1
|
Alipour S, Owrang M, Rajabnia M, Olfatifar M, Kazemian H, Houri H. Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli Isolates From Colonic Biopsies of Iranian Patients With Inflammatory Bowel Diseases: A Cross-Sectional Study. Health Sci Rep 2024; 7:e70204. [PMID: 39698518 PMCID: PMC11652390 DOI: 10.1002/hsr2.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Background and Aims Emerging evidence suggests that ciprofloxacin and other quinolones can be effectively used as adjuncts to immunosuppressive therapy in managing inflammatory bowel disease (IBD). Clinical isolates of Enterobacterales frequently exhibit quinolone resistance. Additionally, increased IBD severity has been linked to the proliferation of Enterobacterales in the gut. This study aimed to explore the frequency of fluoroquinolone resistance and the presence of associated resistance genes in Escherichia coli isolates obtained from intestinal biopsies of patients with IBD in Iran. Methods In this research, we conducted a study that involved the isolation and examination of E. coli bacteria from inflamed ileal and/or colonic tissues of patients diagnosed with IBD, specifically ulcerative colitis (UC) and Crohn's disease (CD), during colonoscopy procedures. We collected demographic and clinical information from the patients. To identify E. coli strains that were resistant to quinolone antibiotics, we performed both phenotypic and molecular analyses. Results From the colonic and ileal biopsies of 121 patients with IBD, we isolated 107 unique strains of E. coli. Among these strains, 18 (16.8%) were derived from patients with CD, and 89 (83.2%) came from those with UC. Antimicrobial susceptibility tests revealed that 61 out of 107 isolates (57%) of the isolates showed phenotypic resistance to at least one type of quinolone. Additionally, plasmid-mediated quinolone resistance (PMQR) genes, specifically oqxA, oqxB, and qnrS were detected in the E. coli strains linked to both UC and CD. Notably, there was a significant positive correlation observed between intestinal colonization by ciprofloxacin-resistant E. coli and the patients' history of extended ciprofloxacin antibiotic therapy. Conclusion Our results reveal that a significant number of patients with IBD carry quinolone-resistant E. coli. This colonization may pose a risk factor that could affect disease progression and contribute to potential complications.
Collapse
Affiliation(s)
- Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mina Owrang
- Faculty of Medical Science, Sari BranchIslamic Azad UniversitySariIran
| | - Mohsen Rajabnia
- Non‐Communicable Diseases Research CenterAlborz University of Medical SciencesKarajIran
| | - Meysam Olfatifar
- Gastroenterology and Hepatology Diseases Research CenterQom University of Medical SciencesQomIran
| | - Hossein Kazemian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Ohkusa T, Kato K, Sekizuka T, Sugiyama T, Sato N, Kuroda M. Comparison of the Gut Microbiota of Patients Who Improve with Antibiotic Combination Therapy for Ulcerative Colitis and Those Who Do Not: Investigation by Fecal Metagenomic Analyses. Nutrients 2024; 16:3500. [PMID: 39458495 PMCID: PMC11510665 DOI: 10.3390/nu16203500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The cause of ulcerative colitis (UC) may be related to commensal bacteria in genetically susceptible patients. We previously demonstrated that triple antibiotic combination therapy induces remission in patients with active UC in randomized controlled trials (RCTs). Now, we investigate changes in the gut microbiota of patients who responded to the antibiotic combination therapy. Methods: Thirty-one patients with UC given ATM/AFM (amoxicillin, metronidazole, and tetracycline or fosfomycin) therapy for two weeks were enrolled in this study. The clinical conditions of these UC patients were evaluated by the partial Mayo score. The gut microbiota was compared via the metagenomic shot gun analysis of fecal samples. Results: Of the 31 patients, 16 and 8 experienced complete and partial remission, respectively, over three months in response to ATM/AFM therapy, whereas ATM/AFM showed no efficacy in 7 patients. The dysbiosis before treatment in the active stage could be associated with increased populations of Bacteroides, Parabacteroides, Rickenella, Clostridium, Flavonifractor, Pelagibacter, Bordetella, Massilia, and Piscrickettsia species. Metagenomic analysis revealed dramatic changes in the gut microbiota at an early stage, that is, just two weeks after starting ATM/AFM therapy. After treatment in the responder group, the populations of bifidobacterium and lactobacilli species were significantly increased, while the population of bacteroides decreased. Conclusions: These results suggest that metagenomic analysis demonstrated a marked change in the gut microbiota after antibiotic combination treatment. In the triple antibiotic combination therapy, remission was associated with an increase in bifidobacterium and lactobacilli species.
