1
|
Corrigendum to: A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes https://doi.org/10.1002/1873-3468.14724. FEBS Lett 2024; 598:1667-1670. [PMID: 38880658 DOI: 10.1002/1873-3468.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
|
2
|
Silveira DA, Gupta S, da Cunha Jaeger M, Brunetto de Farias C, Mombach JCM, Sinigaglia M. A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes. FEBS Lett 2023; 597:2446-2460. [PMID: 37597508 DOI: 10.1002/1873-3468.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Ewing sarcoma (ES) is a highly aggressive pediatric tumor driven by the RNA-binding protein EWS (EWS)/friend leukemia integration 1 transcription factor (FLI1) chimeric transcription factor, which is involved in epithelial-mesenchymal transition (EMT). EMT stabilizes a hybrid cell state, boosting metastatic potential and drug resistance. Nevertheless, the mechanisms underlying the maintenance of this hybrid phenotype in ES remain elusive. Our study proposes a logical EMT model for ES, highlighting zinc finger E-box-binding homeobox 2 (ZEB2), miR-145, and miR-200 circuits that maintain hybrid states. The model aligns with experimental findings and reveals a previously unknown circuit supporting the mesenchymal phenotype. These insights emphasize the role of ZEB2 in the maintenance of the hybrid state in ES.
Collapse
Affiliation(s)
- Daner A Silveira
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | | | - Mariane da Cunha Jaeger
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | | | - Marialva Sinigaglia
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| |
Collapse
|
3
|
Lu DY, Ellegast JM, Ross KN, Malone CF, Lin S, Mabe NW, Dharia NV, Meyer A, Conway A, Su AH, Selich-Anderson J, Taslim C, Byrum AK, Seong BKA, Adane B, Gray NS, Rivera MN, Lessnick SL, Stegmaier K. The ETS transcription factor ETV6 constrains the transcriptional activity of EWS-FLI to promote Ewing sarcoma. Nat Cell Biol 2023; 25:285-297. [PMID: 36658220 PMCID: PMC9928584 DOI: 10.1038/s41556-022-01059-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/24/2022] [Indexed: 01/21/2023]
Abstract
Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.
Collapse
Affiliation(s)
- Diana Y Lu
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth N Ross
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashleigh Meyer
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angela H Su
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrea K Byrum
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miguel N Rivera
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Hematology, Oncology and BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Yakushov S, Menyailo M, Denisov E, Karlina I, Zainullina V, Kirgizov K, Romantsova O, Timashev P, Ulasov I. Identification of Factors Driving Doxorubicin-Resistant Ewing Tumor Cells to Survival. Cancers (Basel) 2022; 14:cancers14225498. [PMID: 36428591 PMCID: PMC9688843 DOI: 10.3390/cancers14225498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ewing sarcoma (ES) cells exhibit extreme plasticity that contributes to the cell's survival and recurrence. Although multiple studies reveal various signaling pathways mediated by the EWSR1/FLI1 fusion, the specific transcriptional control of tumor cell resistance to doxorubicin is unknown. Understanding the molecular hubs that contribute to this behavior provides a new perspective on valuable therapeutic options against tumor cells. METHODS Single-cell RNA sequencing and LC-MS/MS-based quantitative proteomics were used. RESULTS A goal of this study was to identify protein hubs that would help elucidate tumor resistance which prompted ES to relapse or metastasize. Several differentially expressed genes and proteins, including adhesion, cytoskeletal, and signaling molecules, were observed between embryonic fibroblasts and control and doxorubicin-treated tumor cell lines. While several cancer-associated genes/proteins exhibited similar expression across fibroblasts and non-treated cells, upregulation of some proteins belonging to metabolic, stress response, and growth pathway activation was uniquely observed in doxorubicin-treated sarcoma cells, respectively. The novel information on differentially expressed genes/proteins provides insights into the biology of ES cells, which could help elucidate mechanisms of their recurrence. CONCLUSIONS Collectively, our results identify a novel role of cellular proteins in contributing to tumor cell resistance and escape from doxorubicin therapy and contributing to ES progression.
Collapse
Affiliation(s)
- Semyon Yakushov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Maxim Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Viktoria Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-901-797-5406
| |
Collapse
|
6
|
Regulation of Metastasis in Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14194902. [PMID: 36230825 PMCID: PMC9563756 DOI: 10.3390/cancers14194902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ewing sarcoma (EwS) is a type of bone and soft tissue tumor in children and adolescents. Over 85% of cases are caused by the expression of fusion protein EWSR1-FLI1 generated by chromosome translocation. Acting as a potent chimeric oncoprotein, EWSR1-FLI1 binds to chromatin, changes the epigenetic states, and thus alters the expression of a large set of genes. Several studies have revealed that the expression level of EWSR1-FLI1 is variable and dynamic within and across different EwS cell lines and primary tumors, leading to tumoral heterogeneity. Cells with high EWSR1-FLI1 expression (EWSR1-FLI1-high) proliferate in an exponential manner, whereas cells with low EWSR1-FLI1 expression (EWSR1-FLI1-low) tend to have a strong propensity to migrate, invade, and metastasize. Metastasis is the leading cause of cancer-related deaths. The continuous evolution of EwS research has revealed some of the molecular underpinnings of this dissemination process. In this review, we discuss the molecular signatures that contribute to metastasis.
Collapse
|
7
|
Abbas A, Alaa MN. Ewing Sarcoma Family Tumors: Past, Present and Future Prospects. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999201125204643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ewing’s sarcoma (ES), also known as mesenchymal primitive neuroectodermal tumor
(PNET), is a malignant round blue cell tumor (MRBCT) with a varying degree of neuronal differentiation.
PNET arises from the primitive nerve cells of the central nervous system (CNS) but may
also occur in the bones of the extremities, pelvis, vertebral column, and chest wall. Extraskeletal
ES/PNET may affect the various soft tissues, including those of the pelvis, paraspinal region, and
thoracopulmonary region.
Histopathological differentiation between ES, PNET, and other related sarcomas is often difficult.
On light microscopy, the same histopathological appearance of ES has been termed PNET, Askin-
Rosay (A-R) tumor, and malignant neuroepithelioma by various other authors. The immunohistochemical
distinction is also difficult due to poor tissue differentiation and low intake of the various
specific immunohistochemical markers. The most frequent translocation is t (11; 22) (q24; q12), resulting
in the EWSR1-FLI1 fusion gene detected in nearly 90% of cases and is considered the hallmark
of the diagnosis of ES, PNET, atypical ES, and A-R tumor. Therefore, ES, atypical ES,
PNET, and A-R tumor are currently regarded as one entity grouped together under the Ewing Family
Tumor (EFT) and are treated in an identical way. EFT represents only about 3% of all pediatric
malignancies. The annual incidence is between 2 and 5 cases per million children per year. The
peak prevalence of the tumor is between the ages of 10 and 15 years. The incidence is higher in
males than in females, with a ratio of 1.3:1.
