1
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
2
|
Han SH, Jo KW, Kim Y, Kim KT. Piperonylic Acid Promotes Hair Growth by Activation of EGFR and Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:10774. [PMID: 39409103 PMCID: PMC11476903 DOI: 10.3390/ijms251910774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Dermal papilla cells (DPCs) are located at the bottom of the hair follicle and play a critical role in hair growth, shape, and cycle. Epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling pathways are essential in promoting keratinocyte activation as well as hair follicle formation in DPCs. Piperonylic acid is a small molecule that induces EGFR activation in keratinocytes. However, the effects of piperonylic acid on DPCs in regard to the stimulation of hair growth have not been studied. In the present study, piperonylic acid was shown to activate the Wnt/β-catenin signaling pathway in addition to the EGFR signaling pathway in DPCs. Piperonylic acid suppressed DKK1 expression, which presumably promoted the accumulation of β-catenin in the nucleus. In addition, piperonylic acid promoted cyclin D upregulation and cell growth and increased the expression of alkaline phosphatase (ALP), a DPC marker. In a clinical study, the group that applied a formulation containing piperonylic acid had a significantly higher number of hairs per unit area than the placebo group. These results identify piperonylic acid as a promising new candidate for hair loss treatment.
Collapse
Affiliation(s)
- Seung Hyun Han
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Kyung Won Jo
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Younghyun Kim
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
3
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
4
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
6
|
Gareev I, Encarnacion Ramirez MDJ, Nurmukhametov R, Ivliev D, Shumadalova A, Ilyasova T, Beilerli A, Wang C. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res 2023; 8:562-570. [PMID: 37602320 PMCID: PMC10432901 DOI: 10.1016/j.ncrna.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Glioma represents a complex and heterogeneous disease, posing significant challenges to both clinicians and researchers. Despite notable advancements in glioma treatment, the overall survival rate for most glioma patients remains dishearteningly low. Hence, there is an urgent necessity to discover novel biomarkers and therapeutic targets specifically tailored for glioma. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression and have garnered attention for their involvement in the development and progression of various cancers, including glioma. The dysregulation of lncRNAs plays a critical role in glioma pathogenesis and influences clinical outcomes. Consequently, there is growing interest in exploring the potential of lncRNAs as diagnostic and prognostic biomarkers, as well as therapeutic targets. By understanding the functions and dysregulation of lncRNAs in glioma, researchers aim to unlock new avenues for the development of innovative treatment strategies catered to glioma patients. The identification and thorough characterization of lncRNAs hold the promise of novel therapeutic approaches that could potentially improve patient outcomes and enhance the management of glioma, ultimately striving for better prospects and enhanced quality of life for those affected by this challenging disease. The primary objective of this paper is to comprehensively review the current state of knowledge regarding lncRNA biology and their intricate roles in glioma. It also delves into the potential of lncRNAs as valuable diagnostic and prognostic indicators and explores their feasibility as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Renat Nurmukhametov
- Division of Spine Surgery, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
7
|
Daisy Precilla S, Kuduvalli SS, Biswas I, Bhavani K, Pillai AB, Thomas JM, Anitha TS. Repurposing synthetic and natural derivatives induces apoptosis in an orthotopic glioma-induced xenograft model by modulating WNT/β-catenin signaling. Fundam Clin Pharmacol 2023; 37:1179-1197. [PMID: 37458120 DOI: 10.1111/fcp.12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioblastomas arise from multistep tumorigenesis of the glial cells. Despite the current state-of-art treatment, tumor recurrence is inevitable. Among the innovations blooming up against glioblastoma, drug repurposing could provide profound premises for treatment enhancement. While considering this strategy, the efficacy of the repurposed drugs as monotherapies were not up to par; hence, the focus has now shifted to investigate the multidrug combinations. AIM To investigate the efficacy of a quadruple-combinatorial treatment comprising temozolomide along with chloroquine, naringenin, and phloroglucinol in an orthotopic glioma-induced xenograft model. METHODS Antiproliferative effect of the drugs was assessed by immunostaining. The expression profiles of WNT/β-catenin and apoptotic markers were evaluated by qRT-PCR, immunoblotting, and ELISA. Patterns of mitochondrial depolarization was determined by flow cytometry. TUNEL assay was performed to affirm apoptosis induction. In vivo drug detection study was carried out by ESI-Q-TOF MS analysis. RESULTS The quadruple-drug treatment had significantly hampered glioma proliferation and had induced apoptosis by modulating the WNT/β-catenin signaling. Interestingly, the induction of apoptosis was associated with mitochondrial depolarization. The quadruple-drug cocktail had breached the blood-brain barrier and was detected in the brain tissue and plasma samples. CONCLUSION The quadruple-drug combination served as a promising adjuvant therapy to combat glioblastoma lethality in vivo and can be probed for translation from bench to bedside.
Collapse
Affiliation(s)
- Senthilathiban Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Krishnamurthy Bhavani
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Puducherry, 605 014, India
| | - Thirugnanasambandhar Sivasubramanian Anitha
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
8
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
9
|
Jayaswamy PK, Vijaykrishnaraj M, Patil P, Alexander LM, Kellarai A, Shetty P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2023; 83:101791. [PMID: 36403890 DOI: 10.1016/j.arr.2022.101791] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal role in early brain development, although its expression pattern declines in accordance with the maturation of the active nervous system. However, recurrence of EGFR expression in brain cells takes place during neural functioning decline and brain atrophy in order to maintain the homeostatic neuronal pool. As a consequence, neurotoxic lesions such as amyloid beta fragment (Aβ1-42) formed during the alternative splicing of amyloid precursor protein in Alzheimer's disease (AD) elevate the expression of EGFR. This inappropriate peptide deposition on EGFR results in the sustained phosphorylation of the downstream signaling axis, leading to extensive Aβ1-42 production and tau phosphorylation as subsequent pathogenesis. Recent reports convey that the pathophysiology of AD is correlated with EGFR and its associated membrane receptor complex molecules. One such family of molecules is the annexin superfamily, which has synergistic relationships with EGFR and is known for membrane-bound signaling that contributes to a variety of inflammatory responses. Besides, Galectin-3, tissue-type activated plasminogen activator, and many more, which lineate the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) result in severe neuronal loss. Altogether, we emphasized the perspectives of cellular senescence up-regulated by EGFR and its associated membrane receptor molecules in the pathogenesis of AD as a target for a therapeutical alternative to intervene in AD.
