1
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Deroche MLD, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien AG, Miller S, Schafer E, Gemignani J, Alemi R, Muthuraman M, Koirala N, Gracco VL. Cross-modal plasticity in children with cochlear implant: converging evidence from EEG and functional near-infrared spectroscopy. Brain Commun 2024; 6:fcae175. [PMID: 38846536 PMCID: PMC11154148 DOI: 10.1093/braincomms/fcae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Over the first years of life, the brain undergoes substantial organization in response to environmental stimulation. In a silent world, it may promote vision by (i) recruiting resources from the auditory cortex and (ii) making the visual cortex more efficient. It is unclear when such changes occur and how adaptive they are, questions that children with cochlear implants can help address. Here, we examined 7-18 years old children: 50 had cochlear implants, with delayed or age-appropriate language abilities, and 25 had typical hearing and language. High-density electroencephalography and functional near-infrared spectroscopy were used to evaluate cortical responses to a low-level visual task. Evidence for a 'weaker visual cortex response' and 'less synchronized or less inhibitory activity of auditory association areas' in the implanted children with language delays suggests that cross-modal reorganization can be maladaptive and does not necessarily strengthen the dominant visual sense.
Collapse
Affiliation(s)
- Mickael L D Deroche
- Department of Psychology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Jace Wolfe
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Caleb Wilson
- Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alexander G Bien
- Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX 76201, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX 76201, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padova, 35131 Padua, Italy
| | - Razieh Alemi
- Department of Psychology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Muthuraman Muthuraman
- Section of Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | | |
Collapse
|
3
|
Karumattu Manattu A, Borrell JA, Copeland C, Fraser K, Zuniga JM. Motor cortical functional connectivity changes due to short-term immobilization of upper limb: an fNIRS case report. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1156940. [PMID: 37266515 PMCID: PMC10229777 DOI: 10.3389/fresc.2023.1156940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Introduction A short-term immobilization of one hand affects musculoskeletal functions, and the associated brain network adapts to the alterations happening to the body due to injuries. It was hypothesized that the injury-associated temporary disuse of the upper limb would alter the functional interactions of the motor cortical processes and will produce long-term changes throughout the immobilization and post-immobilization period. Methods The case participant (male, 12 years old, right arm immobilized for clavicle fracture) was scanned using optical imaging technology of fNIRS over immobilization and post-immobilization. Pre-task data was collected for 3 min for RSFC analysis, processed, and analyzed using the Brain AnalyzIR toolbox. Connectivity was measured using Pearson correlation coefficients (R) from NIRS Toolbox's connectivity module. Results The non-affected hand task presented an increased ipsilateral response during the immobilization period, which then decreased over the follow-up visits. The right-hand task showed a bilateral activation pattern following immobilization, but the contralateral activation pattern was restored during the 1-year follow-up visit. Significant differences in the average connection strength over the study period were observed. The average Connection strength decreased from the third week of immobilization and continued to be lower than the baseline value. Global network efficiency decreased in weeks two and three, while the network settled into a higher efficient state during the follow-up periods after post-immobilization. Discussion Short-term immobilization of the upper limb is shown to have cortical changes in terms of activations of brain regions as well as connectivity. The short-term dis-use of the upper limb has shifted the unilateral activation pattern to the bilateral coactivation of the motor cortex from both hemispheres. Resting-state data reveals a disruption in the motor cortical network during the immobilization phase, and the network is reorganized into an efficient network over 1 year after the injury. Understanding such cortical reorganization could be informative for studying the recovery from neurological disorders affecting motor control in the future.
Collapse
Affiliation(s)
| | - Jordan A. Borrell
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
- Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| | - Christopher Copeland
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Kaitlin Fraser
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jorge M. Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
- Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
4
|
Shibu CJ, Sreedharan S, Arun KM, Kesavadas C, Sitaram R. Explainable artificial intelligence model to predict brain states from fNIRS signals. Front Hum Neurosci 2023; 16:1029784. [PMID: 36741783 PMCID: PMC9892761 DOI: 10.3389/fnhum.2022.1029784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023] Open
Abstract
Objective: Most Deep Learning (DL) methods for the classification of functional Near-Infrared Spectroscopy (fNIRS) signals do so without explaining which features contribute to the classification of a task or imagery. An explainable artificial intelligence (xAI) system that can decompose the Deep Learning mode's output onto the input variables for fNIRS signals is described here. Approach: We propose an xAI-fNIRS system that consists of a classification module and an explanation module. The classification module consists of two separately trained sliding window-based classifiers, namely, (i) 1-D Convolutional Neural Network (CNN); and (ii) Long Short-Term Memory (LSTM). The explanation module uses SHAP (SHapley Additive exPlanations) to explain the CNN model's output in terms of the model's input. Main results: We observed that the classification module was able to classify two types of datasets: (a) Motor task (MT), acquired from three subjects; and (b) Motor imagery (MI), acquired from 29 subjects, with an accuracy of over 96% for both CNN and LSTM models. The explanation module was able to identify the channels contributing the most to the classification of MI or MT and therefore identify the channel locations and whether they correspond to oxy- or deoxy-hemoglobin levels in those locations. Significance: The xAI-fNIRS system can distinguish between the brain states related to overt and covert motor imagery from fNIRS signals with high classification accuracy and is able to explain the signal features that discriminate between the brain states of interest.