Newer groups of MRBCT that have great similarities to EFT are being recently described. These tumors,
atypical EFT and Ewing’s like Sarcomas (ELS), bear similarities to EFT but have basic morphological
and molecular differences. Optimal treatment requires the use of adjuvant and new-adjuvant
chemotherapy (CTR), radical surgical resection and/or involves field radiotherapy (RT). The
reported disease-free survival (DFS) and overall survival (OS) range between 45-80% and 36-71%,
respectively. The overall prognosis for the metastatic and recurrent disease remains poor. The use
of newer conventional and targeted medications, improved RT delivery, and surgical techniques
may further improve the outcomes. The past few years have seen advances in genomics-based sarcoma
diagnosis and targeted therapies. In this comprehensive review article, we provide a detailed
report of EFT and discuss the various clinical aspects and the recent advances used in the diagnosis
and treatment.
Collapse
Affiliation(s)
- Adil Abbas
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, The Pediatric Hematology/Oncology Setion, Princess Nourah Oncology Centre, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mohammed N.S. Alaa
- Department of Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
9
|
Domenici G, Eduardo R, Castillo-Ecija H, Orive G, Montero Carcaboso Á, Brito C. PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers (Basel) 2021; 13:cancers13040879. [PMID: 33669730 PMCID: PMC7922076 DOI: 10.3390/cancers13040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ewing’s Sarcoma (ES) is the second most frequent bone tumour in children and young adults, with very aggressive behaviour and significant disease recurrence. To better study the disease and find new therapies, experimental models are needed. Recently, patient-derived xenografts (PDX), obtained by implanting patient tumour samples in immunodeficient mice, have been developed. However, when ES cells are extracted from the patient’s tumour or from PDX and placed on plasticware surfaces, they lose their original 3D configuration, cell identity and function. To overcome these issues, we implemented cultures of PDX-derived ES cells, by making them aggregate to form ES cell spheroids and then encapsulating these 3D spheroids into a hydrogel, alginate, to stabilize the culture. We show that this methodology maintained ES cell viability and intrinsic characteristics of the original ES tumour cells for at least one month and that it is suitable for study the effect of anticancer drugs. Abstract Ewing’s Sarcoma (ES) is the second most frequent malignant bone tumour in children and young adults and currently only untargeted chemotherapeutic approaches and surgery are available as treatment, although clinical trials are on-going for recently developed ES-targeted therapies. To study ES pathobiology and develop novel drugs, established cell lines and patient-derived xenografts (PDX) are the most employed experimental models. Nevertheless, the establishment of ES cell lines is difficult and the extensive use of PDX raises economic/ethical concerns. There is a growing consensus regarding the use of 3D cell culture to recapitulate physiological and pathophysiological features of human tissues, including drug sensitivity. Herein, we implemented a 3D cell culture methodology based on encapsulation of PDX-derived ES cell spheroids in alginate and maintenance in agitation-based culture systems. Under these conditions, ES cells displayed high proliferative and metabolic activity, while retaining the typical EWSR1-FLI1 chromosomal translocation. Importantly, 3D cultures presented reduced mouse PDX cell contamination compared to 2D cultures. Finally, we show that these 3D cultures can be employed in drug sensitivity assays, with results similar to those reported for the PDX of origin. In conclusion, this novel 3D cell culture method involving ES-PDX-derived cells is a suitable model to study ES pathobiology and can assist in the development of novel drugs against this disease, complementing PDX studies.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Castillo-Ecija
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Ángel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
10
|
Lin Z, Fan Z, Zhang X, Wan J, Liu T. Cellular plasticity and drug resistance in sarcoma. Life Sci 2020; 263:118589. [PMID: 33069737 DOI: 10.1016/j.lfs.2020.118589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
Sarcomas, originating from mesenchymal progenitor stem cells, are a group of rare malignant tumors with poor prognosis. Wide surgical resection, chemotherapy, and radiotherapy are the most common sarcoma treatments. However, sarcomas' response rates to chemotherapy are quite low and sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multi-drug resistance (MDR). Cancer cellular plasticity plays pivotal roles in cancer initiation, progression, therapy resistance and cancer relapse. Moreover, cancer cellular plasticity can be regulated by a multitude of factors, such as genetic and epigenetic alterations, tumor microenvironment (TME) or selective pressure imposed by treatment. Recent studies have demonstrated that cellular plasticity is involved in sarcoma progression and chemoresistance. It's essential to understand the molecular mechanisms of cellular plasticity as well as its roles in sarcoma progression and drug resistance. Therefore, this review focuses on the regulatory mechanisms and pathological roles of these diverse cellular plasticity programs in sarcoma. Additionally, we propose cellular plasticity as novel therapeutic targets to reduce sarcoma drug resistance.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China.
| | - Zhihua Fan
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Yang S, Li X, Shen W, Hu H, Li C, Han G. MicroRNA-140 Represses Esophageal Cancer Progression via Targeting ZEB2 to Regulate Wnt/β-Catenin Pathway. J Surg Res 2020; 257:267-277. [PMID: 32862055 DOI: 10.1016/j.jss.2020.07.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs have been reported to play regulatory functions in various cancers, including esophageal cancer. The aim of this study was to investigate the effects of miR-140 on the progression of esophageal cancer and the underlying regulatory mechanism. METHODS The levels of miR-140 and zinc finger E-box-binding homeobox 2 (ZEB2) messenger RNA in esophageal cancer tissues and cell lines were measured by quantitative real-time polymerase chain reaction. The protein levels of ZEB2, β-catenin, c-Myc, and cyclinD1 were determined by Western blot. Cell proliferation and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and flow cytometry, respectively. Cell migration and invasion were assessed by transwell assay. In addition, the relationship between miR-140 and ZEB2 was predicted by TargetScan online database and confirmed by dual-luciferase reporter assay. The tumor xenograft model was used to verify the role of miR-140 in esophageal cancer progression in vivo. RESULTS The expression of miR-140 was downregulated whereas ZEB2 expression was upregulated in esophageal cancer tissues compared with paracancerous normal tissues. Functionally, both miR-140 overexpression and ZEB2 knockdown inhibited proliferation, migration, and invasion and induced apoptosis in esophageal cancer cells. ZEB2 overexpression reversed the effects of miR-140 on proliferation, apoptosis, migration, and invasion of esophageal cancer cells. Mechanistically, ZEB2 was identified as a target of miR-140. Furthermore, miR-140 suppressed Wnt/β-catenin pathway by regulating ZEB2 expression in esophageal cancer cells. MiR-140 inhibited tumor growth of esophageal cancer through repressing ZEB2 expression in vivo. CONCLUSIONS Our results demonstrated that miR-140 inhibited esophageal cancer development by targeting ZEB2 through inactivating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xiangyi Li
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Haitao Hu
- Clinical Laboratory, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Chen Li
- Department of Stomatology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China.