Collapse
Affiliation(s)
- Pavan K Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - M Vijaykrishnaraj
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Prakash Patil
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Lobo Manuel Alexander
- Department of Neurology, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Adithi Kellarai
- Department of General Medicine, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India; Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
10
|
Su KW, Lin HY, Chiu HC, Shen SY, ChangOu CA, Crawford DR, Yang YCSH, Shih YJ, Li ZL, Huang HM, Whang-Peng J, Ho Y, Wang K. Thyroid Hormone Induces Oral Cancer Growth via the PD-L1-Dependent Signaling Pathway. Cells 2022; 11:cells11193050. [PMID: 36231010 PMCID: PMC9563246 DOI: 10.3390/cells11193050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oral cancer is a fatal disease, and its incidence in Taiwan is increasing. Thyroid hormone as L-thyroxine (T4) stimulates cancer cell proliferation via a receptor on integrin αvβ3 of plasma membranes. It also induces the expression of programmed death-ligand 1 (PD-L1) and cell proliferation in cancer cells. Thyroid hormone also activates β-catenin-dependent cell proliferation in cancer cells. However, the relationship between PD-L1 and cancer proliferation is not fully understood. In the current study, we investigated the role of inducible thyroid hormone-induced PD-L1-regulated gene expression and proliferation in oral cancer cells. Thyroxine bound to integrin αvβ3 to induce PD-L1 expressions via activation of ERK1/2 and signal transducer and activator of transcription 3 (STAT3). Inactivated STAT3 inhibited PD-L1 expression and nuclear PD-L1 accumulation. Inhibition of PD-L1 expression reduced β-catenin accumulation. Furthermore, nuclear PD-L1 formed a complex with nuclear proteins such as p300. Suppression PD-L1 expression by shRNA blocked not only expression of PD-L1 and β-catenin but also signal transduction, proliferative gene expressions, and cancer cell growth. In summary, thyroxine via integrin αvβ3 activated ERK1/2 and STAT3 to stimulate the PD-L1-dependent and β-catenin-related growth in oral cancer cells.
Collapse
Affiliation(s)
- Kuan-Wei Su
- Department of Dentistry, Hsinchu MacKay Memorial Hospital, Hsinchu City 30071, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Shin-Yu Shen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun A. ChangOu
- Core Facility, Taipei Medical University, Taipei 11031, Taiwan
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6113)
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Hou YJ, Li D, Wang W, Mao L, Fu X, Sun B, Fan C. NT157 inhibits cell proliferation and sensitizes glioma cells to TRAIL-induced apoptosis by up-regulating DR5 expression. Biomed Pharmacother 2022; 153:113502. [DOI: 10.1016/j.biopha.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022] Open
|
12
|
Yang M, Ling X, Xiao J. miR-141 exacerbates lung ischemia-reperfusion injury by targeting EGFR/β-catenin axis mediated autophagy. Aging (Albany NY) 2022; 14:6507-6519. [PMID: 35972910 PMCID: PMC9467402 DOI: 10.18632/aging.204137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
Some microRNAs (miRNAs) play important roles in lung ischemia-reperfusion injury (LIRI) injury. Here, this study aimed to examine whether miR-141 was related to lung ischemia-reperfusion injury (IRI) via regulating autophagy and the epidermal growth factor receptor (EGFR), and to explore the underlying signal transduction pathways. To this end, we constructed the LIRI cell model and mouse models, separately. According to RT-qPCR and Western blotting (WB) analysis results, miR-141 up-regulation together with β-catenin and EGFR down-regulation within mouse pulmonary microvascular endothelial cells (PMVECs) or lung tissues was related to lung IRI. Besides, we conducted dual-luciferase reporter assay, which suggested the binding of EGFR to miR-141. In addition, we carried out TUNEL staining, HE staining, and flow cytometric analysis to assess the apoptosis of PMVECs and the injury to mouse lung tissues. Furthermore, we performed light-chain immunofluorescence assay to examine autophagosomes within PMVECs. According to our results, miR-141 suppressed β-catenin level through reducing EGFR level. Besides, the miR-141/EGFR/β-catenin axis enhanced autophagy to aggravate LIRI. To sum up, miR-141 suppresses EGFR expression to inhibit β-catenin level, which subsequently aggravates autophagy and complicates LIRI. The above results offer the candidate therapeutic target for the treatment of lung IRI.
Collapse
Affiliation(s)
- Miao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Department of Anesthesiology, Guizhou Province People’s Hospital, Guiyang, P.R. China
| | - Xiaomei Ling
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jinfang Xiao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signal 2022; 95:110350. [PMID: 35525406 DOI: 10.1016/j.cellsig.2022.110350] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/β-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/β-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/β-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Indrani Biswas
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India.
| |
Collapse
|
14
|
Liang W, Huang L, Ma X, Dong L, Cheng R, Dehdarani M, Karamichos D, Ma JX. Pathogenic Role of Diabetes-Induced Overexpression of Kallistatin in Corneal Wound Healing Deficiency Through Inhibition of Canonical Wnt Signaling. Diabetes 2022; 71:747-761. [PMID: 35044447 PMCID: PMC8965664 DOI: 10.2337/db21-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Abstract
It was reported previously that circulation levels of kallistatin, an endogenous Wnt signaling inhibitor, are increased in patients with diabetes. The current study was conducted to determine the role of kallistatin in delayed wound healing in diabetic corneas. Immunostaining and Western blot analysis showed kallistatin levels were upregulated in corneas from humans and rodents with diabetes. In murine corneal wound healing models, the canonical Wnt signaling was activated in nondiabetic corneas and suppressed in diabetic corneas, correlating with delayed wound healing. Transgenic expression of kallistatin suppressed the activation of Wnt signaling in the cornea and delayed wound healing. Local inhibition of Wnt signaling in the cornea by kallistatin, an LRP6-blocking antibody, or the soluble VLDL receptor ectodomain (an endogenous Wnt signaling inhibitor) delayed wound healing. In contrast, ablation of the VLDL receptor resulted in overactivation of Wnt/β-catenin signaling and accelerated corneal wound healing. Activation of Wnt signaling in the cornea accelerated wound healing. Activation of Wnt signaling promoted human corneal epithelial cell migration and proliferation, which was attenuated by kallistatin. Our findings suggested that diabetes-induced overexpression of kallistatin contributes to delayed corneal wound healing by inhibiting the canonical Wnt signaling. Thus, kallistatin and Wnt/β-catenin signaling in the cornea could be potential therapeutic targets for diabetic corneal complications.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Li Huang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijie Dong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Marcus Dehdarani
