1
|
Klimek K, Terpilowska S, Michalak A, Bernacki R, Nurzynska A, Cucchiarini M, Tarczynska M, Gaweda K, Głuszek S, Ginalska G. Modern Approach to Testing the Biocompatibility of Osteochondral Scaffolds in Accordance with the 3Rs Principle─Preclinical In Vitro, Ex Vivo, and In Vivo Studies Using the Biphasic Curdlan-Based Biomaterial. ACS Biomater Sci Eng 2025. [PMID: 39832791 DOI: 10.1021/acsbiomaterials.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. In vitro experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. Ex vivo experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial. In vivo experiments involve an evaluation of the toxicity and regenerative potential of the biomaterial in zebrafish (larvae and adults) and in osteochondral defects in dogs (veterinary patients). The applied set of tests allows us to show that the Curdlan-based scaffold does not induce cytotoxicity (cell viability close to 100%), mutagenicity (the level of reversion is not 2× higher compared to the control), and genotoxicity (it does not exhibit any change in chromosomal aberration; the frequency of micronuclei, micronucleated binucleated cells, and cytokinesis-block proliferation index is comparable to the control; moreover, it does not cause the formation of comets in cells). This biomaterial also promotes the viability and proliferation of chondrocytes and osteoblasts (the OD values between the fourth and seventh day of incubation increase by approximately 1.6×). The Curdlan-based scaffold stimulates only a transient inflammatory response in vitro and ex vivo. This biomaterial does not cause Danio rerio larvae malformation and also enables proper regeneration of the caudal fin in adults. Finally, it supports the regeneration of an osteochondral defect in veterinary patients. Thus, this is a proposal to use alternative methods for biological assessment of osteochondral scaffolds as opposed to commonly used tests using large numbers of laboratory animals.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Sylwia Terpilowska
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Rafal Bernacki
- Veterinary Clinic Aura, Debowa 31 Street, 86-065 Lochowo, Poland
| | - Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Kirrbergerstr. Bldg 37, 66421 Homburg/Saar, Germany
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Faculty of Health Sciences, Vincent Pol University, Choiny 2 Street, 20-816 Lublin, Poland
| |
Collapse
|
2
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
3
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
4
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
6
|
Lee J, Lee E, Huh SJ, Kang JI, Park KM, Byun H, Lee S, Kim E, Shin H. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue. Tissue Eng Part A 2024; 30:225-243. [PMID: 38062771 DOI: 10.1089/ten.tea.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
A combination of hydrogels and stem cell spheroids has been used to engineer three-dimensional (3D) osteochondral tissue, but precise zonal control directing cell fate within the hydrogel remains a challenge. In this study, we developed a composite spheroid-laden bilayer hydrogel to imitate osteochondral tissue by spatially controlled differentiation of human adipose-derived stem cells. Meticulous optimization of the spheroid-size and mechanical strength of gelatin methacryloyl (GelMA) hydrogel enables the cells to homogeneously sprout within the hydrogel. Moreover, fibers immobilizing transforming growth factor beta-1 (TGF-β1) or bone morphogenetic protein-2 (BMP-2) were incorporated within the spheroids, which induced chondrogenic or osteogenic differentiation of cells in general media, respectively. The spheroids-filled GelMA solution was crosslinked to create the bilayer hydrogel, which demonstrated a strong interfacial adhesion between the two layers. The cell sprouting enhanced the adhesion of each hydrogel, demonstrated by increase in tensile strength from 4.8 ± 0.4 to 6.9 ± 1.2 MPa after 14 days of culture. Importantly, the spatially confined delivery of BMP-2 within the spheroids increased mineral deposition and more than threefold enhanced osteogenic genes of cells in the bone layer while the cells induced by TGF-β1 signals were apparently differentiated into chondrocytes within the cartilage layer. The results suggest that our composite spheroid-laden hydrogel could be used for the biofabrication of osteochondral tissue, which can be applied to engineer other complex tissues by delivery of appropriate biomolecules.