| |
Collapse
|
12
|
Hawkins AG, Pedersen EA, Treichel S, Temprine K, Sperring C, Read JA, Magnuson B, Chugh R, Lawlor ER. Wnt/β-catenin-activated Ewing sarcoma cells promote the angiogenic switch. JCI Insight 2020; 5:135188. [PMID: 32544094 DOI: 10.1172/jci.insight.135188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Wnt/β-catenin signaling is active in small subpopulations of Ewing sarcoma cells, and these cells display a more metastatic phenotype, in part due to antagonism of EWS-FLI1-dependent transcriptional activity. Importantly, these β-catenin-activated Ewing sarcoma cells also alter secretion of extracellular matrix (ECM) proteins. We thus hypothesized that, in addition to cell-autonomous mechanisms, Wnt/β-catenin-active tumor cells might contribute to disease progression by altering the tumor microenvironment (TME). Analysis of transcriptomic data from primary patient biopsies and from β-catenin-active versus -nonactive tumor cells identified angiogenic switch genes as being highly and reproducibly upregulated in the context of β-catenin activation. In addition, in silico and in vitro analyses, along with chorioallantoic membrane assays, demonstrated that β-catenin-activated Ewing cells secreted factors that promote angiogenesis. In particular, activation of canonical Wnt signaling leads Ewing sarcoma cells to upregulate expression and secretion of proangiogenic ECM proteins, collectively termed the angiomatrix. Significantly, our data show that induction of the angiomatrix by Wnt-responsive tumor cells is indirect and is mediated by TGF-β. Mechanistically, Wnt/β-catenin signaling antagonizes EWS-FLI1-dependent repression of TGF-β receptor type 2, thereby sensitizing tumor cells to TGF-β ligands. Together, these findings suggest that Wnt/β-catenin-active tumor cells can contribute to Ewing sarcoma progression by promoting angiogenesis in the local TME.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rashmi Chugh
- Rogel Cancer Center, and.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth R Lawlor
- Department of Pediatrics.,Department of Pathology.,Rogel Cancer Center, and
| |
Collapse
|
13
|
Luo W, Xu C, Phillips S, Gardenswartz A, Rosenblum JM, Ayello J, Lessnick SL, Hao HX, Cairo MS. Protein phosphatase 1 regulatory subunit 1A regulates cell cycle progression in Ewing sarcoma. Oncotarget 2020; 11:1691-1704. [PMID: 32477459 PMCID: PMC7233808 DOI: 10.18632/oncotarget.27571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
Ewing sarcoma (ES) is a malignant pediatric bone and soft tissue tumor. Patients with metastatic ES have a dismal outcome which has not been improved in decades. The major challenge in the treatment of metastatic ES is the lack of specific targets and rational combinatorial therapy. We recently found that protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is specifically highly expressed in ES and promotes tumor growth and metastasis in ES. In the current investigation, we show that PPP1R1A regulates ES cell cycle progression in G1/S phase by down-regulating cell cycle inhibitors p21Cip1 and p27Kip1, which leads to retinoblastoma (Rb) protein hyperphosphorylation. In addition, we show that PPP1R1A promotes normal transcription of histone genes during cell cycle progression. Importantly, we demonstrate a synergistic/additive effect of the combinatorial therapy of PPP1R1A and insulin-like growth factor 1 receptor (IGF-1R) inhibition on decreasing ES cell proliferation and migration in vitro and limiting xenograft tumor growth and metastasis in vivo. Taken together, our findings suggest a role of PPP1R1A as an ES specific cell cycle modulator and that simultaneous targeting of PPP1R1A and IGF-1R pathways is a promising specific and effective strategy to treat both primary and metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Changxin Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Sarah Phillips
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | | | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Huai-Xiang Hao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
14
|
Rodríguez-Núñez P, Romero-Pérez L, Amaral AT, Puerto-Camacho P, Jordán C, Marcilla D, Grünewald TG, Alonso J, de Alava E, Díaz-Martín J. Hippo pathway effectors YAP1/TAZ induce an EWS-FLI1-opposing gene signature and associate with disease progression in Ewing sarcoma. J Pathol 2020; 250:374-386. [PMID: 31880317 DOI: 10.1002/path.5379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
YAP1 and TAZ (WWTR1) oncoproteins are the final transducers of the Hippo tumor suppressor pathway. Deregulation of the pathway leads to YAP1/TAZ activation fostering tumorigenesis in multiple malignant tumor types, including sarcoma. However, oncogenic mutations within the core components of the Hippo pathway are uncommon. Ewing sarcoma (EwS), a pediatric cancer with low mutation rate, is characterized by a canonical fusion involving the gene EWSR1 and FLI1 as the most common partner. The fusion protein is a potent driver of oncogenesis, but secondary alterations are scarce, and little is known about other biological factors that determine the risk of relapse or progression. We have observed YAP1/TAZ expression and transcriptional activity in EwS cell lines. Analyses of 55 primary human EwS samples revealed that high YAP1/TAZ expression was associated with progression of the disease and predicted poorer outcome. We did not observe recurrent SNV or copy number gains/losses in Hippo pathway-related loci. However, differential CpG methylation of the RASSF1 locus (a regulator of the Hippo pathway) was observed in EwS cell lines compared with mesenchymal stem cells, the putative cell of origin of EwS. Hypermethylation of RASSF1 correlated with the transcriptional silencing of the tumor suppressor isoform RASFF1A, and transcriptional activation of the pro-tumorigenic isoform RASSF1C, which promotes YAP1/TAZ activation. Knockdown of YAP1/TAZ decreased proliferation and invasion abilities of EwS cells and revealed that YAP1/TAZ transcription activity is inversely correlated with the EWS-FLI1 transcriptional signature. This transcriptional antagonism could be explained partly by EWS-FLI1-mediated transcriptional repression of TAZ. Thus, YAP1/TAZ may override the transcriptional program induced by the fusion protein, contributing to the phenotypic plasticity determined by dynamic fluctuation of the fusion protein, a recently proposed model for disease dissemination in EwS. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Pablo Rodríguez-Núñez
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Munich, Germany
| | - Ana T Amaral
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Puerto-Camacho
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain
| | - Carmen Jordán
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain
| | - David Marcilla
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain
| | - Thomas Gp Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Enrique de Alava
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Juan Díaz-Martín
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Romswinkel A, Infanger M, Dietz C, Strube F, Kraus A. The Role of C-X-C Chemokine Receptor Type 4 (CXCR4) in Cell Adherence and Spheroid Formation of Human Ewing's Sarcoma Cells under Simulated Microgravity. Int J Mol Sci 2019; 20:ijms20236073. [PMID: 31810195 PMCID: PMC6929163 DOI: 10.3390/ijms20236073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
We studied the behavior of Ewing's Sarcoma cells of the line A673 under simulated microgravity (s-µg). These cells express two prominent markers-the oncogene EWS/FLI1 and the chemokine receptor CXCR4, which is used as a target of treatment in several types of cancer. The cells were exposed to s-µg in a random-positioning machine (RPM) for 24 h in the absence and presence of the CXCR4 inhibitor AMD3100. Then, their morphology and cytoskeleton were examined. The expression of selected mutually interacting genes was measured by qRT-PCR and protein accumulation was determined by western blotting. After 24 h incubation on the RPM, a splitting of the A673 cell population in adherent and spheroid cells was observed. Compared to 1 g control cells, EWS/FLI1 was significantly upregulated in the adherent cells and in the spheroids, while CXCR4 and CD44 expression were significantly enhanced in spheroids only. Transcription of CAV-1 was upregulated and DKK2 and VEGF-A were down-regulated in both, adherent in spheroid cells, respectively. Regarding, protein accumulation EWS/FLI1 was enhanced in adherent cells only, but CD44 decreased in spheroids and adherent cells. Inhibition of CXCR4 did not change spheroid count, or structure. Under s-µg, the tumor marker EWS/FLI1 is intensified, while targeting CXCR4, which influences adhesion proteins, did not affect spheroid formation.