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
15
|
Xiang J, Ma L, Gu Z, Jin H, Zhai H, Tong J, Liang T, Li J, Ren Q, Liu Q. A Boronated Derivative of Temozolomide Showing Enhanced Efficacy in Boron Neutron Capture Therapy of Glioblastoma. Cells 2022; 11:cells11071173. [PMID: 35406737 PMCID: PMC8998031 DOI: 10.3390/cells11071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
There is an incontestable need for improved treatment modality for glioblastoma due to its extraordinary resistance to traditional chemoradiation therapy. Boron neutron capture therapy (BNCT) may play a role in the future. We designed and synthesized a 10B-boronated derivative of temozolomide, TMZB. BNCT was carried out with a total neutron radiation fluence of 2.4 ± 0.3 × 1011 n/cm2. The effects of TMZB in BNCT were measured with a clonogenic cell survival assay in vitro and PET/CT imaging in vivo. Then, 10B-boronated phenylalanine (BPA) was tested in parallel with TMZB for comparison. The IC50 of TMZB for the cytotoxicity of clonogenic cells in HS683 was 0.208 mM, which is comparable to the IC50 of temozolomide at 0.213 mM. In BNCT treatment, 0.243 mM TMZB caused 91.2% ± 6.4% of clonogenic cell death, while 0.239 mM BPA eliminated 63.7% ± 6.3% of clonogenic cells. TMZB had a tumor-to-normal brain ratio of 2.9 ± 1.1 and a tumor-to-blood ratio of 3.8 ± 0.2 in a mouse glioblastoma model. BNCT with TMZB in this model caused 58.2% tumor shrinkage at 31 days after neutron irradiation, while the number for BPA was 35.2%. Therefore, by combining the effects of chemotherapy from temozolomide and radiotherapy with heavy charged particles from BNCT, TMZB-based BNCT exhibited promising potential for therapeutic applications in glioblastoma treatment.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Lin Ma
- Department of Stomatology, General Hospital, Shenzhen University, Shenzhen 518055, China;
| | - Zheng Gu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Hongjun Jin
- Guangdong Provincial Key Lab of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
| | - Hongbin Zhai
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Jianfei Tong
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tianjiao Liang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Juan Li
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| | - Qi Liu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| |
Collapse
|
16
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Wan H, Liu T, Lin Y. [ARTICLE WITHDRAWN] MicroRNA-362-3p Inhibits Glioma Growth by Targeting PAX3 and Regulating Wnt/Beta-Catenin Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN October 2021
Collapse
Affiliation(s)
- Hui Wan
- Department of Neurosurgery The Fourth Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, PR China
| | - Tingting Liu
- Department of Ultrasonic Nanchang First Hospital, Nanchang 330008, Jiangxi, PR China
| | - Yuanxiang Lin
- Department of Neurosurgery The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China
| |
Collapse
|
18
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
19
|
Zhang M, Wang D, Su L, Ma J, Wang S, Cui M, Hong S, Guan B, Ma X. Activity of Wnt/PCP Regulation Pathway Classifies Patients of Low-Grade Glioma Into Molecularly Distinct Subgroups With Prognostic Difference. Front Oncol 2021; 11:726034. [PMID: 34540693 PMCID: PMC8440981 DOI: 10.3389/fonc.2021.726034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Wingless/Int-1 (Wnt) signaling is one of the most well-known oncogenic pathways. Numerous studies have uncovered an aberrant expression of Wnt in cancer and its association with multiple oncogenic processes, such as cell proliferation, epithelial–mesenchymal transition (EMT), and invasiveness. Most previous studies mainly focused on the canonical branch of Wnt signaling pathway, i.e., Wnt/β-catenin signaling. The Wnt/planar cell polarity (PCP) signaling pathway, as the most recently described branch of Wnt signaling, was much less investigated in oncology research. In this study, we thoroughly characterized the activity of the Wnt/PCP regulation pathway in low-grade glioma (LGG) patients. Subtyping based on the expression pattern of the Wnt/PCP regulation pathway revealed three (C1–C3) subgroups with significant survival differences. Each group displayed distinct genomic characteristics. For instance, C1 was enriched with capicua transcriptional repressor (CIC) truncating mutations and 1p19q codel. C2 was characterized with tumor protein p53 (TP53) and ATRX chromatin remodeler (ATRX) inactivating mutations but depletion of telomerase reverse transcriptase (TERT) promoter mutations. C3 showed elevated malignancy reflected from several oncogenic characteristics, such as tumor heterogeneity and cell stemness, and demonstrated the worst survival outcome. In addition, C3 showed elevated macrophage segregation via induction of cytokines that are able to enhance the permeability of the brain–blood barrier (BBB). Lastly, we developed a prognostic model based on the risk score system. Validation indicated that our model can independently predict the prognosis of LGG patients.
Collapse
Affiliation(s)
- Meng Zhang
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Neurosurgery, The Second Hospital of Southern District of Chinese People's Liberation Army Navy, Sanya, China
| | - Dan Wang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Lan Su
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Jingjiao Ma
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Sizhen Wang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Meng Cui
- Department of Neurosurgery, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shunming Hong
- Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bing Guan
- Health Economics Department, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Department of Neurosurgery, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
20
|
Identification of a cross-talk between EGFR and Wnt/beta-catenin signaling pathways in HepG2 liver cancer cells. Cell Signal 2020; 79:109885. [PMID: 33340661 DOI: 10.1016/j.cellsig.2020.109885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
EGFRis a transmembrane receptor tyrosine kinase involved in regulating cell proliferation, differentiation and survival. EGFR is actively pursued as a therapeutic target because its aberrant expression or activity has been reported in several cancers. Several studies have reported the nuclear localization of the EGFR in various cell types, however, its exact nuclear functions are not clear yet. In this study, we have generated GFP fusion constructs of EGFR and its mutants to analyze their subcellular localizationin normal and cancer cells and impact of its sub-cellular location on its various activities using immunoblotting, confocal microscopy, reporter assays, loss-of-function EGFR mutants, and EGFR specific small molecule inhibitors. We show that EGFR is involved in modulating TCF dependent β-catenin transcriptional activity in HepG2 cells in a similar fashion as IGF1R tyrosine kinase. Moreover, we show that cytoplasmic and nuclear functions are two independent activities of EGFR.
