1
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
2
|
Pitrolino K, Felfel R, Roberts G, Scotchford C, Grant D, Sottile V. In vitrodegradation of a chitosan-based osteochondral construct points to a transient effect on cellular viability. Biomed Mater 2024; 19:055025. [PMID: 39105245 DOI: 10.1088/1748-605x/ad6547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Bioresorbable chitosan scaffolds have shown potential for osteochondral repair applications. Thein vivodegradation of chitosan, mediated by lysozyme and releasing glucosamine, enables progressive replacement by ingrowing tissue. Here the degradation process of a chitosan-nHA based bioresorbable scaffold was investigated for mass loss, mechanical properties and degradation products released from the scaffold when subjected to clinically relevant enzyme concentrations. The scaffold showed accelerated mass loss during the early stages of degradation but without substantial reduction in mechanical strength or structure deterioration. Although not cytotoxic, the medium in which the scaffold was degraded for over 2 weeks showed a transient decrease in mesenchymal stem cell viability, and the main degradation product (glucosamine) demonstrated a possible adverse effect on viability when added at its peak concentration. This study has implications for the design and biomedical application of chitosan scaffolds, underlining the importance of modelling degradation products to determine suitability for clinical translation.
Collapse
Affiliation(s)
- Katherine Pitrolino
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- College of Science and Engineering,University of Derby, Derby, United Kingdom
| | - Reda Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, United Kingdom
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - George Roberts
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Colin Scotchford
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - David Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- UOC Bioscaffolds and transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
5
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
6
|
Kolar M, Drobnič M. Multilayered biomimetic scaffolds for cartilage repair of the talus. A systematic review of the literature. Foot Ankle Surg 2023; 29:2-8. [PMID: 36379845 DOI: 10.1016/j.fas.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of the present review was to analyze the available evidence in the literature on the clinical and radiological outcomes of multilayered biomimetic scaffolds in the treatment of osteochondral lesions of the talus (OLTs). DESIGN A systematic search was performed in three databases to identify clinical trials, where the multilayered biomimetic scaffolds were used for the treatment of OLTs. The PRISMA guidelines were followed. Qualitative analysis of the relevant data of the included studies was executed. The methodological quality of the analyzed studies was assessed with a modified Coleman Methodology Score (CMS). RESULTS A total of 10 studies with 87 patients were included in the analysis. Only three multilayered biomimetic scaffolds have been investigated in clinical trials for the treatment of OLTs. The worst clinical and radiological outcomes, as well as safety profile were observed for the TruFit scaffold (Smith & Nephew, Andover, MA, USA), which had already been withdrawn from the market. The other two scaffolds (MaioRegen, Finceramica, Italy; Agili-C, Cartiheal, Israel) performed significantly better in the majority of the reviewed studies, especially in the clinical aspect. The radiological findings, the improvements of MOCART scores, the completeness of lesions' fill, and the structure of regenerated tissue were much more inconsistent. CONCLUSIONS Two of the multilayered biomimetic scaffolds demonstrated an adequate potential in the treatment of complex OLTs. However, limited studies availability and their low level of medical evidence request further high-level investigations before the clinical decision making for such scaffolds in the treatment of OLTs can be defined.
Collapse
Affiliation(s)
- Matic Kolar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia; Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia.
| | - Matej Drobnič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia; Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomater 2022; 150:1-21. [PMID: 35902038 DOI: 10.1016/j.actbio.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Cartilage repair strategies are evolving at a fast pace with technology development. Matrices that offer multifaceted functions and a full adaption to the cartilage defect are of pivotal interest. Current cartilage repair strategies face numerous challenges, mostly related to the development of highly biomimetic materials, non-invasive injectable solutions, and adequate degradation rates. These strategies often fail due to feeble mechanical properties, the inability to sustain cell adhesion, growth, and differentiation or by underestimating other players of cartilage degeneration, such as the installed pro-inflammatory microenvironment. The integration of nanomaterials (NMs) into 3D scaffolds, hydrogels and bioinks hold great potential in the improvement of key features of materials that are currently applied in cartilage tissue engineering strategies. NMs offer a high surface to volume ratio and their multiple applications can be explored to enhance cartilage mechanical properties, biocompatibility, cell differentiation, inflammation modulation, infection prevention and even to function as diagnostic tools or as stimuli-responsive cues in these 3D structures. In this review, we have critically reviewed the latest advances in the development of nanoenabled 3D matrices - enhanced by means of NMs - in the context of cartilage regeneration. We have provided a wide perspective of the synergistic effect of combining 3D strategies with NMs, with emphasis on the benefits brought by NMs in achieving functional and enhanced therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Cartilage is one of the most challenging tissues to treat owing to its limited self-regeneration potential. Novel strategies using nanoenabled 3D matrices have emerged from the need to design more efficient solutions for cartilage repair, that take into consideration its unique mechanical properties and can direct specific cell behaviours. Here we aim to provide a comprehensive review on the synergistic effects of 3D matrices nanoenrichment in the context of cartilage regeneration, with emphasis on the heightening brought by nanomaterials in achieving functional and enhanced therapeutic outcomes. We anticipate this review to provide a wide perspective on the past years' research on the field, demonstrating the great potential of these approaches in the treatment and diagnosis of cartilage-related disorders.
Collapse
|
8
|
Begines B, Arevalo C, Romero C, Hadzhieva Z, Boccaccini AR, Torres Y. Fabrication and Characterization of Bioactive Gelatin-Alginate-Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15008-15020. [PMID: 35316017 PMCID: PMC8990524 DOI: 10.1021/acsami.2c01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 05/10/2023]
Abstract
In this research work, the fabrication of biphasic composite implants has been investigated. Porous, commercially available pure Ti (50 vol % porosity and pore distributions of 100-200, 250-355, and 355-500 μm) has been used as a cortical bone replacement, while different composites based on a polymer blend (gelatin and alginate) and bioactive glass (BG) 45S5 have been applied as a soft layer for cartilage tissues. The microstructure, degradation rates, biofunctionality, and wear behavior of the different composites were analyzed to find the best possible coating. Experiments demonstrated the best micromechanical balance for the substrate containing 200-355 μm size range distribution. In addition, although the coating prepared from alginate presented a lower mass loss, the composite containing 50% alginate and 50% gelatin showed a higher elastic recovery, which entails that this type of coating could replicate the functions of the soft tissue in areas of the joints. Therefore, results revealed that the combinations of porous commercially pure Ti and composites prepared from alginate/gelatin/45S5 BG are candidates for the fabrication of biphasic implants not only for the treatment of osteochondral defects but also potentially for any other diseases affecting simultaneously hard and soft tissues.