Collapse
Affiliation(s)
| | | | | | | | - Armin Kraus
- Correspondence: ; Tel.: +49-391-67-15599; Fax: +49-391-67-15588
| |
Collapse
|
16
|
Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol 2019; 234:14783-14799. [PMID: 30773635 DOI: 10.1002/jcp.28277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Zinc finger E-box binding homeobox 2 (ZEB2) is a DNA-binding transcription factor, which is mainly involved in epithelial-to-mesenchymal transition (EMT). EMT is a conserved process during which mature and adherent epithelial-like state is converted into a mobile mesenchymal state. Emerging data indicate that ZEB2 plays a pivotal role in EMT-induced processes such as development, differentiation, and malignant mechanisms, for example, drug resistance, cancer stem cell-like traits, apoptosis, survival, cell cycle arrest, tumor recurrence, and metastasis. In this regard, the understanding of mentioned subjects in the development of normal and cancerous cells could be helpful in cancer complexity of diagnosis and therapy. In this study, we review recent findings about the biological properties of ZEB2 in healthy and cancerous states to find new approaches for cancer treatment.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
18
|
Skrypek N, Bruneel K, Vandewalle C, De Smedt E, Soen B, Loret N, Taminau J, Goossens S, Vandamme N, Berx G. ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics Chromatin 2018; 11:70. [PMID: 30445998 PMCID: PMC6240308 DOI: 10.1186/s13072-018-0239-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. Results Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. Conclusions ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT. Electronic supplementary material The online version of this article (10.1186/s13072-018-0239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cindy Vandewalle
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bieke Soen
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nele Loret
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Centre for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Inflammation Research Center, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
19
|
Nakuluri K, Mukhi D, Nishad R, Saleem MA, Mungamuri SK, Menon RK, Pasupulati AK. Hypoxia induces ZEB2 in podocytes: Implications in the pathogenesis of proteinuria. J Cell Physiol 2018; 234:6503-6518. [DOI: 10.1002/jcp.27387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Krishnamurthy Nakuluri
- Department of Biochemistry School of Life Sciences, University of Hyderabad Hyderabad India
| | - Dhanunjay Mukhi
- Department of Biochemistry School of Life Sciences, University of Hyderabad Hyderabad India
| | - Rajkishor Nishad
- Department of Biochemistry School of Life Sciences, University of Hyderabad Hyderabad India
| | | | - Sathish Kumar Mungamuri
- Institute of Basic Sciences and Translational Research, Asian Health Care Foundation, Asian Institute of Gastroenterology Hyderabad India
| | - Ram K. Menon
- Department of Pediatrics University of Michigan Ann Arbor Michigan
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor Michigan
| | - Anil Kumar Pasupulati
- Department of Biochemistry School of Life Sciences, University of Hyderabad Hyderabad India
| |
Collapse
|
20
|
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers 2018; 4:5. [PMID: 29977059 DOI: 10.1038/s41572-018-0003-x] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma is the second most frequent bone tumour of childhood and adolescence that can also arise in soft tissue. Ewing sarcoma is a highly aggressive cancer, with a survival of 70-80% for patients with standard-risk and localized disease and ~30% for those with metastatic disease. Treatment comprises local surgery, radiotherapy and polychemotherapy, which are associated with acute and chronic adverse effects that may compromise quality of life in survivors. Histologically, Ewing sarcomas are composed of small round cells expressing high levels of CD99. Genetically, they are characterized by balanced chromosomal translocations in which a member of the FET gene family is fused with an ETS transcription factor, with the most common fusion being EWSR1-FLI1 (85% of cases). Ewing sarcoma breakpoint region 1 protein (EWSR1)-Friend leukaemia integration 1 transcription factor (FLI1) is a tumour-specific chimeric transcription factor (EWSR1-FLI1) with neomorphic effects that massively rewires the transcriptome. Additionally, EWSR1-FLI1 reprogrammes the epigenome by inducing de novo enhancers at GGAA microsatellites and by altering the state of gene regulatory elements, creating a unique epigenetic signature. Additional mutations at diagnosis are rare and mainly involve STAG2, TP53 and CDKN2A deletions. Emerging studies on the molecular mechanisms of Ewing sarcoma hold promise for improvements in early detection, disease monitoring, lower treatment-related toxicity, overall survival and quality of life.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Poul H Sorensen
- British Columbia Cancer Research Centre and University of British Columbia, Vancouver, Canada
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Uta Dirksen
- German Cancer Research Center, Heidelberg, Germany.,Cooperative Ewing Sarcoma Study group, Essen University Hospital, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|
21
|
Krook MA, Hawkins AG, Patel RM, Lucas DR, Van Noord R, Chugh R, Lawlor ER. A bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing sarcoma. Oncotarget 2018; 7:61775-61788. [PMID: 27528222 PMCID: PMC5308690 DOI: 10.18632/oncotarget.11240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023] Open
Abstract
Tumor heterogeneity is a major impediment to cancer cures. Tumor cell heterogeneity can arise by irreversible genetic mutation, as well as by non-mutational mechanisms, which can be reversibly modulated by the tumor microenvironment and the epigenome. We recently reported that the chemokine receptor CXCR4 is induced in Ewing sarcoma cells in response to microenvironmental stress. In the current study, we investigated plasticity of CXCR4 expression in vivo and assessed whether CXCR4 impacts on tumor growth. Our studies showed that Ewing sarcoma cells convert between CXCR4 negative and CXCR4 positive states in vivo and that positive cells are most abundant adjacent to areas of necrosis. In addition, tumor volumes directly correlated with CXCR4 expression supporting a role for CXCR4 in growth promotion. Mechanistically, our results show that, in ambient conditions where CXCR4 expression is low, the CXCR4 promoter exists in a poised, bivalent state with simultaneous enrichment of both activating (H3K4me3) and repressive (H3K27me3) post-translational histone modifications. In contrast, when exposed to stress, CXCR4 negative cells lose the H3K27me3 mark. This loss of promoter bivalency is associated with CXCR4 upregulation. These studies demonstrate that stress-dependent plasticity of CXCR4 is, in part, mediated by epigenetic plasticity and a bivalent promoter.