Collapse
Affiliation(s)
- Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Kimitoshi Kato
- Division of Research Planning and Development, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| | - Toshiro Sugiyama
- Advanced Gastrointestinal Cancer Molecular Targeted Therapy and Prevention Research Division, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| |
Collapse
|
3
|
Mirsepasi-Lauridsen HC. Therapy Used to Promote Disease Remission Targeting Gut Dysbiosis, in UC Patients with Active Disease. J Clin Med 2022; 11:7472. [PMID: 36556089 PMCID: PMC9784819 DOI: 10.3390/jcm11247472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing non-transmural chronic inflammatory disease of the colon characterized by bloody diarrhea. The etiology of UC is unknown. The goal is to reduce the inflammation and induce disease remission in UC patients with active disease. The aim of this study is to investigate the innovative treatment method used to promote disease remission in UC patients with active disease targeting gut dysbiosis. Immunosuppressants such as TNF-α blocker are used to promote disease remission in UC, but it is expensive and with side effects. Probiotic, prebiotic and diet are shown to be effective in maintaining disease remission. Fecal microbiota transplantation (FMT) might be the future therapy option to promote disease remission in UC patients with active disease. However, correct manufacturing and administration of the FMT are essential to achieve successful outcome. A few cohorts with FMT capsules show promising results in UC patients with active disease. However, randomized controlled clinical trials with long-term treatment and follow-up periods are necessary to show FMT capsules' efficacy to promote disease remission in UC patients.
Collapse
|
4
|
Zhang X, Ishikawa D, Ohkusa T, Fukuda S, Nagahara A. Hot topics on fecal microbiota transplantation for the treatment of inflammatory bowel disease. Front Med (Lausanne) 2022; 9:1068567. [PMID: 36530877 PMCID: PMC9755187 DOI: 10.3389/fmed.2022.1068567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal mucosal inflammatory disease with complex etiology. Traditional anti-inflammatory treatment regimens have yielded unsatisfactory results. As research continues to deepen, it has been found that the gut microbiota of patients with IBD is generally altered. The presence of microorganisms in the human gastrointestinal tract is inextricably linked to the regulation of health and disease. Disruption of the microbiotic balance of microbiota in the gastrointestinal tract is called dysbiosis, which leads to disease. Therefore, in recent years, the exploration of therapeutic methods to restore the homeostasis of the gut microbiota has attracted attention. Moreover, the use of the well-established fecal microbiota transplantation (FMT) regimen for the treatment of Clostridioides difficile infection has attracted the interest of IBD researchers. Therefore, there are an increasing number of clinical studies regarding FMT for IBD treatment. However, a series of questions regarding FMT in the treatment of IBD warrants further investigation and discussion. By reviewing published studies, this review explored hot topics such as the efficacy, safety, and administration protocol flow of FMT in the treatment of IBD. Different administration protocols have generally shown reassuring results with significant efficacy and safety. However, the FMT treatment regimen needs to be further optimized. We believe that in the future, individual customized or standard FMT implementation will further enhance the relevance of FMT in the treatment of IBD.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Shinji Fukuda
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Sharma TT, Rabizadeh RR, Prabhakar VS, Bury MI, Sharma AK. Evolving Experimental Platforms to Evaluate Ulcerative Colitis. Adv Biol (Weinh) 2022; 6:e2200018. [PMID: 35866469 DOI: 10.1002/adbi.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a multifactorial disease defined by chronic intestinal inflammation with idiopathic origins. It has a predilection to affect the mucosal lining of the large intestines and rectum. Management of UC depends upon numerous factors that include disease pathogenesis and severity that are maintained via medical or surgical means. Chronic inflammation that is left untreated or managed poorly from a clinical stance can result in intestinal ulceration accompanied by resulting physiological dysfunction. End-stage UC is mediated by surgical intervention with the resection of diseased tissue. This can lead to numerous health-related quality of life issues but is considered a curative approach. Regimens to treat UC are ever evolving and find their basis within various platforms to evaluate and treat UC. Numerous modeling systems have been examined to delineate potential mechanisms of action. However, UC is a heterogenous disease spanning unknown genetic origins coupled with environmental factors that can influence disease outcomes and related treatment procedures. Unfortunately, there is no one-size-fits-all model to fully assess all facets of UC. Within the context of this review article, the utility of various approaches that have been employed to gain insight into different aspects of UC will be investigated.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Vibhav S Prabhakar