Collapse
|
21
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
22
|
Aloizou AM, Pateraki G, Siokas V, Mentis AFA, Liampas I, Lazopoulos G, Kovatsi L, Mitsias PD, Bogdanos DP, Paterakis K, Dardiotis E. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020; 7:1514-1530. [PMID: 33251119 PMCID: PMC7677650 DOI: 10.1016/j.toxrep.2020.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common primary brain tumors in adults. They are generally very resistant to treatment and are therefore associated with negative outcomes. MicroRNAs (miRNAs) are small, non-coding RNA molecules that affect many cellular processes by regulating gene expression and, post-transcriptionally, the translation of mRNAs. MiRNA-21 has been consistently shown to be upregulated in glioma and research has shown that it is involved in a wide variety of biological pathways, promoting tumor cell survival and invasiveness. Furthermore, it has been implicated in resistance to treatment, both against chemotherapy and radiotherapy. In this review, we gathered the existent data on miRNA-21 and gliomas, in terms of its expression levels, association with grade and prognosis, the pathways it involves and its targets in glioma, and finally how it leads to treatment resistance. Furthermore, we discuss how this knowledge could be applied in clinical practice in the years to come. To our knowledge, this is the first review to assess in extent and depth the role of miRNA-21 in gliomas.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
23
|
Construction of an miRNA-mRNA regulatory network in colorectal cancer with bioinformatics methods. Anticancer Drugs 2020; 30:588-595. [PMID: 30601194 DOI: 10.1097/cad.0000000000000745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. This study aimed to explore the regulatory mechanisms of miRNAs in CRC. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in CRC tissue samples compared with control samples in mRNA and miRNA datasets were screened. Functional and pathway enrichment analysis of the DEGs was carried out. Targets of the DEMs were identified. Overlaps between the DEGs and targets of DEMs were selected. The miRNA-mRNA regulatory network of these overlaps was constructed and visualized. The candidate genes selected were validated by quantitative real-time PCR. DEGs were identified and considered DEGs-1 and DEGs-2. A total of 584 genes in DEGs-1 and 527 genes in DEGs-2 were obtained, including 465 overlaps, and 44 DEMs were identified. The overlaps were enriched in 46 Gene Ontology terms and 19 Kyoto Encyclopedia of Genes and Genomes pathways. Moreover, 137 overlapped genes between targets of the DEMs and the 465 overlaps were obtained. The miRNA-mRNA regulating network of the 137 overlapped genes was constructed. Extracellular matrix-related proteins and pathways might play critical roles in the development of CRC. The quantitative real-time PCR results of the candidates were in agreement with the bioinformatics analysis. miR-128, miR-182, and miR-143 might be key miRNAs regulating cell proliferation and metastasis of CRC.
Collapse
|
24
|
Han J, Shen X, Zhang Y, Wang S, Zhou L. Astragaloside IV suppresses transforming growth factor-β1-induced epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in glioma U251 cells. Biosci Biotechnol Biochem 2020; 84:1345-1352. [PMID: 32154763 DOI: 10.1080/09168451.2020.1737502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astragaloside IV (AS#IV) has previously demonstrated antitumoractivity. We investigated the effect and mechanisms of AS#IV in relation to epithelial-mesenchymal transition (EMT), viainterference with the Wnt/β-catenin signaling pathway in gliomaU251 cells. Induction of glioma U251 cells by transforming growthfactor (TGF)#β1 activated EMT, including switching E#cadherin toN-cadherin and altering the expression of Wnt/β-catenin signalingpathway components such as vimentin, β-catenin, and cyclin-D1.AS-IV inhibited the viability, invasion, and migration of TGF-β1-induced glioma U251 cells. AS-IV also interfered with the TGF#β1-induced Wnt/β-catenin signaling pathway in glioma U251 cells.These findings indicate that AS#IV prohibits TGF#β1-induced EMTby disrupting the Wnt/β-catenin pathway in glioma U251 cells. AS#IV may thus be a potential candidate agent for treating glioma andother central nervous system tumors.
Collapse
Affiliation(s)
- Jinming Han
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo Medical Center Lihuili Hospital , Ningbo, Zhejiang, China
| | - Yong Zhang
- Department of Orthopedics, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Suying Wang
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo, Zhejiang, China
| | - Leijie Zhou
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Kostopoulou E, Rojas Gil AP, Spiliotis BE. Investigation of the role of β-TrCP in growth hormone transduction defect (GHTD). Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0029. [PMID: 32114520 DOI: 10.1515/hmbci-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/16/2019] [Indexed: 11/15/2022]
Abstract
Background Growth hormone(GH) and epidermal growth factor (EGF) stimulate cell growth and differentiation, and crosstalking between their signaling pathways is important for normal cellular development. Growth hormone transduction defect (GHTD) is characterized by excessive GH receptor (GHR) degradation, due to over-expression of the E3 ubiquitin ligase, cytokine inducible SH2-containing protein (CIS). GH induction of GHTD fibroblasts after silencing of messenger RNA (mRNA) CIS (siCIS) or with higher doses of GH restores normal GH signaling. β-Transducing-repeat-containing protein (β-TrCP), another E3 ubiquitin ligase, also plays a role in GHR endocytosis. We studied the role of β-TrCP in the regulation of the GH/GHR and EGF/EGF receptor (EGFR) pathways in normal and GHTD fibroblasts. Materials and methods Fibroblast cultures were developed from gingival biopsies of a GHTD (P) and a control child (C). Protein expression and cellular localization of β-TrCP were studied by Western immunoblotting and immunofluorescence, respectively, after: (1) GH 200 μg/L human GH (hGH) induction, either with or without silence CIS (siCIS), and (2) inductions with 200 μg/L GH or 1000 μg/L GH or 50 ng/mL EGF. Results After induction with: (1) GH200/siCIS, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in the patient, (2) GH200 in the control and GH1000 in the patient, the protein and cytoplasmic-membrane localization of β-TrCP were increased and (3) EGF, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in both the control and the patient. Conclusions (1) β-TrCP appears to be part of the negative regulatory mechanism of the GH/GHR and EGF/EGFR pathways. (2) There appears to be a negative correlation between β-TrCP and CIS. (3) In the control and GHTD patient, β-TrCP increases when CIS is suppressed, possibly as a compensatory inhibitor of the GH/GHR pathway.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece, Phone: +30 6972070117, Fax: +30 2610993462
| | - Andrea Paola Rojas Gil
- Faculty of Human Movement and Quality of Life Sciences Department of Nursing, University of Peloponnese, Sparta, Greece
| | - Bessie E Spiliotis
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece
| |
Collapse
|
26
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
27
|
Portela M, Venkataramani V, Fahey-Lozano N, Seco E, Losada-Perez M, Winkler F, Casas-Tintó S. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol 2019; 17:e3000545. [PMID: 31846454 PMCID: PMC6917273 DOI: 10.1371/journal.pbio.3000545] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, β-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.