Collapse
Affiliation(s)
- Melanie A Krook
- Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Allegra G Hawkins
- Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Rajiv M Patel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - David R Lucas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Raelene Van Noord
- Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Rashmi Chugh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth R Lawlor
- Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, Büscher M, Pandolfini L, Zhang A, Pluchino S, Maracaja-Coutinho V, Nakaya HI, Hemberg M, Shiekhattar R, Enright AJ, Kouzarides T. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 2018; 19:32. [PMID: 29540241 PMCID: PMC5853149 DOI: 10.1186/s13059-018-1405-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.
Collapse
Affiliation(s)
- Paulo P. Amaral
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Tommaso Leonardi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Namshik Han
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Present address: The Milner Therapeutics Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Emmanuelle Viré
- Present address: MRC Prion Unit, UCL Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG UK
| | - Dennis K. Gascoigne
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Raúl Arias-Carrasco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Magdalena Büscher
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Luca Pandolfini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Anda Zhang
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508 Brazil
| | - Martin Hemberg
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
23
|
Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C, Zhang Z. miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget 2018; 8:10274-10286. [PMID: 28055964 PMCID: PMC5354658 DOI: 10.18632/oncotarget.14394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Metastasis is the most powerful predictor of poor outcome of Ewing sarcoma (ES). Thus, identification of new molecules involved in tumor metastasis is of crucial importance to reduce morbidity and mortality of this devastating disease. In this study, we found that miR-124, a highly conserved miRNA, was suppressed in ES tissues and might be associated with tumor metastasis through suppressing its mesenchymal features. Overexpression of miR-124 suppressed the invasion of ES cells in vitro and tumor metastasis in vivo, which might be achieved through suppressing its mesenchymal features, as overexpression of miR-124 could repress the mesenchymal genes expression, and inhibit cell differentiation to mesenchymal lineages in ES cells. However, when SLUG was experimentally restored in these cells, mesenchymal features including suppressed expression of mesenchymal genes and decreased invasive ability were observed. We also found that cyclin D2 (CCND2) was a novel target gene of miR-124, and was directly involved in miR-124-mediated suppressive effects on cell growth. Lastly, we found that treatment with 5-Aza-CdR restored the expression of miR-124, accompanied with suppressed cell proliferation, invasion and mesenchymal features of ES cells, which demonstrated that hypermethylation might be involved in the regulation of miR-124 expression. Collectively, our data suggest that hypermethylation-mediated suppression of miR-124 might be involved in the tumor initiation and metastasis through suppressing the mesenchymal features of ES cells.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Gynecology and Obstetrics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Gaohai Shao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Minghua Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Fengchen Zhu
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Bo Zhao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Chao He
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Zhongzu Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| |
Collapse
|
24
|
Choo S, Wang P, Newbury R, Roberts W, Yang J. Reactivation of TWIST1 contributes to Ewing sarcoma metastasis. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26721. [PMID: 28873262 PMCID: PMC5759052 DOI: 10.1002/pbc.26721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ewing sarcoma is a cancer of bone and soft tissue. Despite aggressive treatment, survival remains poor, particularly in patients with metastatic disease. Failure to treat Ewing sarcoma is due to the lack of understanding of the molecular pathways that regulate metastasis. In addition, no molecular prognostic markers have been identified for Ewing sarcoma to risk stratify patients. PROCEDURE Ewing sarcoma patients were divided into high or low Twist1 gene expression and survival curves were generated using the R2 microarray-based Genomic Analysis platform (http://r2.amc.nl). Tumors from Ewing sarcoma patients were also evaluated for TWIST1 expression by immunohistochemistry. Ewing sarcoma xenografts were established to evaluate the role of TWIST1 in metastasis. The effects of Twist1 on migration and invasion were evaluated using migration and invasion assays in A673 and RDES cells. RESULTS Twist1 expression was a negative prognostic marker for overall survival in a public Ewing sarcoma patient data set based on Twist1 mRNA levels and in patient tumor samples based on Twist1 immunohistochemistry. TWIST1 is detected in significantly higher percentage of patients with metastatic diseases than localized disease. Using Ewing sarcoma tumor xenografts in mice, we found that suppressing TWIST1 levels suppressed metastasis without affecting primary tumor development. Knockdown of Twist1 inhibited the migration and invasion capability, while overexpression of Twist1 promoted migration and invasion in Ewing sarcoma cells. CONCLUSION These results suggest that TWIST1 promotes metastasis in Ewing sarcoma and could be used as a prognostic marker for treatment stratification; however, further validation is required in a larger cohort of patients.
Collapse
Affiliation(s)
- Sun Choo
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital San Diego, San Diego, CA
| | - Ping Wang
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | - Robert Newbury
- Department of Pathology, University of California San Diego, La Jolla, CA
- Department of Pathology, Rady Children’s Hospital San Diego, San Diego, CA
| | - William Roberts
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital San Diego, San Diego, CA
| | - Jing Yang
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| |
Collapse
|
25
|
Passacantilli I, Frisone P, De Paola E, Fidaleo M, Paronetto MP. hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. Nucleic Acids Res 2017; 45:12270-12284. [PMID: 29036465 PMCID: PMC5716164 DOI: 10.1093/nar/gkx831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Ewing sarcomas (ES) are biologically aggressive tumors of bone and soft tissues for which no cure is currently available. Most ES patients do not respond to chemotherapeutic treatments or acquire resistance. Since the PI3K/AKT/mTOR axis is often deregulated in ES, its inhibition offers therapeutic perspective for these aggressive tumors. Herein, by using splicing sensitive arrays, we have uncovered an extensive splicing program activated upon inhibition of the PI3K/AKT/mTOR signaling pathway by BEZ235. Bioinformatics analyses identified hnRNPM as a key factor in this response. HnRNPM motifs were significantly enriched in introns flanking the regulated exons and proximity of binding represented a key determinant for hnRNPM-dependent splicing regulation. Knockdown of hnRNPM expression abolished a subset of BEZ235-induced splicing changes that contained hnRNPM binding sites, enhanced BEZ235 cytotoxicity and limited the clonogenicity of ES cells. Importantly, hnRNPM up-regulation correlates with poor outcome in sarcoma patients. These findings uncover an hnRNPM-dependent alternative splicing program set in motion by inhibition of the mTOR/AKT/PI3K pathway in ES cells that limits therapeutic efficacy of pharmacologic inhibitors, suggesting that combined inhibition of the PI3K/AKT/mTOR pathway and hnRNPM activity may represent a novel approach for ES treatment.