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL, 60208, USA.,Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Ishikawa D, Zhang X, Nomura K, Seki N, Haraikawa M, Haga K, Shibuya T, Kim YG, Nagahara A. A Randomized Placebo-Controlled Trial of Combination Therapy With Post-triple-antibiotic-therapy Fecal Microbiota Transplantation and Alginate for Ulcerative Colitis: Protocol. Front Med (Lausanne) 2022; 9:779205. [PMID: 35273972 PMCID: PMC8902497 DOI: 10.3389/fmed.2022.779205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background Fecal microbiota transplantation (FMT) has been widely performed for ulcerative colitis (UC) treatment at the clinical trial stage. Previous reports have used multiple FMT methods to enhance the colonization of healthy donor microbiota in the recipient's intestines. FMT following triple antibiotic therapy with amoxicillin, fosfomycin, and metronidazole (A-FMT) is not only effective but also requires only one FMT, which improves dysbiosis caused by reduced Bacteroidetes diversity in patients with UC. Alginate and its derivatives have the potential to induce the growth of intestinal bacteria including Bacteroides members and produce short-chain fatty acids (SCFAs), which are beneficial in regulating overactive autoimmunity. Our trial aims to investigate whether post-intervention with alginate, which can improve the intestinal environment, will enhance the therapeutic effect of A-FMT in UC and increase the long-term remission rate. Methods and Analysis This trial is a double-blinded, randomized, placebo-controlled, parallel assignment trial. Patients with UC and fecal donation candidates will undergo strict screening before being involved in the trial. Eligible patients are randomly divided into two groups: one group will drink one bottle of alginate twice a day for 8 consecutive weeks after A-FMT, while the other group will take a placebo instead of the alginate drink. The primary endpoints are the changes in the Total Mayo Score at 8 weeks after study initiation and A-FMT from baseline. The secondary endpoint is the comparison of clinical features, microbiota, and metabolomic analysis before and after 8 weeks of study food intake. Changes at 6, 12, 18, and 24 months after A-FMT will be assessed. Finally, a subpopulation analysis of the relationship between patients and donors is an exploratory endpoint. Discussion The FMT post-treatment used in this study is an oral alginate drink that is easily accepted by patients. If the regimen achieves the desired results, it can further improve the A-FMT regimen and provide evidence for clinical practice guidelines for UC. Clinical Trial Registration https://jrct.niph.go.jp/latest-detail/jRCTs031200103, identifier: jRCTs031200103.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Intestinal Microbiota Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Natsumi Seki
- Research Center for Drug Discovery, Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mayuko Haraikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keiichi Haga
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Intestinal Microbiota Therapy, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Chen N, Yang L, Ding N, Li G, Cai J, An X, Wang Z, Qin J, Niu Y. Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives. RSC Adv 2022; 12:22893-22901. [PMID: 36105994 PMCID: PMC9377161 DOI: 10.1039/d2ra01807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model. Generating antibacterial metronidazole derivatives using a recurrent neural network model.![]()
Collapse
Affiliation(s)
- Nannan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Lijuan Yang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
- School of Physics and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Ding
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Guiwen Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jiajing Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Xiaoli An
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
| | - Zhijie Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Yuzhen Niu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| |
Collapse
|
8
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|