Collapse
Affiliation(s)
- Belen Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/ Profesor García González
2, Seville 41012, Spain
| | - Cristina Arevalo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| | - Carlos Romero
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
- Department
of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés, Madrid 28911, Spain
| | - Zoya Hadzhieva
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| |
Collapse
|
9
|
Kluyskens L, Debieux P, Wong KL, Krych AJ, Saris DBF. Biomaterials for meniscus and cartilage in knee surgery: state of the art. J ISAKOS 2022; 7:67-77. [PMID: 35543667 DOI: 10.1136/jisakos-2020-000600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Meniscus and cartilage injuries of the knee joint lead to cartilage degeneration and osteoarthritis (OA). The research on biomaterials and artificial implants as substitutes in reconstruction and regeneration has become a main international focus in order to solve clinical problems such as irreparable meniscus injury, postmeniscectomy syndrome, osteochondral lesions and generalised chronic OA. In this review, we provide a summary of biomaterials currently used in clinical practice as well as state-of-the-art tissue engineering strategies and technologies that are developed for articular cartilage and meniscus repair and regeneration. The literature was reviewed over the last 5 years on clinically used meniscus and cartilage repair biomaterials, such as Collagen Meniscal Implant, Actifit, NUsurface, TruFit, Agili-C and MaioRegen. There are clinical advantages for these biomaterials and the application of these treatment options should be considered individually. Standardised evaluation protocols are needed for biological and mechanical assessment and comparison between different scaffolds, and long-term randomised independent clinical trials with large study numbers are needed to provide more insight into the use of these biomaterials. Surgeons should become familiar and stay up to date with evolving repair options to improve their armamentarium for meniscal and cartilage defects.
Collapse
Affiliation(s)
- Louis Kluyskens
- Orthopedics, AZ Monica Antwerpen, Antwerpen, Belgium; Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA.
| | - Pedro Debieux
- Department of Orthopedics and Traumatology, Universidade Federal de São Paulo, Sao Paulo, São Paulo, Brazil; Department of Orthopaedic Surgery, Hospital Israelita Albert Einstein, Sao Paulo, São Paulo, Brazil
| | - Keng Lin Wong
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore; Department of Orthopaedic Surgery, National University of Singapore, Singapore
| | - Aaron J Krych
- Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Daniel B F Saris
- Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA; Department of Orthopedic Surgery, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
10
|
Tamaddon M, Blunn G, Tan R, Yang P, Sun X, Chen SM, Luo J, Liu Z, Wang L, Li D, Donate R, Monzón M, Liu C. In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Biodes Manuf 2022; 5:481-496. [PMID: 35846348 PMCID: PMC9279224 DOI: 10.1007/s42242-021-00177-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022]
Abstract
The repair of osteochondral defects is one of the major clinical challenges in orthopaedics. Well-established osteochondral tissue engineering methods have shown promising results for the early treatment of small defects. However, less success has been achieved for the regeneration of large defects, which is mainly due to the mechanical environment of the joint and the heterogeneous nature of the tissue. In this study, we developed a multi-layered osteochondral scaffold to match the heterogeneous nature of osteochondral tissue by harnessing additive manufacturing technologies and combining the established art laser sintering and material extrusion techniques. The developed scaffold is based on a titanium and polylactic acid matrix-reinforced collagen "sandwich" composite system. The microstructure and mechanical properties of the scaffold were examined, and its safety and efficacy in the repair of large osteochondral defects were tested in an ovine condyle model. The 12-week in vivo evaluation period revealed extensive and significantly higher bone in-growth in the multi-layered scaffold compared with the collagen-HAp scaffold, and the achieved stable mechanical fixation provided strong support to the healing of the overlying cartilage, as demonstrated by hyaline-like cartilage formation. The histological examination showed that the regenerated cartilage in the multi-layer scaffold group was superior to that formed in the control group. Chondrogenic genes such as aggrecan and collagen-II were upregulated in the scaffold and were higher than those in the control group. The findings showed the safety and efficacy of the cell-free "translation-ready" osteochondral scaffold, which has the potential to be used in a one-step surgical procedure for the treatment of large osteochondral defects. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42242-021-00177-w.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT UK
| | - Rongwei Tan
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107 China
| | - Pan Yang
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107 China
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Shen-Mao Chen
- Institute of Orthopaedic and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP UK
| | - Jiajun Luo
- Institute of Orthopaedic and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP UK
| | - Ziyu Liu
- Institute of Orthopaedic and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP UK
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Ricardo Donate
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP UK
| |
Collapse
|
11
|
Van Genechten W, Vuylsteke K, Struijk C, Swinnen L, Verdonk P. Joint Surface Lesions in the Knee Treated with an Acellular Aragonite-Based Scaffold: A 3-Year Follow-Up Case Series. Cartilage 2021; 13:1217S-1227S. [PMID: 33448238 PMCID: PMC8808874 DOI: 10.1177/1947603520988164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The study aimed to evaluate the clinical outcome and repair capacity of a cell-free aragonite-based scaffold in patients with an isolated symptomatic joint surface lesion (JSL) of the knee. DESIGN Thirteen patients (age 33.5 ± 8.9; female 23%; body mass index 25.3 ± 3.4, K/L [Kellgren-Lawrence] 1.8) with a JSL (2.6 ± 1.7 cm2 [1.0-7.5 cm2]) of the distal femur were enrolled in a single-center prospective case series. Safety and clinical outcome was assessed by the KOOS (Knee Injury and Osteoarthritis Outcome Score), IKDC (International Knee Documentation Committee), Lysholm, and Tegner activity scale at baseline and 6, 12, 18, 24, and 36 months follow-up. The MOCART 2.0 and scaffold integration were evaluated on magnetic resonance imaging at 12, 24, and 36 months postoperatively. RESULTS Primary outcome (KOOS pain) improved with 36.5 ± 14.7 points at 12 months (P = 0.002) and 41.2 ± 14.7 points at 36 months (P = 0.002) follow-up. Similar increasing trends were observed for the other KOOS subscales, IKDC, and Lysholm score, which were significantly better at each follow-up time point relative to baseline (P < 0.05). Activity level increased from 2.75 ± 1.6 to 4.6 ± 2.2 points at final follow-up (P = 0.07). The MOCART was 61.7 ± 12.6 at 12 months and 72.9 ± 13.0 at 36 months postoperatively. Sixty-six to 100% implant integration and remodeling was observed in 73.3% cases at 36 months. No serious adverse events were reported. CONCLUSION The study demonstrated that the biphasic aragonite-based scaffold is a safe and clinically effective implant for treating small-medium sized JSLs of the distal femur in a young and active patient cohort. The implant showed satisfying osteointegration and restoration of the osteochondral unit up to 3 years postimplantation.
Collapse
Affiliation(s)
- Wouter Van Genechten
- MoRe Foundation, Antwerp, Belgium,Antwerp University, Antwerp,
Belgium,Wouter Van Genechten, MoRe Foundation,
Stevenslei 20, Antwerp 2100, Belgium.