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Yao H, Fu Q, Zhang Y, Wan Y, Min Q. Strong, elastic and degradation-tolerated hydrogels composed of chitosan, silk fibroin and bioglass nanoparticles with factor-bestowed activity for bone tissue engineering. Int J Biol Macromol 2023; 253:126619. [PMID: 37657578 DOI: 10.1016/j.ijbiomac.2023.126619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Polymer hydrogels intended for use in bone repair need to be strong, elastic, and capable of enduring degradation. However, many natural polymer hydrogels lack these essential properties and thus, are unsuitable for bone repair applications. Here, a new type of multi-network hydrogel with improved mechanical and degradation-resistant properties has been developed for use in bone repair. The hydrogel is composed of thiolated chitosan (TCH), silk fibroin (SF), and thiolated bioglass (TBG) nanoparticles (NPs). The multi-networks are built through sulfhydryl self-crosslinking, diepoxide crosslinker-involved linkages of amino or hydroxyl groups, and enzyme-mediated phenol hydroxyl crosslinking. Additionally, mesoporous TBG NPs serve as a vehicle for loading stromal cell-derived factor-1 (SDF-1) to provide the gel with cell-recruiting activity. The formulated TCH/SF/TBG hydrogels exhibit remarkably enhanced strength, elasticity, and improved degradation tolerance compared to some gels made from only TCH or SF. Furthermore, TCH/SF/TBG gels can support the growth of seeded cells and the deposition of matrix components. Some TCH/SF/TBG gels also demonstrate the ability to release SDF-1 in an approximately linear manner for a few weeks while retaining the chemotactic properties of the released SDF-1. Overall, the multi-network hydrogel has the potential as an in situ forming material for cell-recruiting bone repair and regeneration.
Collapse
Affiliation(s)
- Hui Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China
| | - Qiaoqin Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuchen Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China.
| |
Collapse
|
8
|
Chen P, Liao X. Kartogenin delivery systems for biomedical therapeutics and regenerative medicine. Drug Deliv 2023; 30:2254519. [PMID: 37665332 PMCID: PMC10478613 DOI: 10.1080/10717544.2023.2254519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Kartogenin, a small and heterocyclic molecule, has emerged as a promising therapeutic agent for incorporation into biomaterials, owing to its unique physicochemical and biological properties. It holds potential for the regeneration of cartilage-related tissues in various common conditions and injuries. Achieving sustained release of kartogenin through appropriate formulation and efficient delivery systems is crucial for modulating cell behavior and tissue function. This review provides an overview of cutting-edge kartogenin-functionalized biomaterials, with a primarily focus on their design, structure, functions, and applications in regenerative medicine. Initially, we discuss the physicochemical properties and biological functions of kartogenin, summarizing the underlying molecular mechanisms. Subsequently, we delve into recent advancements in nanoscale and macroscopic materials for the carriage and delivery of kartogenin. Lastly, we address the opportunities and challenges presented by current biomaterial developments and explore the prospects for their application in tissue regeneration. We aim to enhance the generation of insightful ideas for the development of kartogenin delivery materials in the field of biomedical therapeutics and regenerative medicine by providing a comprehensive understanding of common preparation methods.
Collapse
Affiliation(s)
- Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
9
|
Taghiyar L, Asadi H, Baghaban Eslaminejad M. A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model. Cell Tissue Bank 2023; 24:711-724. [PMID: 36939962 DOI: 10.1007/s10561-023-10084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
As a Natural decellularized extracellular matrix, osteochondral tissue is the best scaffold for the restoration of osteoarthritis defects. Bioscaffolds have the most similarly innate properties like biomechanical properties and the preserved connection of the bone-to-cartilage border. Although, their compacity and low porosity particularly, are proven to be difficulties of decellularization and cell penetration. This study aims to develop a new bioscaffold of decellularized osteochondral tissue (DOT) that is recellularized by bone marrow-derived mesenchymal stem cells (BM-MSCs), as a biphasic allograft, which preserved the interface between the cartilage section and subchondral bone of the joint. Whole osteochondral tissues of rabbit knee joints were sheeted in cartilaginous parts in 200-250 µm sections while connected to the subchondral bone and then fully decellularized. The BM-MSCs were seeded on the scaffolds in vitro; some constructs were subcutaneously implanted into the back of the rabbit. The cell penetration, differentiation to bone and cartilage, viability, and cell proliferation in vitro and in vivo were evaluated by qPCR, histological staining, MTT assay, and immunohistochemistry. DNA content analysis and SEM assessments confirmed the decellularization of the bioscaffold. Then, histological and SEM evaluations indicated that the cells could successfully penetrate the bone and cartilage lacunas in implanted grafts. MTT assay confirmed cell proliferation. Prominently, gene expression analysis showed that seeded cells differentiated into osteoblasts and chondrocytes in both bone and cartilage sections. More importantly, seeded cells on the bioscaffold started ECM secretion. Our results indicate that cartilage-to-bone border integrity was largely preserved. Additionally, ECM-sheeted DOT could be employed as a useful scaffold for promoting the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamideh Asadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