Collapse
Affiliation(s)
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
28
|
Tompa M, Nagy A, Komoly S, Kalman B. Wnt pathway markers in molecular subgroups of glioblastoma. Brain Res 2019; 1718:114-125. [DOI: 10.1016/j.brainres.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
29
|
Niu B, Liang C, Lu Y, Zhao M, Chen Q, Zhang Y, Zheng L, Chou KC. Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics 2019; 112:837-847. [PMID: 31150762 DOI: 10.1016/j.ygeno.2019.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glioma is the most lethal nervous system cancer. Recent studies have made great efforts to study the occurrence and development of glioma, but the molecular mechanisms are still unclear. This study was designed to reveal the molecular mechanisms of glioma based on protein-protein interaction network combined with machine learning methods. Key differentially expressed genes (DEGs) were screened and selected by using the protein-protein interaction (PPI) networks. RESULTS As a result, 19 genes between grade I and grade II, 21 genes between grade II and grade III, and 20 genes between grade III and grade IV. Then, five machine learning methods were employed to predict the gliomas stages based on the selected key genes. After comparison, Complement Naive Bayes classifier was employed to build the prediction model for grade II-III with accuracy 72.8%. And Random forest was employed to build the prediction model for grade I-II and grade III-VI with accuracy 97.1% and 83.2%, respectively. Finally, the selected genes were analyzed by PPI networks, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the results improve our understanding of the biological functions of select DEGs involved in glioma growth. We expect that the key genes expressed have a guiding significance for the occurrence of gliomas or, at the very least, that they are useful for tumor researchers. CONCLUSION Machine learning combined with PPI networks, GO and KEGG analyses of selected DEGs improve our understanding of the biological functions involved in glioma growth.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Chaofeng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Manman Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yuhui Zhang
- Renji Hospital, Medical School, Shanghai Jiaotong University, 160 Pujian Rd, New Pudong District, Shanghai 200127, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China.
| | - Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
30
|
Yoon H, Radulovic M, Scarisbrick IA. Kallikrein-related peptidase 6 orchestrates astrocyte form and function through proteinase activated receptor-dependent mechanisms. Biol Chem 2019; 399:1041-1052. [PMID: 29604205 DOI: 10.1515/hsz-2018-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 02/01/2023]
Abstract
Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of β-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Cells 2019; 8:cells8040350. [PMID: 31013819 PMCID: PMC6523687 DOI: 10.3390/cells8040350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. The biological function of epidermal growth factor receptor (EGFR) in tumorigenesis and progression has been established in various types of cancers, since it is overexpressed, mutated, or dysregulated. Its overexpression has been shown to be associated with enhanced metastatic potential in glioblastoma, with EGFR at the top of a downstream signaling cascade that controls basic functional properties of glioblastoma cells such as survival, cell proliferation, and migration. Thus, EGFR is considered as an important therapeutic target in glioblastoma. Many anti-EGFR therapies have been investigated both in vivo and in vitro, making their way to clinical studies. However, in clinical trials, the potential efficacy of anti-EGFR therapies is low, primarily because of chemoresistance. Currently, a range of epigenetic drugs including histone deacetylase (HDAC) inhibitors, DNA methylation and histone inhibitors, microRNA, and different types of EGFR inhibitor molecules are being actively investigated in glioblastoma patients as therapeutic strategies. Here, we describe recent knowledge on the signaling pathways mediated by EGFR/EGFR variant III (EGFRvIII) with regard to current therapeutic strategies to target EGFR/EGFRvIII amplified glioblastoma.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- College of Animal and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Faden DL, Gomez-Casal R, Alvarado D, Duvvuri U. Genomic Correlates of Exceptional Response to ErbB3 Inhibition in Head and Neck Squamous Cell Carcinoma. JCO Precis Oncol 2019; 3. [PMID: 31440738 DOI: 10.1200/po.18.00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Daniel L Faden
- Massachusetts Eye and Ear, Boston, MA.,Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
33
|
Liang X, Dong Z, Bin W, Dekang N, Xuhang Z, Shuyuan Z, Liwen L, Kai J, Caixing S. PAX3 Promotes Proliferation of Human Glioma Cells by WNT/β-Catenin Signaling Pathways. J Mol Neurosci 2019; 68:66-77. [PMID: 30826985 DOI: 10.1007/s12031-019-01283-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
The PAX3 (paired box 3) gene plays an important role in embryonic development, diseases, and cancer formation. Our preliminary studies have shown that PAX3 gene is upregulated in glioma cells, which is associated with a worse prognosis. Moreover, PAX3, by facilitating cell proliferation and invasion and inhibiting cell apoptosis, plays an oncogenic role in glioma. However, the specific molecular mechanism of PAX3 acting as an oncogene in glioma remains unclarified. In the present study, we have found that PAX3 overexpression was observed in high grade glioma and predicted a worse prognosis. PAX3 overexpression did not correlate significantly to IDH1 mutation and MGMT methylation. Moreover, the expression of PAX3 was positively correlated with that of β-catenin. In U87 glioma cells, PAX3 interacted with β-catenin, as was confirmed by CO-IP. Besides, PAX3 overexpression promoted cell proliferation and cell cycle progression, while it inhibited cell apoptosis by altering the expressions of important molecules associated with the Wnt signaling pathway, including β-catenin, Myc, VEGF, cyclinD1, MMP7, and Wnt1. In the meantime, it was also proved that PAX3 correlated to β-catenin through a negative regulatory mechanism with respect to the promotion of U87 glioma cell proliferation and cell cycle progression and inhibition of the cell apoptosis. Our experiment demonstrated the role of PAX3 in promoting glioma growth and development, possibly by interacting directly with β-catenin and regulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xia Liang
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Zhao Dong
- Department of Neurosurgery, Zhejiang Hospital, 12 Lingyin road, Hangzhou, 310013, Zhejiang Province, China
| | - Wu Bin
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Nie Dekang
- Department of Neurosurgery, Yancheng First Peoples' Hospital, Yancheng, 224001, Jiangsu Province, China
| | - Zhu Xuhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Zhang Shuyuan
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Li Liwen
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Jin Kai
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China
| | - Sun Caixing
- Department of Neurosurgery, Zhejiang Cancer Hospital, 1 Ban Shan east road, Hangzhou, 310022, Zhejiang Province, China.
| |
Collapse
|
34
|
Khan M, Muzumdar D, Shiras A. Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia 2018; 21:106-116. [PMID: 30530053 PMCID: PMC6288984 DOI: 10.1016/j.neo.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.
Collapse
Affiliation(s)
- Mohsina Khan
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Dattatraya Muzumdar
- Department of Neurosurgery, King Edward Memorial Hospital, Parel, Mumbai 400 012. India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
35
|
Hashemi V, Masjedi A, Hazhir-Karzar B, Tanomand A, Shotorbani SS, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Anvari E, Baradaran B, Jadidi-Niaragh F. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2018; 234:5478-5487. [PMID: 30417346 DOI: 10.1002/jcp.26912] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κβ (NF-κβ), estrogen receptor α (ERα), β-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Hazhir-Karzar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Gonçalves CS, de Castro JV, Pojo M, Martins EP, Queirós S, Chautard E, Taipa R, Pires MM, Pinto AA, Pardal F, Custódia C, Faria CC, Clara C, Reis RM, Sousa N, Costa BM. WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma. Theranostics 2018; 8:4805-4823. [PMID: 30279739 PMCID: PMC6160775 DOI: 10.7150/thno.25025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.