| | | | | | - Linus Swinnen
- Department of Radiology, AZ Monica,
Antwerp-Deurne, Antwerp, Belgium
| | - Peter Verdonk
- MoRe Foundation, Antwerp, Belgium,Antwerp University, Antwerp,
Belgium,ORTHOCA, Antwerp, Belgium
| |
Collapse
|
12
|
Wang D, Nawabi DH, Krych AJ, Jones KJ, Nguyen J, Elbuluk AM, Farshad-Amacker NA, Potter HG, Williams RJ. Synthetic Biphasic Scaffolds versus Microfracture for Articular Cartilage Defects of the Knee: A Retrospective Comparative Study. Cartilage 2021; 13:1002S-1013S. [PMID: 32046514 PMCID: PMC8808844 DOI: 10.1177/1947603520903418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare the results of a biphasic synthetic scaffold (TruFit, Smith & Nephew) to microfracture for the treatment of knee cartilage defects and identify patient- and lesion-specific factors that influence outcomes. DESIGN Prospectively collected data from 132 patients (mean age, 41.8 years; 69% male) with isolated chondral or osteochondral femoral defects treated with biphasic synthetic scaffolds (n = 66) or microfracture (n = 66) were reviewed. Clinical outcomes were evaluated longitudinally over 5 years with the Short Form-36 (SF-36), Activities of Daily Living of the Knee Outcome Survey (KOS-ADL), International Knee Documentation Committee (IKDC), and Marx Activity Scale. Cartilage-sensitive magnetic resonance imaging (MRI) was performed to evaluate osseous integration and cartilage fill in a subgroup of patients. Multivariate regression analysis was used to identify predictors of clinical outcomes within the scaffold group. RESULTS Both groups demonstrated clinically significant improvements in knee clinical scores over 5 years (P < 0.01). There were no significant differences in KOS-ADL and IKDC scores between groups up to 5 years postoperatively. Marx activity level scores in the microfracture group declined over time, while significant improvements in activity level scores were observed in the scaffold group over 5 years (P < 0.01). Good-quality tissue fill and cartilage isointensity were more often observed in the scaffold group compared with the microfracture group, particularly with longer time intervals. Increasing age, high body mass index, prior microfracture, and traumatic etiology were predictors for inferior outcomes in the scaffold group. CONCLUSIONS Activity level and MRI appearance following treatment of cartilage lesions with the biphasic synthetic scaffold were superior to microfracture over time in this nonrandomized, retrospective comparison.
Collapse
Affiliation(s)
- Dean Wang
- Department of Orthopaedic Surgery,
University of California Irvine, Orange, CA, USA,Dean Wang, UC Irvine Health, 101 The City
Drive South, Pavilion III, Building 29A, Orange, CA 92868, USA.
| | - Danyal H. Nawabi
- Sports Medicine Service, Hospital for
Special Surgery, New York, NY, USA
| | - Aaron J. Krych
- Department of Orthopaedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Kristofer J. Jones
- Department of Orthopaedic Surgery, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Nguyen
- Sports Medicine Service, Hospital for
Special Surgery, New York, NY, USA
| | - Ameer M. Elbuluk
- Sports Medicine Service, Hospital for
Special Surgery, New York, NY, USA
| | | | - Hollis G. Potter
- Department of Radiology and Imaging,
Hospital for Special Surgery, New York, NY, USA
| | - Riley J. Williams
- Sports Medicine Service, Hospital for
Special Surgery, New York, NY, USA
| |
Collapse
|
13
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
14
|
Ai C, Lee YHD, Tan XH, Tan SHS, Hui JHP, Goh JCH. Osteochondral tissue engineering: Perspectives for clinical application and preclinical development. J Orthop Translat 2021; 30:93-102. [PMID: 34722152 PMCID: PMC8517716 DOI: 10.1016/j.jot.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
The treatment of osteochondral defects (OCD) remains challenging. Among currently available surgical treatments for OCDs, scaffold-based treatments are promising to regenerate the osteochondral unit. However, there is still no consensus regarding the clinical effectiveness of these scaffold-based therapies for OCDs. Previous reviews have described the gradient physiological characteristics of osteochondral tissue and gradient scaffold design for OCD, tissue engineering strategies, biomaterials, and fabrication technologies. However, the discussion on bridging the gap between the clinical need and preclinical research is still limited, on which we focus in the present review, providing an insight into what is currently lacking in tissue engineering methods that failed to yield satisfactory outcomes, and what is needed to further improve these techniques. Currently available surgical treatments for OCDs are firstly summarized, followed by a comprehensive review on experimental animal studies in recent 5 years on osteochondral tissue engineering. The review will then conclude with what is currently lacking in these animal studies and the recommendations that would help enlighten the community in developing more clinically relevant implants. The translational potential of this article This review is attempting to summarize the lessons from clinical and preclinical failures, providing an insight into what is currently lacking in TE methods that failed to yield satisfactory outcomes, and what is needed to further improve these implants.
Collapse
Affiliation(s)
- Chengchong Ai
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Yee Han Dave Lee
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Xuan Hao Tan
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Si Heng Sharon Tan
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University Health System, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Di Martino A, Perdisa F, Filardo G, Busacca M, Kon E, Marcacci M, Zaffagnini S. Cell-Free Biomimetic Osteochondral Scaffold for the Treatment of Knee Lesions: Clinical and Imaging Results at 10-Year Follow-up. Am J Sports Med 2021; 49:2645-2650. [PMID: 34283948 DOI: 10.1177/03635465211029292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cell-free devices have been introduced to restore osteochondral defects, avoiding the limitations of cell-based procedures. Among these, an osteochondral scaffold made of type I collagen and hydroxyapatite has been investigated with promising results up to medium-term follow-up. However, the clinical and imaging results over time still need to be documented. PURPOSE To evaluate the clinical outcome and tissue maturation at long-term follow-up after the implantation of the osteochondral scaffold. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 24 patients (7 women, 17 men; age, 36 ± 9.5 years) underwent surgical implantation of the osteochondral scaffold and were prospectively evaluated before surgery, at 2-, 5-, and 10-year follow-up. The mean defect size was 2.9 ± 1.4 cm2. Patients were evaluated using the International Knee Documentation Committee (IKDC) subjective and objective scores, and the activity level was documented with the Tegner score. Magnetic resonance imaging (MRI) evaluation involved the use of the magnetic resonance observation of cartilage repair tissue score combined with 5 more variables focused on the bone layer. RESULTS A statistically significant improvement of all clinical scores was documented from the baseline to the final evaluation. The IKDC subjective score improved from the preoperative level to 2 years (41 ± 13.2 and 77.1 ± 14.6, respectively) (P < .0005), with stable results up to 10 years (77.4 ± 19.4). The IKDC objective score changed from 52% of normal and nearly normal knees before the treatment to 84% at 10 years (P < .0005). Tegner sports activity at the final evaluation (3.8 ± 1.7) was higher compared with the preoperative level (1.6 ± 1.1; P < .05), but it remained significantly lower compared with the preinjury level (5.5 ± 2.6; P < .05). Treatment failed in 1 patient. Persisting graft alterations were observed on MRI scans, although without correlating with the clinical outcome. CONCLUSION The regenerative potential of this scaffold is limited, as demonstrated by the signal alterations persisting over time on MRI scans. On the other hand, the clinical improvement was significant and stable over time both in terms of subjective and objective outcomes, including activity level, with overall good results.