Collapse
Affiliation(s)
- Caleb Jones Shibu
- Department of Computer Science, University of Arizona, Tucson, AZ, United States
| | - Sujesh Sreedharan
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - KM Arun
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
5
|
Zhou X, Feng M, Hu Y, Zhang C, Zhang Q, Luo X, Yuan W. The Effects of Cortical Reorganization and Applications of Functional Near-Infrared Spectroscopy in Deaf People and Cochlear Implant Users. Brain Sci 2022; 12:brainsci12091150. [PMID: 36138885 PMCID: PMC9496692 DOI: 10.3390/brainsci12091150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
A cochlear implant (CI) is currently the only FDA-approved biomedical device that can restore hearing for the majority of patients with severe-to-profound sensorineural hearing loss (SNHL). While prelingually and postlingually deaf individuals benefit substantially from CI, the outcomes after implantation vary greatly. Numerous studies have attempted to study the variables that affect CI outcomes, including the personal characteristics of CI candidates, environmental variables, and device-related variables. Up to 80% of the results remained unexplainable because all these variables could only roughly predict auditory performance with a CI. Brain structure/function differences after hearing deprivation, that is, cortical reorganization, has gradually attracted the attention of neuroscientists. The cross-modal reorganization in the auditory cortex following deafness is thought to be a key factor in the success of CI. In recent years, the adaptive and maladaptive effects of this reorganization on CI rehabilitation have been argued because the neural mechanisms of how this reorganization impacts CI learning and rehabilitation have not been revealed. Due to the lack of brain processes describing how this plasticity affects CI learning and rehabilitation, the adaptive and deleterious consequences of this reorganization on CI outcomes have recently been the subject of debate. This review describes the evidence for different roles of cross-modal reorganization in CI performance and attempts to explore the possible reasons. Additionally, understanding the core influencing mechanism requires taking into account the cortical changes from deafness to hearing restoration. However, methodological issues have restricted longitudinal research on cortical function in CI. Functional near-infrared spectroscopy (fNIRS) has been increasingly used for the study of brain function and language assessment in CI because of its unique advantages, which are considered to have great potential. Here, we review studies on auditory cortex reorganization in deaf patients and CI recipients, and then we try to illustrate the feasibility of fNIRS as a neuroimaging tool in predicting and assessing speech performance in CI recipients. Here, we review research on the cross-modal reorganization of the auditory cortex in deaf patients and CI recipients and seek to demonstrate the viability of using fNIRS as a neuroimaging technique to predict and evaluate speech function in CI recipients.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Menglong Feng
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yaqin Hu
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chanyuan Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingling Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaoqin Luo
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Yuan
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence: ; Tel.: +86-23-63535180
| |
Collapse
|
6
|
Quin-Conroy JE, Chen Y, Bayliss DM, Badcock NA. Magic Hats and Teddy Bear picnics: Language and visuospatial lateralisation tasks for children. Laterality 2022; 27:232-256. [DOI: 10.1080/1357650x.2021.2020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Josephine E. Quin-Conroy
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Yanyu Chen
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Donna M. Bayliss
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas A. Badcock
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
7
|
Jia G, Liu G, Niu H. Hemispheric Lateralization of Visuospatial Attention Is Independent of Language Production on Right-Handers: Evidence From Functional Near-Infrared Spectroscopy. Front Neurol 2022; 12:784821. [PMID: 35095729 PMCID: PMC8795708 DOI: 10.3389/fneur.2021.784821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
It is well-established that visuospatial attention is mainly lateralized to the right hemisphere, whereas language production is mainly left-lateralized. However, there is a significant controversy regarding how these two kinds of lateralization interact with each other. The present research used functional near-infrared spectroscopy (fNIRS) to examine whether visuospatial attention is indeed right-lateralized, whereas language production is left-lateralized, and more importantly, whether the extent of lateralization in the visuospatial task is correlated with that in the task involving language. Specifically, fifty-two healthy right-handed participants participated in this study. Multiple-channel fNIRS technique was utilized to record the cerebral hemodynamic changes when participants were engaged in naming objects depicted in pictures (the picture naming task) or judging whether a presented line was bisected correctly (the landmark task). The degree of hemispheric lateralization was quantified according to the activation difference between the left and right hemispheres. We found that the picture-naming task predominantly activated the inferior frontal gyrus (IFG) of the left hemisphere. In contrast, the landmark task predominantly activated the inferior parietal sulcus (IPS) and superior parietal lobule (SPL) of the right hemisphere. The quantitative calculation of the laterality index also showed a left-lateralized distribution for the picture-naming task and a right-lateralized distribution for the landmark task. Intriguingly, the correlation analysis revealed no significant correlation between the laterality indices of these two tasks. Our findings support the independent hypothesis, suggesting that different cognitive tasks may engender lateralized processing in the brain, but these lateralized activities may be independent of each other. Meanwhile, we stress the importance of handedness in understanding the relationship between functional asymmetries. Methodologically, we demonstrated the effectiveness of using the multichannel fNIRS technique to investigate the hemispheric specialization of different cognitive tasks and their lateralization relations between different tasks. Our findings and methods may have important implications for future research to explore lateralization-related issues in individuals with neural pathologies.