Collapse
|
37
|
Yamini B. NF-κB, Mesenchymal Differentiation and Glioblastoma. Cells 2018; 7:cells7090125. [PMID: 30200302 PMCID: PMC6162779 DOI: 10.3390/cells7090125] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Although glioblastoma (GBM) has always been recognized as a heterogeneous tumor, the advent of largescale molecular analysis has enabled robust categorization of this malignancy into several specific subgroups. Among the subtypes designated by expression profiling, mesenchymal tumors have been associated with an inflammatory microenvironment, increased angiogenesis, and resistance to therapy. Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that plays a prominent role in mediating many of the central features associated with mesenchymal differentiation. This review summarizes the mechanisms by which NF-κB proteins and their co-regulating partners induce the transcriptional network that underlies the mesenchymal phenotype. Moreover, both the intrinsic changes within mesenchymal GBM cells and the microenvironmental factors that modify the overall NF-κB response are detailed.
Collapse
Affiliation(s)
- Bakhtiar Yamini
- Section of Neurosurgery Department of Surgery, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Abstract
β-Catenin is essential for embryonic development and required for cell renewal/regeneration in adult life. Cellular β-catenin exists in three different pools: membranous, cytoplasmic and nuclear. In this review, we focus on functions of the nuclear pool in relation to tumorigenesis. In the nucleus, beta-catenin functions as both activator and repressor of transcription in a context-dependent manner. It promotes cell proliferation and supports tumour growth by enhancing angiogenesis. β-Catenin-mediated signalling regulates cancer cell metabolism and is associated with tumour-initiating cells in multiple malignancies. In addition, it functions as both pro- and anti-apoptotic factor besides acting to inhibit recruitment of inflammatory anti-tumour T-cells. Thus, β-catenin appears to possess a multifaceted nuclear function that may significantly impact tumour initiation and progression.
Collapse
Affiliation(s)
- Raju Kumar
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | |
Collapse
|
39
|
Prognostic value of NUSAP1 in progression and expansion of glioblastoma multiforme. J Neurooncol 2018; 140:199-208. [PMID: 29995176 DOI: 10.1007/s11060-018-2942-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Nucleolar and spindle-associated protein (NUSAP1) is a microtubule and chromatin-binding protein that stabilizes microtubules to prevent depolymerization, maintains spindle integrity. NUSAP1 could cross-link spindles into aster-like structures, networks and fibers. It has also been found to play roles in progression of several cancers. However, the potential correlation between NUSAP1 and clinical outcome in patients with glioblastoma multiforme (GBM) remains largely unknown. In the current study, we demonstrated that NUSAP1 was significantly up-regulated in GBM tissues compared with adult non-tumor brain tissues both in a validated cohort and a TCGA cohort. In addition, Kaplan-Meier analysis indicated that patients with high NUSAP1 expression had significantly lower OS (P = 0.0027). Additionally, in the TCGA cohort, NUSAP1 expression was relatively lower in GBM patients within the neural and mesenchymal subtypes compared to other subtypes, and associated with the status of several genetic aberrations such as PTEN deletion and wild type IDH1. The present study provides new insights and evidence that NUSAP1 over-expression was significantly correlated with progression and prognosis of GBM. Furthermore, knockdown of NUSAP1 revealed its regulation on G2/M progression and cell proliferation (both in vitro and in vivo). These data demonstrate that NUSAP1 could serve as a novel prognostic biomarker and a potential therapeutic target for GBM.
Collapse
|
40
|
Xu W, Zheng J, Bie S, Kang L, Mao Q, Liu W, Guo J, Lu J, Xia R. Propofol inhibits Wnt signaling and exerts anticancer activity in glioma cells. Oncol Lett 2018; 16:402-408. [PMID: 29928428 DOI: 10.3892/ol.2018.8606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/11/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant activation of Wnt signaling is implicated in gliomagenesis. Propofol, the most commonly used intravenous anesthetic agent in clinics, exhibits potent antitumor activity in a variety of cancer cells through different mechanisms. However, the role of propofol on Wnt signaling and glioma cell growth remains to be fully elucidated. In the present study, propofol was identified as a potent inhibitor of Wnt signaling. In 293T cells transfected with Wnt1 or Wnt3 expression plasmids or treated with Wnt3A-conditioned medium, propofol significantly inhibited the transcriptional activity of the SuperTopFlash reporter and the expression of Wnt target genes. The inhibitory effect of propofol on Wnt signaling was also observed in glioma cells. Further experiments demonstrated that propofol suppressed glioma cell growth by decreasing cell proliferation and enhancing cell apoptosis. Finally, the potential antitumor efficiency of propofol was confirmed using xenograft experiments in vivo. Taken together, the results indicated a novel mechanism for the anticancer activity of propofol and provide supporting evidence for its use as a prospective anticancer drug to treat glioma in patients with deregulated Wnt signaling.
Collapse
Affiliation(s)
- Wei Xu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jiwei Zheng
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shijie Bie
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Liuyu Kang
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingjun Mao
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Weiwei Liu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinxin Guo
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Juan Lu
- Operating Room, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
41
|
Zheng Y, Yang F, Fu L, Liu K. The mechanism of miR-143 inducing apoptosis of liver carcinoma cells through regulation of the NF-κB pathway. Oncol Lett 2018; 15:9567-9571. [PMID: 29844837 PMCID: PMC5958812 DOI: 10.3892/ol.2018.8486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Primary hepatic carcinoma is a common malignant tumor with poor treatment efficacy. The effect and mechanism of miR-143 in apoptosis of liver carcinoma cells were investigated in the present study. In vitro transfection of liver carcinoma SMMC-7721 cells was performed using artificially synthesized miR-143 mimics. The proliferation of liver carcinoma cells that were treated was detected by MTT assay. Liver carcinoma cells were then stained using the Annexin V-FITC/PI method, and the apoptosis of stained liver carcinoma cells was measured using a flow cytometer. The relative mRNA expression of NF-κB p65 in the intervention and control groups was assayed using reverse transcription-quantitative polymerase chain reaction, and the protein expression of NF-κB p65 was detected using western blot analysis. The results showed that, in the intervention group, the proliferation rate of cells transfected using miR-143 mimics was significantly lower than that in the control group, the number of apoptotic SMMC-7721 cells in the intervention group increased, and the protein expression of NF-κB p65 was decreased. Thus, miR-143 may downregulate the protein expression of NF-κB p65, thereby triggering the NF-κB signaling transduction pathway inducing apoptosis of liver carcinoma cells.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Fan Yang
- Department of Traditional Chinese Medicine, Weifang Hi-tech Zone People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Ling Fu
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Kang Liu
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
42
|
A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One 2018; 13:e0195126. [PMID: 29596489 PMCID: PMC5875862 DOI: 10.1371/journal.pone.0195126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is a complex biological process, which determines the life span of an organism. Insulin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both pathways share common downstream targets that allow competitive crosstalk between these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging of satellite cells. Biological regulatory networks necessary to recreate aging have not yet been discovered. Here, we established a mathematical in silico model that robustly recapitulates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes following a shift from IGF to Wnt signaling. These findings indicate that this shift might cause age-related diseases.