Collapse
Affiliation(s)
| | - Francesco Perdisa
- SC Chirurgia Protesica e dei Reimpianti di Anca e di Ginocchio; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Maurizio Busacca
- SC Radiologia diagnostica ed interventistica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Stefano Zaffagnini
- SC II Clinica Ortopedica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021; 8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue (e.g., the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient (e.g., a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold-bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
17
|
Kon E, Di Matteo B, Verdonk P, Drobnic M, Dulic O, Gavrilovic G, Patrascu JM, Zaslav K, Kwiatkowski G, Altschuler N, Robinson D. Aragonite-Based Scaffold for the Treatment of Joint Surface Lesions in Mild to Moderate Osteoarthritic Knees: Results of a 2-Year Multicenter Prospective Study. Am J Sports Med 2021; 49:588-598. [PMID: 33481631 DOI: 10.1177/0363546520981750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is considered a contraindication to most cartilage repair techniques. Several regenerative approaches have been attempted with the aim of delaying or preventing joint replacement, with controversial results. Currently, there is a paucity of data on the use of single-step techniques, such as cell-free biomimetic scaffolds, for the treatment of joint surface lesions (JSLs) in OA knees. PURPOSE To present the 2-year follow-up clinical and radiological outcomes after implantation of a novel, cell-free aragonite-based scaffold for the treatment of JSLs in patients with mild to moderate knee OA in a multicenter prospective study. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 86 patients, 60 male and 26 female, with a mean age of 37.4 ± 10.0 years, mild to moderate knee OA, and a mean defect size of 3.0 ± 1.7 cm2, were recruited at 8 medical centers according to the following criteria: radiographic mild to moderate knee OA (Kellgren-Lawrence grade 2 or 3); up to 3 treatable chondral/osteochondral defects (International Cartilage Repair Society grades 3 and 4) on the femoral condyles or trochlea; a total defect size ≤7 cm2; and no concurrent knee instability, severe axial malalignment, or systemic arthropathy. All patients were evaluated at baseline and at 6, 12, 18, and 24 months after implantation using the Knee injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) subjective score. Additionally, magnetic resonance imaging (MRI) was performed to assess the amount of cartilage defect filling at the repaired site. RESULTS Significant improvement on all KOOS subscales was recorded from baseline (Pain: 49.6 ± 13.1; Activities of Daily Living [ADL]: 56.1 ± 18.4; Sport: 22.8 ± 18.8; Quality of Life [QoL]: 23.5 ± 16.5; Symptoms: 55.4 ± 19.9) to the 24 months' follow-up (Pain: 79.5 ± 21.1 [P < .001]; ADL: 84.1 ± 21.4 [P < .001]; Sport: 60.8 ± 31.9 [P < .001]; QoL: 54.9 ± 30.4 [P < .001]; Symptoms: 77.7 ± 21.2 [P < .001]). The IKDC subjective score showed a similar trend and improved from 37.8 ± 14.7 at baseline to 65.8 ± 23.5 at 24 months (P < .001). MRI showed a significant increase in defect filling over time: up to 78.7% ± 25.3% of surface coverage after 24 months. Treatment failure requiring revision surgery occurred in 8 patients (9.3%). CONCLUSION The use of an aragonite-based osteochondral scaffold in patients with JSLs and mild to moderate knee OA provided significant clinical improvement at the 24-month follow-up, as reported by the patients. These findings were associated with good cartilage defect filling, as observed on MRI.
Collapse
Affiliation(s)
- Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Peter Verdonk
- ORTHOCA, AZ Monica, Antwerp, Belgium.,Department of Orthopaedic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Matej Drobnic
- Department of Orthopedic Surgery, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Oliver Dulic
- Department of Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Jenel M Patrascu
- Spitalul Clinic Judeţean de Urgenţa±"Pius Brînzeu" Timişoara, Timişoara, Romania
| | - Ken Zaslav
- OrthoVirginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Grzegorz Kwiatkowski
- Department of Knee Surgery, Arthroscopy and Sports Trauma, District Hospital of Orthopedics and Trauma Surgery, Piekary Slaskie, Poland
| | | | - Dror Robinson
- Orthopedic Research Unit and Foot and Ankle Service, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
18
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
19
|
Tamaddon M, Gilja H, Wang L, Oliveira JM, Sun X, Tan R, Liu C, Cl, Mt, Hg, Mt, Hg, Mt, Lw, Jmo, Xs, Rt. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic. BIOMATERIALS TRANSLATIONAL 2020; 1:3-17. [PMID: 35837659 PMCID: PMC9255817 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/17/2023]
Abstract
Osteoarthritis is a degenerative joint disease, typified by the loss in the quality of cartilage and bone at the interface of a synovial joint, resulting in pain, stiffness and reduced mobility. The current surgical treatment for advanced stages of the disease is joint replacement, where the non-surgical therapeutic options or less invasive surgical treatments are no longer effective. These are major surgical procedures which have a substantial impact on patients' quality of life and lifetime risk of requiring revision surgery. Treatments using regenerative methods such as tissue engineering methods have been established and are promising for the early treatment of cartilage degeneration in osteoarthritis joints. In this approach, 3-dimensional scaffolds (with or without cells) are employed to provide support for tissue growth. However, none of the currently available tissue engineering and regenerative medicine products promotes satisfactory durable regeneration of large cartilage defects. Herein, we discuss the current regenerative treatment options for cartilage and osteochondral (cartilage and underlying subchondral bone) defects in the articulating joints. We further identify the main hurdles in osteochondral scaffold development for achieving satisfactory and durable regeneration of osteochondral tissues. The evolution of the osteochondral scaffolds - from monophasic to multiphasic constructs - is overviewed and the osteochondral scaffolds that have progressed to clinical trials are examined with respect to their clinical performances and their potential impact on the clinical practices. Development of an osteochondral scaffold which bridges the gap between small defect treatment and joint replacement is still a grand challenge. Such scaffold could be used for early treatment of cartilage and osteochondral defects at early stage of osteoarthritis and could either negate or delay the need for joint replacements.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Helena Gilja
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - J. Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Portugal
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co. Ltd. Merchants Guangming Science Park, Shenzhen, Guangdong Province, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK,Corresponding author: Chaozong Liu,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jacob G, Shimomura K, Nakamura N. Osteochondral Injury, Management and Tissue Engineering Approaches. Front Cell Dev Biol 2020; 8:580868. [PMID: 33251212 PMCID: PMC7673409 DOI: 10.3389/fcell.2020.580868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Osteochondral lesions (OL) are a common clinical problem for orthopedic surgeons worldwide and are associated with multiple clinical scenarios ranging from trauma to osteonecrosis. OL vary from chondral lesions in that they involve the subchondral bone and chondral surface, making their management more complex than an isolated chondral injury. Subchondral bone involvement allows for a natural healing response from the body as marrow elements are able to come into contact with the defect site. However, this repair is inadequate resulting in fibrous scar tissue. The second differentiating feature of OL is that damage to the subchondral bone has deleterious effects on the mechanical strength and nutritive capabilities to the chondral joint surface. The clinical solution must, therefore, address both the articular cartilage as well as the subchondral bone beneath it to restore and preserve joint health. Both cartilage and subchondral bone have distinctive functional requirements and therefore their physical and biological characteristics are very much dissimilar, yet they must work together as one unit for ideal joint functioning. In the past, the obvious solution was autologous graft transfer, where an osteochondral bone plug was harvested from a non-weight bearing portion of the joint and implanted into the defect site. Allografts have been utilized similarly to eliminate the donor site morbidity associated with autologous techniques and overall results have been good but both techniques have their drawbacks and limitations. Tissue engineering has thus been an attractive option to create multiphasic scaffolds and implants. Biphasic and triphasic implants have been under explored and have both a chondral and subchondral component with an interface between the two to deliver an implant which is biocompatible and emulates the osteochondral unit as a whole. It has been a challenge to develop such implants and many manufacturing techniques have been utilized to bring together two unalike materials and combine them with cellular therapies. We summarize the functions of the osteochondral unit and describe the currently available management techniques under study.