Collapse
Affiliation(s)
| | | | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Tung H, Lin WH, Lan TH, Hsieh PF, Chiang MC, Lin YY, Peng SJ. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study. J Psychiatr Res 2021; 138:541-549. [PMID: 33990025 DOI: 10.1016/j.jpsychires.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
This is the first study to use functional near-infrared spectroscopy (fNIRS) to investigate how the lateralization of the epileptogenic zone affects the reconfiguration of task-related network patterns. Eleven left fronto-temporal epilepsy (L-FTE) and 11 right fronto-temporal epilepsy (R-FTE), as well as 22 age- and gender-matched controls, were enrolled. Signals from 52-channel fNIRS were recorded while the subject was undertaking verbal fluency tasks (VFTs), which included categorical (CFT) and letter (LFT) fluency tasks. Three analytic methods were used to study the network topology: network-based analysis, hub identification, and proportional threshold to select the top 20% strongest connections for both graph theory parameters and clinical correlation. Performance of CFT is accomplished primarily using the ventral pathway, and bilateral ventral pathways are augmented in fronto-temporal epilepsy patients by strengthening the inter-hemispheric connections, especially for R-FTE. LFT mainly employed the dorsal pathway, and further prioritized the left dorsal pathway in strengthening intra-hemispheric connections in fronto-temporal epilepsy, especially L-FTE. The top 20% of the strongest connections only present differences in CFT network compared with the controls. R-FTE increased inter-hemispheric network density, while L-FTE decreased inter-hemispheric average characteristic path length. Accumulative seizure burden only affects L-FTE network. Better LFT performance and longer educational years seem to promote left fronto-temporal networks, and decreased the demand from RR intra-hemispheric connectivity in L-FTE. LFT scores in R-FTE are maintained by preserved RR intra-hemispheric networks. However, CFT scores and educational years seem to have no effect on the CFT network topology in both FTE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Center of Faculty Development, Taichung Veterans General Hospital, Taiwan; Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Lawrence RJ, Wiggins IM, Hodgson JC, Hartley DEH. Evaluating cortical responses to speech in children: A functional near-infrared spectroscopy (fNIRS) study. Hear Res 2021; 401:108155. [PMID: 33360183 PMCID: PMC7937787 DOI: 10.1016/j.heares.2020.108155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 10/28/2022]
Abstract
Functional neuroimaging of speech processing has both research and clinical potential. This work is facilitating an ever-increasing understanding of the complex neural mechanisms involved in the processing of speech. Neural correlates of speech understanding also have potential clinical value, especially for infants and children, in whom behavioural assessments can be unreliable. Such measures would not only benefit normally hearing children experiencing speech and language delay, but also hearing impaired children with and without hearing devices. In the current study, we examined cortical correlates of speech intelligibility in normally hearing paediatric listeners. Cortical responses were measured using functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging technique that is fully compatible with hearing devices, including cochlear implants. In nineteen normally hearing children (aged 6 - 13 years) we measured activity in temporal and frontal cortex bilaterally whilst participants listened to both clear- and noise-vocoded sentences targeting four levels of speech intelligibility. Cortical activation in superior temporal and inferior frontal cortex was generally stronger in the left hemisphere than in the right. Activation in left superior temporal cortex grew monotonically with increasing speech intelligibility. In the same region, we identified a trend towards greater activation on correctly vs. incorrectly perceived trials, suggesting a possible sensitivity to speech intelligibility per se, beyond sensitivity to changing acoustic properties across stimulation conditions. Outside superior temporal cortex, we identified other regions in which fNIRS responses varied with speech intelligibility. For example, channels overlying posterior middle temporal regions in the right hemisphere exhibited relative deactivation during sentence processing (compared to a silent baseline condition), with the amplitude of that deactivation being greater in more difficult listening conditions. This finding may represent sensitivity to components of the default mode network in lateral temporal regions, and hence effortful listening in normally hearing paediatric listeners. Our results indicate that fNIRS has the potential to provide an objective marker of speech intelligibility in normally hearing children. Should these results be found to apply to individuals experiencing language delay or to those listening through a hearing device, such as a cochlear implant, fNIRS may form the basis of a clinically useful measure of speech understanding.