Collapse
|
43
|
Huang SH, Lo YS, Luo YC, Tseng YY, Yang JM. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations. BMC SYSTEMS BIOLOGY 2018; 12:13. [PMID: 29560828 PMCID: PMC5861491 DOI: 10.1186/s12918-018-0537-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND One of the crucial steps toward understanding the associations among molecular interactions, pathways, and diseases in a cell is to investigate detailed atomic protein-protein interactions (PPIs) in the structural interactome. Despite the availability of large-scale methods for analyzing PPI networks, these methods often focused on PPI networks using genome-scale data and/or known experimental PPIs. However, these methods are unable to provide structurally resolved interaction residues and their conservations in PPI networks. RESULTS Here, we reconstructed a human three-dimensional (3D) structural PPI network (hDiSNet) with the detailed atomic binding models and disease-associated mutations by enhancing our PPI families and 3D-domain interologs from 60,618 structural complexes and complete genome database with 6,352,363 protein sequences across 2274 species. hDiSNet is a scale-free network (γ = 2.05), which consists of 5177 proteins and 19,239 PPIs with 5843 mutations. These 19,239 structurally resolved PPIs not only expanded the number of PPIs compared to present structural PPI network, but also achieved higher agreement with gene ontology similarities and higher co-expression correlation than the ones of 181,868 experimental PPIs recorded in public databases. Among 5843 mutations, 1653 and 790 mutations involved in interacting domains and contacting residues, respectively, are highly related to diseases. Our hDiSNet can provide detailed atomic interactions of human disease and their associated proteins with mutations. Our results show that the disease-related mutations are often located at the contacting residues forming the hydrogen bonds or conserved in the PPI family. In addition, hDiSNet provides the insights of the FGFR (EGFR)-MAPK pathway for interpreting the mechanisms of breast cancer and ErbB signaling pathway in brain cancer. CONCLUSIONS Our results demonstrate that hDiSNet can explore structural-based interactions insights for understanding the mechanisms of disease-associated proteins and their mutations. We believe that our method is useful to reconstruct structurally resolved PPI networks for interpreting structural genomics and disease associations.
Collapse
Affiliation(s)
- Sing-Han Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yu-Shu Lo
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yu-Yao Tseng
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan.
| |
Collapse
|
44
|
Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, Schroeder J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget 2018; 7:60776-60792. [PMID: 27542214 PMCID: PMC5308616 DOI: 10.18632/oncotarget.11320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that Llgl1 loss results in a gain of mesenchymal phenotypes and a loss of apicobasal and planar polarity. We now demonstrate that these changes represent a fundamental shift in cellular phenotype. Llgl1 regulates the expression of multiple cell identity markers, including CD44, CD49f, and CD24, and the nuclear translocation of TAZ and Slug. Cells lacking Llgl1 form mammospheres, where survival and transplantability is dependent upon the Epidermal Growth Factor Receptor (EGFR). Additionally, Llgl1 loss allows cells to grow in soft-agar and maintain prolonged survival as orthotopic transplants in NOD-SCIDmice. Lineage tracing and wound healing experiments demonstrate that mammosphere survival is due to enhanced EGF-dependent migration. The loss of Llgl1 drives EGFR mislocalization and an EGFR mislocalization point mutation (P667A) drives these same phenotypes, including activation of AKT and TAZ nuclear translocation. Together, these data indicate that the loss of Llgl1 results in EGFR mislocalization, promoting pre-neoplastic changes.
Collapse
Affiliation(s)
- Erin Greenwood
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Sabrina Maisel
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| | - David Ebertz
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Atlantis Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona
| | - Ritu Pandey
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona.,BIO5 Institute, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Liu X, Li Z, Song Y, Wang R, Han L, Wang Q, Jiang K, Kang C, Zhang Q. AURKA induces EMT by regulating histone modification through Wnt/β-catenin and PI3K/Akt signaling pathway in gastric cancer. Oncotarget 2018; 7:33152-64. [PMID: 27121204 PMCID: PMC5078082 DOI: 10.18632/oncotarget.8888] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer, a highly invasive and aggressive malignancy, is the third leading cause of death from cancer worldwide. Genetic association studies have successfully revealed several important genes consistently associated with gastric cancer to date. However, these robust gastric cancer-associated genes do not fully elucidate the mechanisms underlying the development and progression of the disease. In the present study, we performed an alternative approach, a gene expression-based genome-wide association study (eGWAS) across 13 independent microarray experiments (including 251 gastric cancer cases and 428 controls), to identify top candidates (p<0.00001). Additionally, we conducted gene ontology analysis, pathway analysis and network analysis and identified aurora kinase A (AURKA) as our candidate. We observed that MLN8237, which is a specific inhibitor of AURKA, decreased the β-catenin and the phosphorylation of Akt1 and GSK-3β, as well as blocked the Akt and Wnt signaling pathways. Furthermore, MLN8237 arrested the cells in the G2/M phase. The activity of Wnt and Akt signaling pathways affected the level of histone methylation significantly, and we supposed that MLN8237 affected the level of histone methylation through these two signaling pathways. Additionally, the treatment of MLN8237 influenced the level of H3K4 me1/2/3 and H3K27 me1/2/3. Chip data on cell lines suggested that MLN8237 increases the level of H3K27 me3 on the promoter of Twist and inhibits EMT (epithelial-mesenchymal transition). In summary, AURKA is a potential therapeutic target in gastric cancer and induces EMT through histone methylation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxia Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yue Song
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rui Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lei Han
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
46
|
Moriyama G, Tanigawa M, Sakai K, Hirata Y, Kikuchi S, Saito Y, Kyoyama H, Matsuda K, Seike M, Gemma A, Uematsu K. Synergistic effect of targeting dishevelled-3 and the epidermal growth factor receptor-tyrosine kinase inhibitor on mesothelioma cells in vitro. Oncol Lett 2018; 15:833-838. [PMID: 29403559 PMCID: PMC5780750 DOI: 10.3892/ol.2017.7382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/03/2017] [Indexed: 11/30/2022] Open
Abstract
It was previously revealed that Wnt signaling is activated in mesothelioma cells. Although epidermal growth factor receptor (EGFR) is expressed in mesothelioma cells, EGFR-tyrosine kinase inhibitors (TKIs) are not effective for mesothelioma treatment. However, in non-small cell lung cancer, the blocking of Wnt signaling has been identified to enhance the anticancer effect of EGFR-TKIs. To confirm the anticancer effect of blocking Wnt signaling in combination with EGFR-TKI treatment in mesothelioma, the present study evaluated the effect of simultaneous suppression of human dishevelled-3 (Dvl-3) expression with Dvl-3 small interfering RNA (siRNA) and of EGFR inhibition with gefitinib on mesothelioma cell viability. Mesothelioma cell lines with and without β-catenin gene expression were transfected with Dvl-3 siRNA and were cultured with gefitinib, and cell viability, colony formation and cell cycle analyses were performed. Dvl-3 siRNA downregulated the expression of Dvl-3 in mesothelioma cells. The combination of Dvl-3 siRNA with gefitinib acted synergistically to induce concomitant suppression of cell viability and colony formation, suggesting that inhibition of Wnt signaling by downregulating Dvl-3 with siRNA and inhibiting EGFR with gefitinib leads to significant antitumor effects.