11
|
Yang Z, Wang B, Liu W, Li X, Liang K, Fan Z, Li JJ, Niu Y, He Z, Li H, Wang D, Lin J, Du Y, Lin J, Xing D. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater 2023; 27:200-215. [PMID: 37096194 PMCID: PMC10121637 DOI: 10.1016/j.bioactmat.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023] Open
Abstract
The regeneration of hierarchical osteochondral units is challenging due to difficulties in inducing spatial, directional and controllable differentiation of mesenchymal stem cells (MSCs) into cartilage and bone compartments. Emerging organoid technology offers new opportunities for osteochondral regeneration. In this study, we developed gelatin-based microcryogels customized using hyaluronic acid (HA) and hydroxyapatite (HYP), respectively for inducing cartilage and bone regeneration (denoted as CH-Microcryogels and OS-Microcryogels) through in vivo self-assembly into osteochondral organoids. The customized microcryogels showed good cytocompatibility and induced chondrogenic and osteogenic differentiation of MSCs, while also demonstrating the ability to self-assemble into osteochondral organoids with no delamination in the biphasic cartilage-bone structure. Analysis by mRNA-seq showed that CH-Microcryogels promoted chondrogenic differentiation and inhibited inflammation, while OS-Microcryogels facilitated osteogenic differentiation and suppressed the immune response, by regulating specific signaling pathways. Finally, the in vivo engraftment of pre-differentiated customized microcryogels into canine osteochondral defects resulted in the spontaneous assembly of an osteochondral unit, inducing simultaneous regeneration of both articular cartilage and subchondral bone. In conclusion, this novel approach for generating self-assembling osteochondral organoids utilizing tailor-made microcryogels presents a highly promising avenue for advancing the field of tissue engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Bin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Xiaoke Li
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zejun Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zihao He
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
- Corresponding author. Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China.
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
- Corresponding author. Arthritis Institute, Peking University, Beijing, 100044, China.
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
- Corresponding author. Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
12
|
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. EXPLORATION (BEIJING, CHINA) 2023; 3:20210043. [PMID: 37933242 PMCID: PMC10624381 DOI: 10.1002/exp.20210043] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 11/08/2023]
Abstract
Repairing articular osteochondral defects present considerable challenges in self-repair due to the complex tissue structure and low proliferation of chondrocytes. Conventional clinical therapies have not shown significant efficacy, including microfracture, autologous/allograft osteochondral transplantation, and cell-based techniques. Therefore, tissue engineering has been widely explored in repairing osteochondral defects by leveraging the natural regenerative potential of biomaterials to control cell functions. However, osteochondral tissue is a gradient structure with a smooth transition from the cartilage to subchondral bone, involving changes in chondrocyte morphologies and phenotypes, extracellular matrix components, collagen type and orientation, and cytokines. Bioinspired scaffolds have been developed by simulating gradient characteristics in heterogeneous tissues, such as the pores, components, and osteochondrogenesis-inducing factors, to satisfy the anisotropic features of osteochondral matrices. Bioinspired gradient scaffolds repair osteochondral defects by altering the microenvironments of cell growth to induce osteochondrogenesis and promote the formation of osteochondral interfaces compared with homogeneous scaffolds. This review outlines the meaningful strategies for repairing osteochondral defects by tissue engineering based on gradient scaffolds and predicts the pros and cons of prospective translation into clinical practice.