Collapse
Affiliation(s)
- Rachael J Lawrence
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, United Kingdom; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, United Kingdom.
| | - Ian M Wiggins
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, United Kingdom; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jessica C Hodgson
- Lincoln Medical School - Universities of Nottingham and Lincoln, Charlotte Scott Building, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Douglas E H Hartley
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, United Kingdom; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
10
|
HU XINHUA, XIAO GANG, ZHU KEXIN, HU SHUYI, CHEN JIU, YU YUN. APPLICATION OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY IN NEUROLOGICAL DISEASES: EPILEPSY, STROKE AND PARKINSON. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional near-infrared spectroscopy (fNIRS) technology is an optical imaging technology that applies near-infrared light to measure the oxygenated and deoxygenated hemoglobin concentration alteration in cortical brain structures. It has the ability to directly measure changes in the blood oxygen level of the high temporal resolution associated with neural activation. Thus, it has been utilized in different neurological diseases, such as epilepsy, stroke, and Parkinson. The work of this paper will focus on the application of the fNIRS in the three neurological diseases and the principle of fNIRS. Moreover, the difficulties and challenges that the technology is currently experiencing have been discussed.
Collapse
Affiliation(s)
- XINHUA HU
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - GANG XIAO
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology, Fudan University, Shanghai, 200032, P. R. China
| | - KEXIN ZHU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - SHUYI HU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - JIU CHEN
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - YUN YU
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| |
Collapse
|
11
|
In Vitro and In Vivo Study of the Short-Term Vasomotor Response during Epileptic Seizures. Brain Sci 2020; 10:brainsci10120942. [PMID: 33297329 PMCID: PMC7762235 DOI: 10.3390/brainsci10120942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes. To study this relationship, we performed a series of in vitro and in vivo experiments using the 4-aminopyridine model of epileptic seizures. It was found that in vitro pathological synchronization of neurons and the depolarization of astrocytes is accompanied by rapid short-term vasoconstriction, while in vivo vasodilation during the seizure prevails. We suggest that vasomotor activity during epileptic seizures is a correlate of the complex, self-sustained response that includes neuronal and astrocytic oscillations, and that underlies the clinical presentation of epilepsy.
Collapse
|
12
|
Identifying Resting-State Functional Connectivity Changes in the Motor Cortex Using fNIRS During Recovery from Stroke. Brain Topogr 2020; 33:710-719. [PMID: 32685998 DOI: 10.1007/s10548-020-00785-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/11/2020] [Indexed: 12/23/2022]
Abstract
Resting-state functional imaging has been used to study the functional reorganization of the brain. The application of functional near-infrared spectroscopy (fNIRS) to assess resting-state functional connectivity (rsFC) has already been demonstrated in recent years. The present study aimed to identify the difference in rsFC patterns during the recovery from the upper-limb deficit due to stroke. Twenty patients with mild stroke having an onset of four to eight weeks were recruited from the stroke clinic of our institute and an equal number of healthy volunteers were included in the study after ethical committee approval. The fNIRS signals were recorded bilaterally over the premotor area and supplementary motor area and over the primary motor cortex. Pearson Correlation is the method used to compute rsFC for the healthy group and patient group. For the healthy group, both intra-hemispheric and inter-hemispheric connections were stronger. RSFC analysis demonstrated changes from the healthy pattern for the patient group with an upper-limb deficit. The left hemisphere affected group showed disrupted ipsilesional and an increased contra-lesional connectivity. The longitudinal data analysis of rsFC showed improvement in the connections in the ipsilesional hemisphere between the primary motor area, somatosensory area, and premotor areas. In the future, the rsFC changes during the recovery could be used to predict the extent of recovery from stroke motor deficits.