Collapse
Affiliation(s)
- Gaku Moriyama
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan.,Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Maya Tanigawa
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Kosuke Sakai
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan.,Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yusuke Hirata
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Satoshi Kikuchi
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Yuriko Saito
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Hiroyuki Kyoyama
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| |
Collapse
|
47
|
Expression/activation of α5β1 integrin is linked to the β-catenin signaling pathway to drive migration in glioma cells. Oncotarget 2018; 7:62194-62207. [PMID: 27613837 PMCID: PMC5308720 DOI: 10.18632/oncotarget.11552] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta catenin pathway has been highlighted as an important player of brain tumors aggressiveness and resistance to therapies. Increasing knowledges of the regulation of beta-catenin transactivation point out its hub position in different pathophysiological outcomes in glioma such as survival and migration. Crosstalks between integrins and beta-catenin pathways have been suggested in several tumor tissues. As we demonstrated earlier that α5β1 integrin may be considered as a therapeutic target in high grade glioma through its contribution to glioma cell migration and resistance to chemotherapy, we addressed here the potential relationship between α5β1 integrin and beta-catenin activation in glioma cells. We demonstrated that overexpression and activation by fibronectin of α5β1 integrin allowed the transactivation of beta-catenin gene targets included in an EMT-like program that induced an increase in cell migration. Hampering of beta catenin activation and cell migration could be similarly achieved by a specific integrin antagonist. In addition we showed that α5β1 integrin/AKT axis is mainly involved in these processes. However, blockade of beta-catenin by XAV939 (tankyrase inhibitor leading to beta-catenin degradation) did not synergize with p53 activation aiming to cell apoptosis as was the case with integrin antagonists. We therefore propose a dual implication of α5β1 integrin/AKT axis in glioma cell resistance to therapies and migration each supported by different signaling pathways. Our data thus suggest that α5β1 integrin may be added to the growing list of beta-catenin modulators and provide new evidences to assign this integrin as a valuable target to fight high grade glioma.
Collapse
|
48
|
Yang R, Wu Y, Zou J, Zhou J, Wang M, Hao X, Cui H. The Hippo transducer TAZ promotes cell proliferation and tumor formation of glioblastoma cells through EGFR pathway. Oncotarget 2017; 7:36255-36265. [PMID: 27167112 PMCID: PMC5094998 DOI: 10.18632/oncotarget.9199] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
TAZ, a WW-domain-containing transcriptional co-activator, is important for development of various tissues in mammals. Recently, TAZ has been found to be overexpressed in some types of human cancers. However, the role of TAZ in glioblastoma remains unclear. In this study, we found that TAZ was overexpressed in prognostically poor glioblastoma patients. Through knocking down or overexpressing TAZ in U87 and LN229 cells, the expression level of TAZ was found to be positively related to cell proliferation in vitro and tumor formation in vivo. Further investigation indicated that TAZ could significantly promote the acceleration of cell cycle. Moreover, the western blot for p-EGFR, p-AKT, p-ERK1/2, p21, cyclin E and CDK2 proteins, target genes of the EGFR pathway, indicated that TAZ significantly activated EGFR/AKT/ERK signaling. Additionally, the blockage of EGFR pathway resulted in a significantly inhibition of cell proliferation induced by TAZ. Taken together, these results demonstrate that TAZ can promote proliferation and tumor formation in glioblastoma cells by potentiating the EGFR/AKT/ERK pathway, and provide the evidence for promising target for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yanan Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jiahua Zou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ji Zhou
- Department of Neurosurgery, Second Artillery General Hospital, Chinese People's Liberation Army, Beijing 100088, China
| | - Mei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiangwei Hao
- Chongqing Reproductive and Genentics Institute, Chongqing Obstetrics and Gynecology Hospital, Chongqing 400013, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
49
|
Natural Bioactive Compounds: Alternative Approach to the Treatment of Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9363040. [PMID: 29359162 PMCID: PMC5735581 DOI: 10.1155/2017/9363040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent, primary malignant brain tumor prevalent in humans. GBM characteristically exhibits aggressive cell proliferation and rapid invasion of normal brain tissue resulting in poor patient prognosis. The current standard of care of surgical resection followed by radiotherapy and chemotherapy with temozolomide is not very effective. The inefficacy of the chemotherapeutic agents may be attributed to the challenges in drug delivery to the tumor. Several epidemiological studies have demonstrated the chemopreventive role of natural, dietary compounds in the development and progression of cancer. Many of these studies have reported the potential of using natural compounds in combination with chemotherapy and radiotherapy as a novel approach for the effective treatment of cancer. In this paper, we review the role of several natural compounds individually and in combination with chemotherapeutic agents in the treatment of GBM. We also assess the potential of drug delivery approaches such as the Gliadel wafers and role of nanomaterial based drug delivery systems for the effective treatment of GBM.
Collapse
|
50
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 2017; 23:1331-1341. [PMID: 29035371 PMCID: PMC5961502 DOI: 10.1038/nm.4424] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
Abstract
De novo and acquired resistance, which are largely attributed to genetic alterations, are barriers to effective anti-epidermal-growth-factor-receptor (EGFR) therapy. To generate cetuximab-resistant cells, we exposed cetuximab-sensitive colorectal cancer cells to cetuximab in three-dimensional culture. Using whole-exome sequencing and transcriptional profiling, we found that the long non-coding RNA MIR100HG and two embedded microRNAs, miR-100 and miR-125b, were overexpressed in the absence of known genetic events linked to cetuximab resistance. MIR100HG, miR-100 and miR-125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100 and miR-125b coordinately repressed five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. Our results describe a double-negative feedback loop between MIR100HG and the transcription factor GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These findings identify a clinically actionable, epigenetic cause of cetuximab resistance.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaodi Zhao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jing Wang
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huaying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Scott Hinger
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Stephan Emmrich
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|