Collapse
Affiliation(s)
- Ilaria Passacantilli
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paola Frisone
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Elisa De Paola
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy.,University of Rome 'Foro Italico', Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Marco Fidaleo
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy.,University of Rome 'Foro Italico', Piazza Lauro de Bosis 6, 00135 Rome, Italy
| |
Collapse
|
26
|
Luo W, Xu C, Ayello J, Dela Cruz F, Rosenblum JM, Lessnick SL, Cairo MS. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene 2017; 37:798-809. [PMID: 29059150 DOI: 10.1038/onc.2017.378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Protein phosphatase inhibitors are often considered as tumor promoters. Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is a potent protein phosphatase 1 (PP1) inhibitor; however, its role in tumor development is largely undefined. Here we characterize, for the first time, the functions of PPP1R1A in Ewing sarcoma (ES) pathogenesis. We found that PPP1R1A is one of the top ranked target genes of EWS/FLI, the master regulator of ES, and is upregulated by EWS/FLI via a GGAA microsatellite enhancer element. Depletion of PPP1R1A resulted in a significant decrease in oncogenic transformation and cell migration in vitro as well as xenograft tumor growth and metastasis in an orthotopic mouse model. RNA-sequencing and functional annotation analyses revealed that PPP1R1A regulates genes associated with various cellular functions including cell junction, adhesion and neurogenesis. Interestingly, we found a significant overlap of PPP1R1A-regulated gene set with that of ZEB2 and EWS, which regulates metastasis and neuronal differentiation in ES, respectively. Further studies for characterization of the molecular mechanisms revealed that activation of PPP1R1A by PKA phosphorylation at Thr35, and subsequent PP1 binding and inhibition, was required for PPP1R1A-mediated tumorigenesis and metastasis, likely by increasing the phosphorylation levels of various PP1 substrates. Furthermore, we found that a PKA inhibitor impaired ES cell proliferation, tumor growth and metastasis, which was rescued by the constitutively active PPP1R1A. Together, these results offered new insights into the role and mechanism of PPP1R1A in tumor development and identified an important kinase and phosphatase pathway, PKA/PPP1R1A/PP1, in ES pathogenesis. Our findings strongly suggest a potential therapeutic value of inhibition of the PKA/PPP1R1A/PP1 pathway in the treatment of primary and metastatic ES.
Collapse
Affiliation(s)
- W Luo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA
| | - C Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - J Ayello
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - F Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J M Rosenblum
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - S L Lessnick
- Nationwide Children's Hospital, Columbus, OH, USA
| | - M S Cairo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA.,Departments of Medicine, New York Medical College, Valhalla, NY, USA.,Departments of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
27
|
Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD, Loeb DM. Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget 2017; 8:78265-78276. [PMID: 29108227 PMCID: PMC5667961 DOI: 10.18632/oncotarget.19432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
The most pressing unmet clinical need for patients with Ewing sarcoma (ES) is the prevention and treatment of metastasis. The Wnt signaling pathway regulates a number of cellular functions associated with metastasis, including proliferation, motility, and stem cell self-renewal. Functional interaction between Wnt ligands and their receptors requires palmitoylation by Porcupine (Porcn), making this an ideal therapeutic target. We studied the effect of WNT974, a potent, selective Porcn inhibitor, on ES metastasis. In vitro, WNT974 does not affect ES proliferation or sarcosphere formation, but suppresses multiple transcriptional regulators of metastasis and inhibits cell migration. In vivo, in an orthotopic implantation/amputation model of spontaneous distant metastasis, single agent WNT974 treatment leads to a significant delay in formation of lung metastasis and a substantial improvement in post-amputation survival without a major effect on primary tumor growth. The drug produces no survival benefit in a tail vein injection model, supporting the hypothesis that WNT974 inhibits early steps in the metastatic cascade, such as migration and invasion. Our findings strongly implicate Wnt signaling in the early steps of ES metastasis and demonstrate that WNT974 has the potential to significantly improve the survival of ES patients through the specific inhibition of metastasis.
Collapse
Affiliation(s)
- Masanori Hayashi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alissa Baker
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Seth D. Goldstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Catherine M. Albert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Kyle W. Jackson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory McCarty
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ulf D. Kahlert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Neurosurgical Clinic, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - David M. Loeb
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Qi Y, Wang N, He Y, Zhang J, Zou H, Zhang W, Gu W, Huang Y, Lian X, Hu J, Zhao J, Cui X, Pang L, Li F. Transforming growth factor-β1 signaling promotes epithelial-mesenchymal transition-like phenomena, cell motility, and cell invasion in synovial sarcoma cells. PLoS One 2017; 12:e0182680. [PMID: 28829837 PMCID: PMC5567493 DOI: 10.1371/journal.pone.0182680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and the reverse process (the mesenchymal-to-epithelial transition [MET]) have been shown to be associated with tumor cell invasion and metastasis in different carcinomas. The EMT and MET have recently been shown to play a key role in the pathogenic processes of sarcomas, which are completely different from those of carcinomas. However, the definitive roles of the EMT in the tumorigenesis of synovial sarcomas remain unknown. Here, we explored whether transforming growth factor (TGF)-β signaling, an important oncogenic event in synovial sarcoma, modulates tumor cell characteristics related to the EMT, such as cell adhesion, migration, invasion, and proliferation. Interestingly, we found that TGF-β1 induced tumor cell activation, resulting in a tendency to aggregate and biphasic-like features. TGF-β1 also caused downregulation of E-cadherin and subsequent upregulation of N-cadherin, Snail, and Slug, which are responsible for EMT-like phenomena and increased cell motility and invasion. To further investigate the roles of TGF-β1 in the EMT, we established a SW982 cell line with stable TGF-β1 inhibition viaSB431542.These cells exhibited significantly decreased motility, migration, and proliferation (P = 0.001). Taken together, our data demonstrated that alterations in the TGF-β1/Smad signaling pathway could regulate the expression of EMT-related factors and the EMT process, resulting in changes in tumor cell invasion, migration, and proliferation in synovial sarcoma cells. These results may provide a important insights into therapeutic interventions and contribute to the present understanding of tumor progression in patients.