Collapse
Affiliation(s)
- George Jacob
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Orthopedics, Tejasvini Hospital, Mangalore, India
| | - Kazunori Shimomura
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
22
|
Tseng TH, Jiang CC, Lan HHC, Chen CN, Chiang H. The five year outcome of a clinical feasibility study using a biphasic construct with minced autologous cartilage to repair osteochondral defects in the knee. INTERNATIONAL ORTHOPAEDICS 2020; 44:1745-1754. [PMID: 32367232 DOI: 10.1007/s00264-020-04569-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Autologous minced cartilage has been used to repair cartilage defects. We have developed a biphasic cylindrical osteochondral construct for such use in human knees, and report the five year post-operative outcomes. METHODS Ten patients with symptomatic osteochondral lesion at femoral condyles were treated by replacing pathological tissue with the osteochondral composites, each consisted a DL-poly-lactide-co-glycolide chondral phase and a DL-poly-lactide-co-glycolide/β-tricalcium phosphate osseous phase. A flat chamber between the two phases served as a reservoir to house double-minced (mechanical pulverization and enzymatical dissociation) autologous cartilage graft. The osteochondral lesion was drill-fashioned a pit of identical dimensions as the construct. Graft-laden construct was press fit to the pit. Post-operative outcome was evaluated using Knee Injury and Osteoarthritis Outcome Score (KOOS) up to five years. Regenerated tissue was sampled with arthroscopic needle biopsy for histology at one year, and imaged with magnetic resonance at one, three, and five years to evaluate the neocartilage with MOCART chart. Subchondral bone integration was evaluated with computed tomography at three and five years. RESULTS Nine patients completed the five-year follow-up. Post-operative mean KOOS, except that of the "symptom" subscale, had been significantly higher than pre-operation from one year and maintained to five years. The change of MOCRAT scores of the regenerated cartilage paralleled the change of KOOS. The osseous phase remained mineralized during the five-year period, yet did not fully integrate with the host bone. CONCLUSIONS This novel construct for chondrocyte implantation yielded promising mid-term outcome. It repaired the osteochondral lesion with hyaline-like cartilage durable for at least five years.
Collapse
Affiliation(s)
- Tzu-Hao Tseng
- Department of Orthopaedic Surgery, National Taiwan University Hospital, 7 Chungsan South Road, Taipei, 10002, Taiwan
| | - Ching-Chuan Jiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, 7 Chungsan South Road, Taipei, 10002, Taiwan
| | - Howard Haw-Chang Lan
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | | - Hongsen Chiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, 7 Chungsan South Road, Taipei, 10002, Taiwan.
| |
Collapse
|
23
|
Shivji FS, Mumith A, Yasen S, Melton JT, Wilson AJ. Treatment of focal chondral lesions in the knee using a synthetic scaffold plug: Long-term clinical and radiological results. J Orthop 2020; 20:12-16. [PMID: 32021049 DOI: 10.1016/j.jor.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 11/18/2022] Open
Abstract
The management of symptomatic articular cartilage lesions, especially in the young, fit individual remains an area of considerable controversy. Articular cartilage repair or reconstruction techniques may offer these patients alternatives to arthroplasty. The TruFit™ plug is a synthetic biphasic polymer scaffold that is designed for implantation at the site of a focal chondral defect. The aim of this study is to report the long-term clinical and radiological outcomes of patients treated with the TruFit™ plug for chondral defects within the knee. 11 patients underwent TruFit™ plug implantation. Long-term outcome scores were available for 6 patients at a mean follow up of 121 months (SD 12.0 months, 1 patient unavailable and 4 excluded after arthroplasty surgery). There was no statistically significant improvements in any score although all scores did improve. At a mean radiographic follow up of 70 months (17-113) of 9 patients, the mean MOCART score was 22.2 (SD 15.6). All patients had incomplete or no evidence of plug incorporation and persistent chondral loss. Based on these results, we do not recommend the use of the TruFit™ plug.
Collapse
Affiliation(s)
- Faiz S Shivji
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Aadil Mumith
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Sam Yasen
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Joel Tk Melton
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Adrian J Wilson
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| |
Collapse
|
24
|
Olive M, Boyer C, Lesoeur J, Thorin C, Weiss P, Fusellier M, Gauthier O. Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Vet Surg 2020; 49:570-581. [PMID: 31916628 PMCID: PMC7154554 DOI: 10.1111/vsu.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN Experimental study. ANIMALS Ten adult female sheep. METHODS In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.
Collapse
Affiliation(s)
- Mélanie Olive
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Cécile Boyer
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Julie Lesoeur
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Chantal Thorin
- Department of Management and Statistics, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Pierre Weiss
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Marion Fusellier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Olivier Gauthier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| |
Collapse
|
25
|
Gan D, Wang Z, Xie C, Wang X, Xing W, Ge X, Yuan H, Wang K, Tan H, Lu X. Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair. Adv Healthc Mater 2019; 8:e1901103. [PMID: 31609095 DOI: 10.1002/adhm.201901103] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Indexed: 01/15/2023]
Abstract
Repairing osteochondral defects is a considerable challenge because it involves the breakdown of articular cartilage and underlying bone. Traditional hydrogels with a homogenized single-layer structure cannot fully restore the function of osteochondral cartilage tissue. In this study, a mussel-inspired hydrogel with a bilayer structure is developed to repair osteochondral defects. The hydrogel is synthesized by simultaneously polymerizing two layers using a one-pot method. The resulting upper and lower gelatin methacryloyl-polydopamine hydrogel layers are used as cartilage and subchondral bone repair layers, respectively. Polydopamine-induced hydroxyapatite in situ mineralization takes place in the lower layer to mimic the structure of subchondral bone. The bilayer hydrogel exhibits good mechanical properties for the synergistic effect of covalent and noncovalent bonds, as well as nanoreinforcement of mineralized hydroxyapatite. To improve the tissue-inducibility of hydrogels, transforming growth factor β3 is immobilized in the upper layer to induce cartilage regeneration, while bone morphogenetic protein 2 is immobilized in the lower layer to induce bone regeneration. Bone and cartilage repair performance of the hydrogel is examined by implantation into a full-thickness cartilage defect of a rabbit knee joint. The bilayer-structure hydrogel promotes regeneration of osteochondral tissue, thus providing a new option for repair of osteochondral defects.