Collapse
|
13
|
Gentile E, Brunetti A, Ricci K, Delussi M, Bevilacqua V, de Tommaso M. Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study. PLoS One 2020; 15:e0228158. [PMID: 31971993 PMCID: PMC6977766 DOI: 10.1371/journal.pone.0228158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Experimental and clinical studies suggested an analgesic effect on chronic pain by motor cortex activation. The present study explored the complex mechanisms of interaction between motor and pain during performing the slow and fast finger tapping task alone and in concomitant with nociceptive laser stimulation. METHOD The participants were 38 patients with fibromyalgia (FM) and 21 healthy subjects. We used a simultaneous multimodal method of laser-evoked potentials and functional near-infrared spectroscopy to investigate metabolic and electrical changes during the finger tapping task and concomitant noxious laser stimulation. Functional near-infrared spectroscopy is a portable and optical method to detect cortical metabolic changes. Laser-evoked potentials are a suitable tool to study the nociceptive pathways function. RESULTS We found a reduced tone of cortical motor areas in patients with FM compared to controls, especially during the fast finger tapping task. FM patients presented a slow motor performance in all the experimental conditions, requesting rapid movements. The amplitude of laser evoked potentials was different between patients and controls, in each experimental condition, as patients showed smaller evoked responses compared to controls. Concurrent phasic pain stimulation had a low effect on motor cortex metabolism in both groups nor motor activity changed laser evoked responses in a relevant way. There were no correlations between Functional Near-Infrared Spectroscopy (FNIRS) and clinical features in FM patients. CONCLUSION Our findings indicated that a low tone of motor cortex activation could be an intrinsic feature in FM and generate a scarce modulation on pain condition. A simple and repetitive movement such as that of the finger tapping task seems inefficacious in modulating cortical responses to pain both in patients and controls. The complex mechanisms of interaction between networks involved in pain control and motor function require further studies for the important role they play in structuring rehabilitation strategies.
Collapse
Affiliation(s)
- Eleonora Gentile
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Antonio Brunetti
- Department of Electrical and Information Engineering, Polytecnic University of Bari, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering, Polytecnic University of Bari, Bari, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| |
Collapse
|
14
|
Hamasaki A, Akazawa N, Yoshikawa T, Myoenzono K, Tagawa K, Sawano Y, Nishimura M, Maeda S. Central artery stiffness is related to cerebral oxygenation hemodynamics during executive function tasks in healthy middle-aged and older adults. Exp Gerontol 2018; 114:93-98. [PMID: 30399407 DOI: 10.1016/j.exger.2018.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/26/2022]
Abstract
Age-related decreases in cognitive function, cerebral perfusion, and vascular function increase the risk of dementia. However, the effects of central artery stiffness on cerebral oxygenation hemodynamics during executive function tasks and executive function remain unclear. The aim of this cross-sectional study was to investigate the relationships among central artery stiffness, cerebral oxygenation hemodynamics during executive function tasks, and executive function in middle-aged and older adults. Sixty-two middle-aged and older adults (age range: 51-79 years) were recruited for this study. For each participant, we measured the carotid artery β-stiffness, oxygenated hemoglobin (oxy-Hb) signal change in the prefrontal cortex during the Stroop task, and Stroop interference time. Correlation analyses revealed that the carotid artery β-stiffness was significantly correlated with the Stroop interference time (r = 0.43, P < 0.001) and with the oxy-Hb signal change in the left (r = -0.38, P = 0.002), but not the right, prefrontal cortex. In addition, the Stroop interference time was significantly correlated with the oxy-Hb signal change in the left (r = -0.42, P = 0.001), but not the right, prefrontal cortex. The participants were divided into the low and high arterial stiffness groups according to the median value. We found that the Stroop interference time was significantly shorter (P = 0.006) and the oxy-Hb signal change in the left prefrontal cortex was significantly larger in the low arterial stiffness group than in the high arterial stiffness group (P = 0.011). In the low, but not the high, arterial stiffness group, the oxy-Hb signal change of the left prefrontal cortex during executive function tasks was significantly larger than the oxy-Hb signal change of the right prefrontal cortex (P = 0.014). These results suggest that increases in central artery stiffness are associated with decreases in oxygenation hemodynamics in the left prefrontal cortex during executive function tasks and reductions in executive function.
Collapse
Affiliation(s)
- Ai Hamasaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Akazawa
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan; Department of Sport Science, Japan Institute of Sport Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo, Japan
| | - Toru Yoshikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan; Faculty of Health and Sport Sciences, Ryutsu Keizai University, 120 Ryugasaki-shi, Ibaraki, Japan
| | - Kanae Myoenzono
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Kaname Tagawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yuriko Sawano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Makoto Nishimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|