Collapse
Affiliation(s)
- Yan Qi
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ning Wang
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yonglai He
- Department of ICU Intensive Care, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Zhang
- Department of Medical Genetics, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wenjie Zhang
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), St Lucia, Brisbane, Australia
| | - Yalan Huang
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaojuan Lian
- Department of Tumor Blood, Jiangjin Central Hospital of Chongqing, Chongqing, P.R. China
| | - Jianming Hu
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Zhao
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaobin Cui
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: (LP); (FL)
| | - Feng Li
- Department of Pathology and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail: (LP); (FL)
| |
Collapse
|
29
|
Sannino G, Marchetto A, Kirchner T, Grünewald TGP. Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas? Cancer Res 2017; 77:4556-4561. [PMID: 28811330 DOI: 10.1158/0008-5472.can-17-0032] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/15/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process comprised of various subprograms via which epithelial cells reduce their intercellular adhesions and proliferative capacity while gaining a mesenchymal phenotype with increased migratory and invasive properties. This process has been well described in several carcinomas, which are cancers of epithelial origin, and is crucial to metastatic tumor cell dissemination and drug resistance. In contrast, the precise role of EMT-related processes in tumors originating from mesenchymal tissues, such as bone and soft-tissues sarcomas, is still largely unclear. In fact, although the existence of the EMT in sarcomas appears paradoxical because these cancers are, by definition, mesenchymal ab initio, accumulating evidence suggests that many sarcomas can undergo EMT-related processes, which may be associated with aggressive clinical behavior. These processes may be especially operative in certain sarcoma subtypes, such as carcinosarcomas displaying a biphenotypic morphology with characteristics of both mesenchymal and epithelial tumors. In this review, we discuss findings regarding the potential existence of EMT-related processes in sarcomas and propose that sarcomas can reside in a metastable state, enabling them to become either more mesenchymal or epithelial under specific conditions, which likely has important clinical implications. Cancer Res; 77(17); 4556-61. ©2017 AACR.
Collapse
Affiliation(s)
- Giuseppina Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
31
|
WeiΔ LM, Hugle M, Fulda S. Eribulin alone or in combination with the PLK1 inhibitor BI 6727 triggers intrinsic apoptosis in Ewing sarcoma cell lines. Oncotarget 2017; 8:52445-52456. [PMID: 28881742 PMCID: PMC5581041 DOI: 10.18632/oncotarget.17190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the molecular mechanisms of eribulin-induced cell death and its therapeutic potential in combination with the PLK1 inhibitor BI 6727 in Ewing sarcoma (ES). Here, we show that eribulin triggers cell death in a dose-dependent manner in a panel of ES cell lines. In addition, eribulin at subtoxic, low nanomolar concentrations acts in concert with BI 6727 to induce cell death and to suppress long-term clonogenic survival. Mechanistic studies reveal that eribulin monotherapy at cytotoxic concentrations and co-treatment with eribulin at subtoxic concentrations together with BI 6727 arrest cells in the M phase of the cell cycle prior to the onset of cell death. This mitotic arrest is followed by increased phosphorylation of BCL-2 and BCL-xL as well as downregulation of MCL-1, suggesting inactivation of these antiapoptotic BCL-2 family proteins. Consistently, eribulin monotherapy and eribulin/BI 6727 co-treatment trigger activation of BAX, a key proapoptotic BCL-2 family protein, and increase proteolytic activation of caspase-9 and -3. Importantly, overexpression of BCL-2 or addition of the broad-range caspase inhibitor zVAD.fmk significantly rescue eribulin- as well as eribulin/BI 6727-induced cell death. Together, these findings demonstrate that eribulin induces cell death via the intrinsic pathway of apoptosis in ES cells, both alone at cytotoxic concentrations and in combination with BI 6727 at subtoxic concentrations. Thus, our study highlights the therapeutic potential of eribulin for the treatment of ES alone or in rational combination therapies.
Collapse
Affiliation(s)
- Lilly Magdalena WeiΔ
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget 2017; 7:17616-30. [PMID: 26848860 PMCID: PMC4951237 DOI: 10.18632/oncotarget.7124] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1. Nearly 85% of cases express the EWS-FLI protein which functions as a transcription factor and drives oncogenesis. As the primary genomic lesion and a protein which is not expressed in normal cells, disrupting EWS-FLI function is an attractive therapeutic strategy for Ewing sarcoma. However, transcription factors are notoriously difficult targets for the development of small molecules. Improved understanding of the oncogenic mechanisms employed by EWS-FLI to hijack normal cellular programming has uncovered potential novel approaches to pharmacologically block EWS-FLI function. In this review we examine targeting the chromatin regulatory enzymes recruited to conspire in oncogenesis with a focus on the histone lysine specific demethylase 1 (LSD1). LSD1 inhibitors are being aggressively investigated in acute myeloid leukemia and the results of early clinical trials will help inform the future use of LSD1 inhibitors in sarcoma. High LSD1 expression is observed in Ewing sarcoma patient samples and mechanistic and preclinical data suggest LSD1 inhibition globally disrupts the function of EWS-ETS proteins.
Collapse
Affiliation(s)
- Emily R Theisen
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Cancer Therapeutics Laboratory, Centre for Personalized Cancer Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ranajeet S Saund
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Pediatric Hematology/Oncology/Bone Marrow Transplant at The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene 2017; 36:3505-3514. [PMID: 28135250 PMCID: PMC5541267 DOI: 10.1038/onc.2016.498] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Ewing sarcoma is characterized by the expression of the chimeric EWSR1-FLI1 transcription factor. Proteomic analyses indicate that the decrease of EWSR1-FLI1 expression leads to major changes in effectors of the dynamics of the actin cytoskeleton and the adhesion processes with a shift from cell-to-cell to cell-matrix adhesion. These changes are associated with a dramatic increase of in vivo cell migration and invasion potential. Importantly, EWSR1-FLI1 expression, evaluated by single-cell RT-ddPCR/immunofluorescence analyses, and activity, assessed by expression of EWSR1-FLI1 downstream targets, are heterogeneous in cell lines and in tumours and can fluctuate along time in a fully reversible process between EWSR1-FLI1high states, characterized by highly active cell proliferation, and EWSR1-FLI1low states where cells have a strong propensity to migrate, invade and metastasize. This new model of phenotypic plasticity proposes that the dynamic fluctuation of the expression level of a dominant oncogene is an intrinsic characteristic of its oncogenic potential.
