1
|
Paech D, Weckesser N, Franke VL, Breitling J, Görke S, Deike-Hofmann K, Wick A, Scherer M, Unterberg A, Wick W, Bendszus M, Bachert P, Ladd ME, Schlemmer HP, Korzowski A. Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. Radiol Imaging Cancer 2024; 6:e220127. [PMID: 38133553 PMCID: PMC10825708 DOI: 10.1148/rycan.220127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Vanessa L. Franke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Breitling
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Görke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Katerina Deike-Hofmann
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Scherer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bachert
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Mark E. Ladd
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Korzowski
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Hangel G, Schmitz‐Abecassis B, Sollmann N, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda KM, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Hirschler L, Smits M, Petr J, Emblem KE. Advanced MR Techniques for Preoperative Glioma Characterization: Part 2. J Magn Reson Imaging 2023; 57:1676-1695. [PMID: 36912262 PMCID: PMC10947037 DOI: 10.1002/jmri.28663] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Medical Delta FoundationDelftthe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamNetherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - N. Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamNetherlands
- Cancer Center AmsterdamAmsterdamNetherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
- Department of NeurologyHaaglanden Medical CenterNetherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and Psychotherapy, International Institute for the Advanced Studies of Psychotherapy and Applied Mental HealthBabes‐Bolyai UniversityRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | | | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftthe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftthe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftthe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University HospitalBrnoCzechia
- Faculty of MedicineMasaryk UniversityBrnoCzechia
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Marion Smits
- Medical Delta FoundationDelftthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamthe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| |
Collapse
|
4
|
Galijasevic M, Steiger R, Mangesius S, Mangesius J, Kerschbaumer J, Freyschlag CF, Gruber N, Janjic T, Gizewski ER, Grams AE. Magnetic Resonance Spectroscopy in Diagnosis and Follow-Up of Gliomas: State-of-the-Art. Cancers (Basel) 2022; 14:3197. [PMID: 35804969 PMCID: PMC9264890 DOI: 10.3390/cancers14133197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Preoperative grade prediction is important in diagnostics of glioma. Even more important can be follow-up after chemotherapy and radiotherapy of high grade gliomas. In this review we provide an overview of MR-spectroscopy (MRS), technical aspects, and different clinical scenarios in the diagnostics and follow-up of gliomas in pediatric and adult populations. Furthermore, we provide a recap of the current research utility and possible future strategies regarding proton- and phosphorous-MRS in glioma research.
Collapse
Affiliation(s)
- Malik Galijasevic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.K.); (C.F.F.)
| | | | - Nadja Gruber
- VASCage-Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria;
- Department of Applied Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Galijašević M, Steiger R, Radović I, Birkl-Toeglhofer AM, Birkl C, Deeg L, Mangesius S, Rietzler A, Regodić M, Stockhammer G, Freyschlag CF, Kerschbaumer J, Haybaeck J, Grams AE, Gizewski ER. Phosphorous Magnetic Resonance Spectroscopy and Molecular Markers in IDH1 Wild Type Glioblastoma. Cancers (Basel) 2021; 13:cancers13143569. [PMID: 34298788 PMCID: PMC8305039 DOI: 10.3390/cancers13143569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Gliobastoma is one of the deadliest tumors overall, yet the most common malignant brain tumor. The new World Health Organization Classification of Brain Tumors brought changes in how we look at this type of malignancy. Now we know that glioblastoma is rather a spectrum of similar tumors, but with some distinct characteristics that include molecular footprint, response to therapy and with that overall survival, among others. We hypothesised that by employing phosphorous magnetic resonance we will be able to show differences in cellular energy metabolism in these various subtypes of glioblastoma. For example, we found indices of faster cell reproduction and tumor growth in MGMT-methylated and EGFR-amplified tumors. These tumors also could have reduced energetic state or tissue oxygenation due to the increased necrosis. Tumors with EGFR-amplification could have increased apoptotic activity regardless of their MGMT status. Our study indicated various differences in energetic metabolism in tumors with different molecular characteristics, which could potentially be important in future therapeutic strategies. Abstract The World Health Organisation’s (WHO) classification of brain tumors requires consideration of both histological appearance and molecular characteristics. Possible differences in brain energy metabolism could be important in designing future therapeutic strategies. Forty-three patients with primary, isocitrate dehydrogenase 1 (IDH1) wild type glioblastomas (GBMs) were included in this study. Pre-operative standard MRI was obtained with additional phosphorous magnetic resonance spectroscopy (31-P-MRS) imaging. Following microsurgical resection of the tumors, biopsy specimens underwent neuropathological diagnostics including standard molecular diagnosis. The spectroscopy results were correlated with epidermal growth factor (EGFR) and O6-Methylguanine-DNA methyltransferase (MGMT) status. EGFR amplified tumors had significantly lower phosphocreatine (PCr) to adenosine triphosphate (ATP)-PCr/ATP and PCr to inorganic phosphate (Pi)-PCr/Pi ratios, and higher Pi/ATP and phosphomonoesters (PME) to phosphodiesters (PDE)-PME/PDE ratio than those without the amplification. Patients with MGMT-methylated tumors had significantly higher cerebral magnesium (Mg) values and PME/PDE ratio, while their PCr/ATP and PCr/Pi ratios were lower than in patients without the methylation. In survival analysis, not-EGFR-amplified, MGMT-methylated GBMs showed the longest survival. This group had lower PCr/Pi ratio when compared to MGMT-methylated, EGFR-amplified group. PCr/Pi ratio was lower also when compared to the MGMT-unmethylated, EGFR not-amplified group, while PCr/ATP ratio was lower than all other examined groups. Differences in energy metabolism in various molecular subtypes of wild-type-GBMs could be important information in future precision medicine approach.
Collapse
Affiliation(s)
- Malik Galijašević
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| | - Ivan Radović
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Anna Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Deeg
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Rietzler
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Milovan Regodić
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Radiation Oncology, Medical University of Vienna, 1010 Vienna, Austria
| | - Guenther Stockhammer
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.F.F.); (J.K.)
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|