Collapse
Affiliation(s)
- Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhixiong Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wensi Xing
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Huipin Yuan
- College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hui Tan
- Health Science Center, Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
26
|
Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model. Knee Surg Sports Traumatol Arthrosc 2019; 27:1953-1964. [PMID: 30387000 DOI: 10.1007/s00167-018-5263-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteochondral implants are currently adopted for the treatment of symptomatic full-thickness chondral and osteochondral defects. Agili-C™ is a cell-free aragonite-based scaffold which aims to reproduce the original structure and function of the articular joint while directing the growth and regeneration of both cartilage and its underlying subchondral bone. The goal of the present study was to investigate the ex vivo mechanisms of action (MOA) of the Agili-C™ implant in the repair of full-thickness cartilage defects. In particular, we tested whether Agili-C™ implant has the potential to stimulate cartilage ingrowth through chondrocytes migration into the 3D interconnected porous structure of the scaffold, along with maintaining their viability and phenotype and the deposition of hyaline cartilage matrix. METHODS Articular cartilage samples were collected through the Gift of Hope Organ and Tissue Donor Network (Itasca, IL) within 24 h from death. For this study, cartilage from a total of 14 donors was used. To model a chondral defect, donut-shaped cartilage explants were prepared from each tissue specimen. The chondral phase of the Agili-C™ implant was placed inside the tissue in full contact and press fit manner. Cartilage explants with the Agili-C™ implant inside were cultured for 60 days. As a control, the same donut-shaped cartilage explants were cultured without Agili-C™, under the same culture conditions. RESULTS Using fresh human cadaveric articular cartilage tissue in a 60-day culture, it was demonstrated that chondrocytes were able to migrate into the Agili-C™ scaffold and contribute to the deposition of the extracellular matrix (ECM) rich in collagen type II and aggrecan, and lacking collagen type I. Additionally, we were able to show the formation of a layer populated by progenitor-like cells on the articular surface of the implant. CONCLUSIONS The analysis of samples taken from knee and ankle joints of human donors with a wide age range and both genders supports the potential of Agili-C™ scaffold to stimulate cartilage regeneration and repair. Based on these results, the present scaffold can be used in the clinical practice as a one-step procedure to treat full-thickness chondral defects.
Collapse
|
27
|
MaioRegen Osteochondral Substitute for the Treatment of Knee Defects: A Systematic Review of the Literature. J Clin Med 2019; 8:jcm8060783. [PMID: 31159439 PMCID: PMC6617307 DOI: 10.3390/jcm8060783] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aims to investigate the clinical and radiological efficacy of three-dimensional acellular scaffolds (MaioRegen) in restoring osteochondral knee defects. METHODS MEDLINE, Scopus, CINAHL, Embase, and Cochrane Databases were searched for articles in which patients were treated with MaioRegen for osteochondral knee defects. RESULTS A total of 471 patients were included in the study (mean age 34.07 ± 5.28 years). The treatment involved 500 lesions divided as follows: 202 (40.4%) medial femoral condyles, 107 (21.4%) lateral femoral condyles, 28 (5.6%) tibial plateaus, 46 (9.2%) trochleas, 74 (14.8%) patellas, and 43 (8.6%) unspecified femoral condyles. Mean lesion size was 3.6 ± 0.85 cm2. Only four studies reported a follow-up longer than 24 months. Significant clinical improvement has been reported in almost all studies with further improvement up to 5 years after surgery. A total of 59 complications were reported of which 52 (11.1%) experienced minor complications and 7 (1.48%) major complications. A total of 16 (3.39%) failures were reported. CONCLUSION This systematic review describes the current available evidence for the treatment of osteochondral knee defects with MaioRegen Osteochondral substitute reporting promising satisfactory and reliable results at mid-term follow-up. A low rate of complications and failure was reported, confirming the safety of this scaffold. Considering the low level of evidence of the study included in the review, this data does not support the superiority of the Maioregen in terms of clinical improvement at follow-up compared to conservative treatment or other cartilage techniques.
Collapse
|
28
|
Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations. NPJ Regen Med 2019; 4:12. [PMID: 31231546 PMCID: PMC6542813 DOI: 10.1038/s41536-019-0074-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The field of articular cartilage repair has made significant advances in recent decades; yet current therapies are generally not evaluated or tested, at the time of pivotal trial, in patients with a variety of common comorbidities. To that end, we systematically reviewed cartilage repair clinical trials to identify common exclusion criteria and reviewed the literature to identify emerging regenerative approaches that are poised to overcome these current exclusion criteria. The term “knee cartilage repair” was searched on clinicaltrials.gov. Of the 60 trials identified on initial search, 33 were further examined to extract exclusion criteria. Criteria excluded by more than half of the trials were identified in order to focus discussion on emerging regenerative strategies that might address these concerns. These criteria included age (<18 or >55 years old), small defects (<1 cm2), large defects (>8 cm2), multiple defect (>2 lesions), BMI >35, meniscectomy (>50%), bilateral knee pathology, ligamentous instability, arthritis, malalignment, prior repair, kissing lesions, neurologic disease of lower extremities, inflammation, infection, endocrine or metabolic disease, drug or alcohol abuse, pregnancy, and history of cancer. Finally, we describe emerging tissue engineering and regenerative approaches that might foster cartilage repair in these challenging environments. The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.
Collapse
Affiliation(s)
- Anthony R Martín
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jay M Patel
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Hannah M Zlotnick
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James L Carey
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Robert L Mauck
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
29
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
30
|
D'Ambrosi R, Giacco F, Ragone V, Ursino N. Arthroscopic treatment of osteochondral knee defects with resorbable biphasic synthetic scaffold: clinical and radiological results and long-term survival analysis. INTERNATIONAL ORTHOPAEDICS 2018; 43:2183-2189. [PMID: 30539223 DOI: 10.1007/s00264-018-4270-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim of our study is to evaluate the long-term results in patients treated with a fully arthroscopic TruFit system for osteochondral lesions of the femoral condyle, analyzing the clinical and radiological outcomes, survival rate, complications, and correlations. METHODS The study included all patients treated with the TruFit system with a full-thickness focal lesion of the knee cartilage (grade IV according to the ICRS classification), entirely arthroscopically with a minimum follow-up of five years. All patients were evaluated clinically prior to surgery (T0) and at two consecutive follow-ups (T1 36.4 ± 17.03 months and T2 101.63 ± 19.02 months), using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Hospital for Special Surgery Score (HSS). At the final follow-up, the magnetic resonance imaging (MRI) was evaluated by two orthopaedists using the magnetic resonance observation of cartilage repair tissue (MOCART) score. RESULTS The sample was formed of 21 patients, of which 14 were males (67%) and 7 females (33%), with a mean age of 51.29 ± 10.70. Of the 21 patients, two underwent prosthetic knee replacement at 24 and 65 months, respectively. At T0, the HSS and the KOOS score were, respectively, 60.71 ± 11.62 and 57.71 ± 6.11. For both clinical values, a significant improvement was noted between T0 and T1 (p < 0.05) and between T0 and T2 (p < 0.05). At the final follow-up, the MOCART value was found to be 45.78 ± 5.27. CONCLUSIONS The study results highlighted the safety and potential of the arthroscopic TruFit system procedure, which offered a good clinical outcome with stable results at long-term follow-up although we found no correlations between the MRI and clinical results.