Collapse
Affiliation(s)
- Yachen Peng
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Mingran Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Kai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yanbo Zhang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianlin Zuo
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiP. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| |
Collapse
|
13
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
14
|
Yao H, Wang C, Zhang Y, Wan Y, Min Q. Manufacture of Bilayered Composite Hydrogels with Strong, Elastic, and Tough Properties for Osteochondral Repair Applications. Biomimetics (Basel) 2023; 8:biomimetics8020203. [PMID: 37218789 DOI: 10.3390/biomimetics8020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Layered composite hydrogels have been considered attractive materials for use in osteochondral repair and regeneration. These hydrogel materials should be mechanically strong, elastic, and tough besides fulfilling some basic requirements such as biocompatibility and biodegradability. A novel type of bilayered composite hydrogel with multi-network structures and well-defined injectability was thus developed for osteochondral tissue engineering using chitosan (CH), hyaluronic acid (HA), silk fibroin (SF), CH nanoparticles (NPs), and amino-functionalized mesoporous bioglass (ABG) NPs. CH was combined with HA and CH NPs to build the chondral phase of the bilayered hydrogel, and CH, SF, and ABG NPs were used together to construct the subchondral phase of the bilayer hydrogel. Rheological measurements showed that the optimally achieved gels assigned to the chondral and subchondral layers had their elastic moduli of around 6.5 and 9.9 kPa, respectively, with elastic modulus/viscous modulus ratios higher than 36, indicating that they behaved like strong gels. Compressive measurements further demonstrated that the bilayered hydrogel with an optimally formulated composition had strong, elastic, and tough characteristics. Cell culture revealed that the bilayered hydrogel had the capacity to support the in-growth of chondrocytes in the chondral phase and osteoblasts in the subchondral phase. Results suggest that the bilayered composite hydrogel can act as an injective biomaterial for osteochondral repair applications.
Collapse
Affiliation(s)
- Hui Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| | - Congcong Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| |
Collapse
|
15
|
Marcelino P, Silva JC, Moura CS, Meneses J, Cordeiro R, Alves N, Pascoal-Faria P, Ferreira FC. A Novel Approach for Design and Manufacturing of Curvature-Featuring Scaffolds for Osteochondral Repair. Polymers (Basel) 2023; 15:polym15092129. [PMID: 37177275 PMCID: PMC10181173 DOI: 10.3390/polym15092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments. Scaffold design is a key element in providing appropriate structures for tissue growth and maturation. This study presents a novel method for designing scaffolds with a mathematically defined curvature, based on the geometry of a sphere, to obtain TE constructs mimicking native OC tissue shape. The lower the designed radius, the more curved the scaffold obtained. The printability of the scaffolds using fused filament fabrication (FFF) was evaluated. For the case-study scaffold size (20.1 mm × 20.1 mm projected dimensions), a limit sphere radius of 17.064 mm was determined to ensure printability feasibility, as confirmed by scanning electron microscopy (SEM) and micro-computed tomography (μ-CT) analysis. The FFF method proved suitable to reproduce the curved designs, showing good shape fidelity and replicating the expected variation in porosity. Additionally, the mechanical behavior was evaluated experimentally and by numerical modelling. Experimentally, curved scaffolds showed strength comparable to conventional orthogonal scaffolds, and finite element analysis was used to identify the scaffold regions more susceptible to higher loads.
Collapse
Affiliation(s)
- Pedro Marcelino
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - João Meneses
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Rachel Cordeiro
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Alves
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Paula Pascoal-Faria
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
16
|
Banihashemian A, Benisi SZ, Hosseinzadeh S, Shojaei S. Biomimetic biphasic scaffolds in osteochondral tissue engineering: Their composition, structure and consequences. Acta Histochem 2023; 125:152023. [PMID: 36940532 DOI: 10.1016/j.acthis.2023.152023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Approaches to the design and construction of biomimetic scaffolds for osteochondral tissue, show increasing advances. Considering the limitations of this tissue in terms of repair and regeneration, there is a need to develop appropriately designed scaffolds. A combination of biodegradable polymers especially natural polymers and bioactive ceramics, shows promise in this field. Due to the complicated architecture of this tissue, biphasic and multiphasic scaffolds containing two or more different layers, could mimic the physiology and function of this tissue with a higher degree of similarity. The purpose of this review article is to discuss the approaches focused on the application of biphasic scaffolds for osteochondral tissue engineering, common methods of combining layers and the ultimate consequences of their use in patients were discussed.
Collapse
Affiliation(s)
- Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran.
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| |
Collapse
|
17
|
Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F, Erisken C. