmed NA, Yassin NYS, Abd Elhaliem ER. Modulatory Effects of Stem Cells on Oxidative Stress and Antioxidant Defense System in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1089-1104. [DOI: 10.1007/978-981-16-5422-0_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
42
|
Ahmed OM, Ahmed NA, Yassin NYS, Abd Elhaliem ER. Modulatory Effects of Stem Cells on Oxidative Stress and Antioxidant Defense System in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1-16. [DOI: 10.1007/978-981-16-1247-3_54-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/02/2023]
|
43
|
Klein K, Beverloo HB, Zimmermann M, Raimondi SC, von Neuhoff C, de Haas V, van Weelderen R, Cloos J, Abrahamsson J, Bertrand Y, Dworzak M, Fynn A, Gibson B, Ha SY, Harrison CJ, Hasle H, Elitzur S, Leverger G, Maschan A, Razzouk B, Reinhardt D, Rizzari C, Smisek P, Creutzig U, Kaspers GJL. Prognostic significance of chromosomal abnormalities at relapse in children with relapsed acute myeloid leukemia: A retrospective cohort study of the Relapsed AML 2001/01 Study. Pediatr Blood Cancer 2022; 69:e29341. [PMID: 34532968 DOI: 10.1002/pbc.29341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND In addition to treatment response, cytogenetic and molecular aberrations are the most important prognostic factors in children with de novo acute myeloid leukemia (AML). However, little is known about cytogenetics at the time of relapse. METHODS This international study analyzed the prognostic value of cytogenetic profiles and karyotypic changes in pediatric relapsed AML in relation to the probability of event-free (pEFS) and overall survival (pOS). For this purpose, cytogenetic reports from all patients registered on the Relapsed AML 2001/01 Study were reviewed and classified. RESULTS Cytogenetic information at relapse was available for 403 (71%) of 569 registered patients. Frequently detected aberrations at relapse were t(8;21)(q22;q22) (n = 60) and inv(16)(p13.1q22)/t(16;16)(p13.1;q22) (n = 24), both associated with relatively good outcome (4-year pOS 59% and 71%, respectively). Monosomy 7/7q-, t(9;11)(p22;q23), t(10;11)(p12;q23), and complex karyotypes were associated with poor outcomes (4-year pOS 17%, 19%, 22%, and 22%, respectively). Of 261 (65%) patients for whom cytogenetic data were reliable at both diagnosis and relapse, pEFS was inferior for patients with karyotypic instability (n = 128, 49%), but pOS was similar. Unstable karyotypes with both gain and loss of aberrations were associated with inferior outcome. Early treatment response, time to relapse, and cytogenetic profile at time of relapse were the most important prognostic factors, both outweighing karytoypic instability per se. CONCLUSION The cytogenetic subgroup at relapse is an independent risk factor for (event-free) survival. Cytogenetic assessment at the time of relapse is of high importance and may contribute to improved risk-adapted treatment for children with relapsed AML.
Collapse
Affiliation(s)
- Kim Klein
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Zimmermann
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Susana C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christine von Neuhoff
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Valérie de Haas
- Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Romy van Weelderen
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jacqueline Cloos
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Yves Bertrand
- Children's Leukemia Cooperative Group/European Organisation for Research and Treatment of Cancer, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Alcira Fynn
- Grupo Argentino de Tratamiento de la Leucemia Aguda, Children's Hospital La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Gibson
- Department of Paediatric Haematology, United Kingdom Childhood Leukaemia Study Group, Royal Hospital for Children, Glasgow, UK
| | - Shau-Yin Ha
- Department of Pediatrics/Pediatric oncology, Hong Kong Children's Hospital, Hong Kong, China
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sarah Elitzur
- Schneider Children's Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Leverger
- Hematopathology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Alexei Maschan
- Oncology and Immunology, Dmitriy Rogachev Federal Center for Pediatric Hematology, Moscow, Russia
| | - Bassem Razzouk
- Children's Center for Cancer and Blood Diseases, Peyton Manning Children's Hospital at St. Vincent, Indianapolis, Indiana, USA
| | - Dirk Reinhardt
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, S. Gerardo Hospital, Monza, Italy
| | - Pter Smisek
- Department of Pediatric Hematology and Oncology, Carles University in Prague/Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ursula Creutzig
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Gertjan J L Kaspers
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
44
|
Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M, Kavianpour M. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell Int 2021; 21:705. [PMID: 34953494 PMCID: PMC8710012 DOI: 10.1186/s12935-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effective therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcinogenesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. On the other hand, interaction with other pathways like Wnt, TGF-β, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, which this process could be regulated via other signaling pathways. This review article aimed to shed light on how the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
Collapse
Affiliation(s)
| | - Bentolhoda Hayatmoghadam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Jamali
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Golmohammadi
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Ahmedy IA, Tayel SI. Prognostic impact of homeobox and PR domain containing protein 16 genes expressions in patients with acute myeloid leukemia. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Russell-Smith TA, Brockbank J, Mamolo C, Knight C. Cost Effectiveness of Gemtuzumab Ozogamicin in the First-Line Treatment of Acute Myeloid Leukaemia in the UK. PHARMACOECONOMICS - OPEN 2021; 5:677-691. [PMID: 34181204 PMCID: PMC8611158 DOI: 10.1007/s41669-021-00278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The phase III ALFA-0701 study demonstrated the efficacy and safety of gemtuzumab ozogamicin (GO) versus standard of care (SOC) chemotherapy (daunorubicin and cytarabine) for the treatment of adult patients with de novo CD33+ acute myeloid leukaemia (AML). This study analysed the cost-effectiveness of GO from the perspective of the UK health care payer. METHODS A cohort state-transition model was developed to estimate direct health care costs and quality-adjusted life-years (QALYs) over a lifetime time horizon from AML diagnosis to death using monthly cycles. Data on complete remission, overall survival, relapse-free survival (RFS), haematopoietic stem-cell transplantation, and adverse events for GO plus SOC versus SOC were obtained from the ALFA-0701 study. Overall survival and RFS were extrapolated beyond the trial horizon using mixture cure models. Unit costs were obtained from standard national sources. Utilities were identified in a systematic literature review. Costs and outcomes were discounted at 3.5%. Analyses were performed for the base-case population, excluding patients with an unfavourable cytogenetic profile, and the overall population. RESULTS For the base-case and overall populations respectively, incremental per-patient costs (£13,456 and £14,773) and QALYs (0.99 and 0.68) for GO plus SOC versus SOC resulted in incremental cost-effectiveness ratios (ICERs) of £13,561 and £21,819 per QALY gained. The mean probabilistic ICERs were £14,217 and £23,245, respectively. Univariate sensitivity analyses supported the robustness of the results. CONCLUSIONS The ICERs for both populations met NICE's £20,000-£30,000 willingness-to-pay threshold for medicines and supported the current approval for GO.
Collapse
Affiliation(s)
| | - James Brockbank
- Department of Health Economics, RTI Health Solutions, Manchester, UK
| | | | | |
Collapse
|
47
|
Singh V, Uddin MH, Zonder JA, Azmi AS, Balasubramanian SK. Circular RNAs in acute myeloid leukemia. Mol Cancer 2021; 20:149. [PMID: 34794438 PMCID: PMC8600814 DOI: 10.1186/s12943-021-01446-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although mechanistic studies clarifying the molecular underpinnings of AML have facilitated the development of several novel targeted therapeutics, most AML patients still relapse. Thus, overcoming the inherent and acquired resistance to current therapies remains an unsolved clinical problem. While current diagnostic modalities are primarily defined by gross morphology, cytogenetics, and to an extent, by deep targeted gene sequencing, there is an ongoing demand to identify newer diagnostic, therapeutic and prognostic biomarkers for AML. Recent interest in exploring the role of circular RNA (circRNA) in elucidating AML biology and therapy resistance has been promising. This review discerns the circular RNAs’ evolving role on the same scientific premise and attempts to identify its potential in managing AML.