Collapse
Affiliation(s)
- Riccardo D'Ambrosi
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
| | - Francesco Giacco
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | | | - Nicola Ursino
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| |
Collapse
|
31
|
Longley R, Ferreira AM, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. Int J Mol Sci 2018; 19:E1755. [PMID: 29899285 PMCID: PMC6032374 DOI: 10.3390/ijms19061755] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Cartilage lesions of the knee are common disorders affecting people of all ages; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral defect appears. Osteochondral (OC) tissue compromises soft cartilage over hard subchondral bone with a calcified cartilage interface between these two tissues. Osteochondral defects can be caused by numerous factors such as trauma and arthritis. Tissue engineering offers the possibility of a sustainable and effective treatment against osteochondral defects, where the damaged tissue is replaced with a long-lasting bio-manufactured replacement tissue. This review evaluates both bi-phasic and multi-phasic scaffold-based approaches of osteochondral tissue regeneration, highlighting the importance of having an interface layer between the bone and cartilage layer. The significance of a biomimetic approach is also evidenced and shown to be more effective than the more homogenous design approach to osteochondral scaffold design. Recent scaffold materials and manufacturing techniques are reviewed as well as the current clinical progress with osteochondral regeneration scaffolds.
Collapse
Affiliation(s)
- Ryan Longley
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
32
|
Tamaddon M, Liu C. Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:255-298. [PMID: 29736578 DOI: 10.1007/978-3-319-76735-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Chaozong Liu
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
33
|
Monzón M, Liu C, Ajami S, Oliveira M, Donate R, Ribeiro V, Reis RL. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0003-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Perdisa F, Kon E, Sessa A, Andriolo L, Busacca M, Marcacci M, Filardo G. Treatment of Knee Osteochondritis Dissecans With a Cell-Free Biomimetic Osteochondral Scaffold: Clinical and Imaging Findings at Midterm Follow-up. Am J Sports Med 2018; 46:314-321. [PMID: 29100468 DOI: 10.1177/0363546517737763] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondritis dissecans (OCD) is a developmental condition of subchondral bone that may result in secondary separation and instability of the overlying articular cartilage, which in turn may lead to degeneration of the overall joint and early osteoarthritis. Biphasic scaffolds have been developed to address defects of the entire osteochondral unit by reproducing the different biological and functional requirements and guiding the growth of both bone and cartilage. PURPOSE To evaluate midterm clinical and imaging results after cell-free osteochondral scaffold implantation for the treatment of knee OCD. STUDY DESIGN Case series; Level of evidence, 4. METHODS Twenty-seven patients (8 women, 19 men; mean age, 25.5 ± 7.7 years) were treated for knee OCD, with International Cartilage Repair Society (ICRS) grade 3 to 4 lesions with a mean size of 3.4 ± 2.2 cm2 (range, 1.5-12 cm2), and prospectively evaluated for up to 5 years using the ICRS classification system and the Tegner score. Eighteen patients underwent magnetic resonance imaging (MRI) at 24 and 60 months of follow-up, and the graft was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) score for the cartilage layer, while a specific score was used for subchondral bone. RESULTS All patients significantly improved their clinical scores at each follow-up until their final evaluation. The mean International Knee Documentation Committee (IKDC) subjective score improved from 48.4 ± 17.8 to 82.2 ± 12.2 at 2 years ( P < .0005), and it then remained stable for up to 5 years postoperatively (90.1 ± 12.0). The mean Tegner score increased from 2.4 ± 1.7 preoperatively to 4.4 ± 1.6 at 2 years ( P = .001), with a further increase up to 5.0 ± 1.7 at 5 years of follow-up ( P < .0005 vs preoperatively), reaching almost the preinjury level (5.7 ± 2.2). The MOCART score showed stable results between 24 and 60 months, whereas the subchondral bone status significantly improved over time. No correlation was found between MRI findings and clinical outcomes. CONCLUSION This 1-step cell-free scaffold implantation procedure showed good and stable results for up to 60 months of follow-up for the treatment of knee OCD. MRI showed abnormalities, in particular at the subchondral bone level, but there was an overall improvement of features over time. No correlation was found between imaging and clinical findings.
Collapse
Affiliation(s)
- Francesco Perdisa
- II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Milano, Italy.,Knee Joint Reconstruction Center, 3rd Orthopaedic Division, Humanitas Clinical Institute, Milano, Italy
| | - Andrea Sessa
- II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Andriolo
- II Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maurizio Busacca
- Department of Radiology and Diagnostic Imaging, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Giuseppe Filardo
- Nano-Biotechnology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
35
|
Clinical and radiological outcome for Trufit Plug in the treatment of chondral and osteochondral lesions at a minimum of 2 years. J Orthop 2018; 15:47-51. [PMID: 29657437 DOI: 10.1016/j.jor.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the functional and radiological outcome of TruFit plugs. We retrospectively reviewed 10 patients who underwent treatment for a symptomatic chondral/osteochondral lesion using one or more Trufit Plugs. Full incorporation of the bony portion of the plug occurred in only 3 and partial incorporation in 7 lesions. The remaining portion of these 7 lesions looked cystic on MRI. The significance of this cystic change is not clear. Though all 10 patients showed some improvement on the IKDC scoring system but the amount of the improvement was small.
Collapse
|
36
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Spencer V, Illescas E, Maltes L, Kim H, Sathe V, Nukavarapu S. Osteochondral Tissue Engineering: Translational Research and Turning Research into Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:373-390. [PMID: 29691831 DOI: 10.1007/978-3-319-76711-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteochondral (OC) defect repair is a significant clinical challenge. Osteoarthritis results in articular cartilage/subchondral bone tissue degeneration and tissue loss, which in the long run results in cartilage/ostecochondral defect formation. OC defects are commonly approached with autografts and allografts, and both these options have found limitations. Alternatively, tissue engineered strategies with biodegradable scaffolds with and without cells and growth factors have been developed. In order to approach regeneration of complex tissues such as osteochondral, advanced tissue engineered grafts including biphasic, triphasic, and gradient configurations are considered. The graft design is motivated to promote cartilage and bone layer formation with an interdigitating transitional zone (i.e., bone-cartilage interface). Some of the engineered OC grafts with autologous cells have shown promise for OC defect repair and a few of them have advanced into clinical trials. This chapter presents synthetic osteochondral designs and the progress that has been made in terms of the clinical translation.