Collapse
|
34
|
Wang Z, Chen J, Zhang W, Zheng Y, Wang Z, Liu L, Wu H, Ye J, Zhang W, Qi B, Wu Y, Song X. Axon guidance molecule semaphorin3A is a novel tumor suppressor in head and neck squamous cell carcinoma. Oncotarget 2017; 7:6048-62. [PMID: 26755661 PMCID: PMC4868739 DOI: 10.18632/oncotarget.6831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/28/2015] [Indexed: 01/13/2023] Open
Abstract
Semaphorin3A (SEMA3A), an axon guidance molecule in the nervous system, plays an inhibitory role in oncogenesis. Here, we investigated the expression pattern and biological roles of SEMA3A in head and neck squamous cell carcinoma (HNSCC) by gain-of-function assays using adenovirus transfection and recombinant human SEMA3A protein. In addition, we explored the therapeutic efficacy of SEMA3A against HNSCC in vivo. We found that lower expression of SEMA3A correlated with shorter overall survival and had independent prognostic importance in patients with HNSCC. Both genetic and recombinant SEMA3A protein inhibited cell proliferation and colony formation and induced apoptosis, accompanied by decreased cyclin E, cyclin D, CDK2, CDK4 and CDK6 and increased P21, P27, activated caspase-5 and caspase-7. Moreover, over-expression of SEMA3A suppressed migration, invasion and epithelial-to-mesenchymal transition due in part to the inhibition of NF-κB and SNAI2 in HNSCC cell lines. Furthermore, intratumoral SEMA3A delivery significantly stagnated tumor growth in a xenograft model. Taken together, our results indicate that SEMA3A serves as a tumor suppressor during HNSCC tumorigenesis and a new target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Zhao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jie Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Zilu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Bing Qi
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
35
|
Lawlor ER, Sorensen PH. Twenty Years on: What Do We Really Know about Ewing Sarcoma and What Is the Path Forward? Crit Rev Oncog 2016; 20:155-71. [PMID: 26349414 DOI: 10.1615/critrevoncog.2015013553] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ewing sarcoma (ES) is a highly aggressive bone and soft-tissue tumor with peak incidence among adolescents and young adults. Despite advances in local control and systemic chemotherapy, metastatic relapse after an initial clinical remission remains a significant clinical problem. In addition, metastasis at the time of presentation or at relapse continues to be the leading cause of death for patients diagnosed with ES. Since the discovery of the pathognomonic EWS-FLI1 fusion gene more than 20 years ago, much about the molecular and cellular biology of ES pathogenesis has been learned. In addition, more recent exploitation of advances in stem cell and developmental biology has provided key insights into the cellular origins of ES and the role of epigenetic deregulation in tumor initiation and maintenance. Nevertheless, the mechanisms that drive tumor relapse and metastasis remain largely unknown. These gaps in our knowledge continue to hamper the development of novel therapeutic strategies that may improve outcomes for patients with relapsed and metastatic disease. In this article we review the current status of ES biology research, highlighting areas of investigation that we consider to have the greatest potential to yield findings that will translate into clinically significant advances.
Collapse
Affiliation(s)
- Elizabeth R Lawlor
- Department of Pediatrics & Communicable Diseases and Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Juang YL, Jeng YM, Chen CL, Lien HC. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer. Mol Carcinog 2016; 55:2247-2259. [DOI: 10.1002/mc.22465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Yu-Lin Juang
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
- Department of Pathology; National Taiwan University Hospital; Taipei Taiwan
| | - Chi-Long Chen
- Department of Pathology, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Pathology; Taipei Medical University Hospital; Taipei Taiwan
| | - Huang-Chun Lien
- Graduate Institute of Pathology; National Taiwan University; Taipei Taiwan
- Department of Pathology; National Taiwan University Hospital; Taipei Taiwan
| |
Collapse
|
37
|
EWS/FLI utilizes NKX2-2 to repress mesenchymal features of Ewing sarcoma. Genes Cancer 2015; 6:129-43. [PMID: 26000096 PMCID: PMC4426950 DOI: 10.18632/genesandcancer.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022] Open
Abstract
In Ewing sarcoma, NKX2-2 is a critical activated target of the oncogenic transcription factor EWS/FLI that is required for transformation. However, its biological function in this malignancy is unknown. Here we provide evidence that NKX2-2 mediates the EWS/FLI-controlled block of mesenchymal features. Transcriptome-wide RNA sequencing revealed that NKX2-2 represses cell adhesion and extracellular matrix organization genes. NKX2-2-depleted cells form more focal adhesions and organized actin stress fibers, and spread over a wider area—hallmarks of mesenchymally derived cells. Furthermore, NKX2-2 represses the actin-stabilizing protein zyxin, suggesting that these morphological changes are attributable to zyxin de-repression. In addition, NKX2-2-knockdown cells display marked increases in migration and substrate adhesion. However, only part of the EWS/FLI phenotype is NKX2-2-dependent; consequently, NKX2-2 is insufficient to rescue EWS/FLI repression of mesenchymalization. Strikingly, we found that EWS/FLI-and NKX22-repressed genes are activated by ZEB2, which was previously shown to block Ewing sarcoma epithelialization. Together, these data support an emerging theme wherein Ewing sarcoma cells highly express transcription factors that maintain an undifferentiated state. Importantly, co-opting epithelial and mesenchymal traits by Ewing sarcoma cells may explain how the primary tumor grows rapidly while also “passively” metastasizing, without the need for transitions toward differentiated states, as in carcinomas.
Collapse
|
38
|
PRRX1 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer. Med Oncol 2014; 32:393. [PMID: 25428393 DOI: 10.1007/s12032-014-0393-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
Carcinoma cells hijack the epithelial-mesenchymal transition (EMT) for tumor dissemination. Paired-related homeobox 1 (PRRX1) has been identified as a new EMT inducer. However, the function of PRRX1 in gastric cancer has not been elucidated. In this study, we observed that PRRX1 expression levels were upregulated and positively correlated with metastasis and EMT markers in human gastric cancer specimens. PRRX1 overexpression had distinct effects on the cell morphology, proliferation, migration and invasion of BGC823 and SGC7901 gastric cancer cells both in vitro and in xenografts. PRRX1 overexpression resulted in the regulation of the EMT molecular markers N-cadherin, E-cadherin and vimentin as well as the levels of intranuclear β-catenin and the Wnt/β-catenin target c-Myc. Furthermore, the inhibition of the Wnt/β-catenin pathway by XAV939 offset the effects of PRRX1 overexpression. These findings demonstrate that PRRX1 promotes EMT in gastric cancer cells through the activation of Wnt/β-catenin signaling and that PRRX1 upregulation is closely correlated with gastric cancer metastasis.
Collapse
|
39
|
Galoian K, Qureshi A, Wideroff G, Temple HT. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol Clin Oncol 2014; 3:171-178. [PMID: 25469290 DOI: 10.3892/mco.2014.445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gina Wideroff
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - H T Temple
- University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
40
|
Chaturvedi A, Hoffman LM, Jensen CC, Lin YC, Grossmann AH, Randall RL, Lessnick SL, Welm AL, Beckerle MC. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma. Mol Biol Cell 2014; 25:2695-709. [PMID: 25057021 PMCID: PMC4161506 DOI: 10.1091/mbc.e14-01-0007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised.
Collapse
Affiliation(s)
- Aashi Chaturvedi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Yi-Chun Lin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - R Lor Randall
- Center for Children's Cancer Research, Huntsman Cancer Institute, Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT 84132 Department of Orthopaedics, Sarcoma Services, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Stephen L Lessnick
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112 Center for Children's Cancer Research, Huntsman Cancer Institute, Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112 Department of Biology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|