Collapse
Affiliation(s)
- Vijendra Singh
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Jeffrey A Zonder
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Suresh Kumar Balasubramanian
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA.
| |
Collapse
|
48
|
Awan UA, Farooq N, Sarwar A, Jehangir HMS, Hashmi MS, Alamgir M, Waheed F, Khurram M, Ahmed H, Khattak AA, Afzal MS. Cytogenetic abnormalities in patients with hematological malignancies in Lahore city, Pakistan. BRAZ J BIOL 2021; 83:e249911. [PMID: 34669802 DOI: 10.1590/1519-6984.249911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Hematological and hematopoietic cells malignancies of the genes and hematopoietic cells are associated with the genetic mutation, often at the chromosomal level. The standard cytogenetic study is widely accepted as one of the main diagnostics and prognostic determinants in patients. Therefore, the current descriptive and cross-sectional study sought to determine the cytogenetic analysis of frequent hematological malignancies in Pakistan. A total of 202 peripheral bone marrow or blood samples from patients with benign and malignant hematological malignancy were taken using a conventional G-banding technique. Among enrolled patients, the mean age was 21.5 years ± 23.4, and gender-wise distribution showed a marked predominance of the male 147 (73%) population compared to the female 55 (27%). Patients in the age group (2-10 years) had the highest frequency, 48 (24%), of hematological neoplasms, followed by age (11-20 years) with 40 (20%). Normal karyotypes (46, XX/46, XY) was found in 51% (n=103) patients. Furthermore, the frequency of complex karyotype was 30 (15%), while normal was seen in 171 (85%) patients. Pre-B Acute Lymphoblastic Leukemia (Pre-B ALL) was the most prevalent malignancy of 66 (33%), followed by Chronic Myelogenous Leukemia (CML) of 41 (20%) and Acute Lymphocytic Leukemia of 29 (14%). Translocation was the most prevalent 50 (25%), followed by hypotriploidy 14 (7%) and monosomy 8 (4%) on chromosome aberration analysis. In addition, t(9:22) translocation was found to be 20 (10%) in CML, with the majority in the age group (31-40 years). This study recommends that karyotyping should be tested frequently in hematological conditions because it may provide insight into the relative chromosomal changes associated with particular malignancies.
Collapse
Affiliation(s)
- U A Awan
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - N Farooq
- Lahore Medical and Dental College, Lahore, Pakistan
| | - A Sarwar
- Gujranwala Medical College, Gujranwala, Punjab, Pakistan
| | | | - M S Hashmi
- Bahria International Hospital, Lahore, Pakistan
| | - M Alamgir
- Punjab Institute of Cardiology, School of Allied Health Sciences, Lahore, Pakistan
| | - F Waheed
- Punjab University, Department of Microbiology and Molecular Genetics, Lahore, Pakistan
| | - M Khurram
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - H Ahmed
- COMSATS University, Department of Biosciences, Islamabad, Pakistan
| | - A A Khattak
- The University of Haripur, Department of Medical Laboratory Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - M S Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
49
|
Singh VK, Thakral D, Gupta R. Regulatory noncoding RNAs: potential biomarkers and therapeutic targets in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:504-519. [PMID: 34824883 PMCID: PMC8610797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The noncoding RNAs (ncRNA) comprise a substantial segment of the human transcriptome and have emerged as key elements of cellular homeostasis and disease pathogenesis. Dysregulation of these ncRNAs by alterations in the primary RNA motifs and/or aberrant expression levels is relevant in various diseases, especially cancer. The recent research advances indicate that ncRNAs regulate vital oncogenic processes, including hematopoietic cell differentiation, proliferation, apoptosis, migration, and angiogenesis. The ever-expanding role of ncRNAs in cancer progression and metastasis has sparked interest as potential diagnostic and prognostic biomarkers in acute myeloid leukemia. Moreover, advances in antisense oligonucleotide technologies and pharmacologic discoveries of small molecule inhibitors in targeting RNA structures and RNA-protein complexes have opened newer avenues that may help develop the next generation anti-cancer therapeutics. In this review, we have discussed the role of ncRNA in acute myeloid leukemia and their utility as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Deepshi Thakral
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| |
Collapse
|
50
|
Zhang W, Gou P, Dupret JM, Chomienne C, Rodrigues-Lima F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl Oncol 2021; 14:101169. [PMID: 34243013 PMCID: PMC8273223 DOI: 10.1016/j.tranon.2021.101169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023] Open
Abstract
Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris F-75013, France.
| | - Panhong Gou
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France
| | | | - Christine Chomienne
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|