Collapse
Affiliation(s)
- Victoria Spencer
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Erica Illescas
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Lorenzo Maltes
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hyun Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Storrs, CT, USA
| | - Syam Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
38
|
Taraballi F, Bauza G, McCulloch P, Harris J, Tasciotti E. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Transl Med 2017; 6:2186-2196. [PMID: 29080279 PMCID: PMC5702525 DOI: 10.1002/sctm.17-0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting‐edge regenerative strategies in surgery. Stem Cells Translational Medicine2017;6:2186–2196
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Patrick McCulloch
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Josh Harris
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| |
Collapse
|
39
|
Monibi FA, Cook JL. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:386-398. [DOI: 10.1089/ten.teb.2016.0431] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farrah A. Monibi
- Thompson Laboratory for Regenerative Orthopedics, Department of Orthopedic Surgery, Missouri Orthopedic Institute, University of Missouri, Columbia, Missouri
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopedics, Department of Orthopedic Surgery, Missouri Orthopedic Institute, University of Missouri, Columbia, Missouri
| |
Collapse
|
40
|
Datta P, Dhawan A, Yu Y, Hayes D, Gudapati H, Ozbolat IT. Bioprinting of osteochondral tissues: A perspective on current gaps and future trends. Int J Bioprint 2017; 3:007. [PMID: 33094191 PMCID: PMC7575632 DOI: 10.18063/ijb.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold standard of autografting has several limitations in presenting tissue engineering strategies to solve the unmet clinical need. However, due to the complexity of joint anatomy, and tissue heterogeneity at the interface, the conventional tissue engineering strategies have certain limitations. The advent of bioprinting has now provided new opportunities for osteochondral tissue engineering. Bioprinting can uniquely mimic the heterogeneous cellular composition and anisotropic extra-cellular matrix (ECM) organization, while allowing for targeted gene delivery to achieve heterotypic differentiation. In this perspective, we discuss the current advances made towards bioprinting of composite osteochondral tissues and present an account of challenges-in terms of tissue integration, long-term survival, and mechanical strength at the time of implantation-required to be addressed for effective clinical translation of bioprinted tissues. Finally, we highlight some of the future trends related to osteochondral bioprinting with the hope of in-clinical translation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Aman Dhawan
- Orthopedics and Rehabilitation, Penn State University, Hershey, PA 17033, USA
| | - Yin Yu
- Department of Surgery, Harvard Medical School, Harvard University, Cambridge, MA 02138, USA.,The Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dan Hayes
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA.,Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Hemanth Gudapati
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA.,Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA.,Biomedical Engineering, Penn State University, University Park, PA 16802, USA.,Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA.,Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Ruan SQ, Yan L, Deng J, Huang WL, Jiang DM. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. INTERNATIONAL ORTHOPAEDICS 2017; 41:1899-1908. [DOI: 10.1007/s00264-017-3522-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
|
42
|
Yucekul A, Ozdil D, Kutlu NH, Erdemli E, Aydin HM, Doral MN. Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep. J Tissue Eng 2017; 8:2041731417697500. [PMID: 28694960 PMCID: PMC5496685 DOI: 10.1177/2041731417697500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/12/2017] [Indexed: 01/13/2023] Open
Abstract
Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid) mesh/poly(l-lactic acid)-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly(l-lactic acid)-poly(ϵ-caprolactone) monolith) osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13). In addition to a control group (no implant), one group received the implant alone (Group A), while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B). Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair.
Collapse
Affiliation(s)
- Altug Yucekul
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Ozdil
- BMT Calsis Health Technologies Co., Ankara, Turkey.,Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara, Turkey
| | | | - Esra Erdemli
- Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Halil Murat Aydin
- Environmental Engineering Department & Bioengineering Division and Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| | - Mahmut Nedim Doral
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
43
|
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 2016; 107:247-276. [PMID: 27125191 PMCID: PMC5482531 DOI: 10.1016/j.addr.2016.04.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varadraj N Vernekar
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
44
|
Kon E, Robinson D, Verdonk P, Drobnic M, Patrascu JM, Dulic O, Gavrilovic G, Filardo G. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury 2016; 47 Suppl 6:S27-S32. [PMID: 28040083 DOI: 10.1016/s0020-1383(16)30836-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Chondral and osteochondral lesions represent a debilitating disease. Untreated lesions remain a risk factor for more extensive joint damage. The objective of this clinical study is to evaluate safety and early results of an aragonite-based scaffold used for osteochondral unit repair, by analysing both clinical outcome and MRI results, as well as the benefits of the procedure optimization through novel tapered shaped implants. METHODS A crystalline aragonite bi-phasic scaffold was implanted in patients affected by focal chondral-osteochondral knee lesions of the condyle and trochlea. Twenty-one patients (17 men, 4 women with a mean age of 31.0 ± 8.6 years) without severe OA received tapered shaped implants for the treatment of 2.5 ±1.7 cm2 sized defects. The control group consisted of 76 patients selected according to the same criteria from a database of patients who previously underwent implantation of cylindrical-shaped implants. The clinical outcome of all patients was evaluated with the IKDC subjective score, the Lysholm score, and all 5 KOOS subscales administered preoperatively and at 6 and 12 months after surgery, while MRI evaluation was performed at the 12 month follow-up. RESULTS A statistically significant improvement in all clinical scores was documented both in the tapered implants and the cylindrical group. No difference could be detected in the comparison between the improvement obtained with the two implant types, neither in the clinical nor in imaging evaluations. A difference could be detected instead in terms of revision rate, which was lower in the tapered implant group with no implant removal - 0% vs 8/76-10.5% failures in the cylindrical implants. CONCLUSIONS This study highlighted both safety and potential of a novel aragonite-based scaffold for the treatment of chondral and osteochondral lesions in humans. A tapered shape relative to the cylindrical shaped implant design, improved the scaffold's safety profile. Tapered scaffolds maintain the clinical improvement observed in cylindrical implants while reducing the postoperative risk of revision surgery. This aragonite-based implant was associated with a significant clinical improvement at the 12 month follow-up. Moreover, MRI findings revealed graft integration with good bone and cartilage formation.
Collapse
Affiliation(s)
- Elizaveta Kon
- NanoBiotecnology Lab, I Clinic - Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - Dror Robinson
- Department of Orthopedics, Hasharon Hospital affiliated with Tel Aviv University, Rabin Medical Center, Petah Tikwa, Israel
| | - Peter Verdonk
- Antwerp Orthopaedic Center, Monica Hospitals, Stevenslei, Deurne, Belgium; Department of Orthopaedic Surgery, Faculty of Medicine, Antwerp University, Wilrijkstraat, Edegem, Belgium
| | - Matej Drobnic
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Slovenia
| | - Jenel Mariano Patrascu
- Spitalul Clinic Judeţean de Urgenţă "Pius Brînzeu" Timişoara Bulevardul Liviu Rebreanu, Timişoara, Romania
| | | | | | - Giuseppe Filardo
- NanoBiotecnology Lab, I Clinic - Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
45
|
Blanke F, Vogt S. Zellfreie Biomaterialien. ARTHROSKOPIE 2016. [DOI: 10.1007/s00142-016-0067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, O'Brien FJ. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 2016; 87:69-81. [DOI: 10.1016/j.biomaterials.2016.02.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
|
47
|
Li X, Ding J, Wang J, Zhuang X, Chen X. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater 2015; 2:221-8. [PMID: 26816644 PMCID: PMC4669014 DOI: 10.1093/rb/rbv015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022] Open
Abstract
The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed. Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues. For osteochondral reconstruction, one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone. Therefore, the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm. A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers, or the ones loading with growth factors, cells, or both of them make great progresses in osteochondral defect repair. In this review, the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed, as well as the prospect is predicted.
Collapse
Affiliation(s)
- Xuezhou Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China;; Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
48
|
Abstract
Medical advances have led to a welcome increase in life expectancy. However, accompanying longevity introduces new challenges: increases in age-related diseases and associated reductions in quality of life. The loss of skeletal tissue that can accompany trauma, injury, disease or advancing years can result in significant morbidity and significant socio-economic cost and emphasise the need for new, more reliable skeletal regeneration strategies. To address the unmet need for bone augmentation, tissue engineering and regenerative medicine have come to the fore in recent years with new approaches for de novo skeletal tissue formation. Typically, these approaches seek to harness stem cells, innovative scaffolds and biological factors that promise enhanced and more reliable bone formation strategies to improve the quality of life for many. This review provides an overview of recent developments in bone tissue engineering focusing on skeletal stem cells, vascular development, bone formation and the translation from preclinical in vivo models to clinical delivery.
Collapse
|
49
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|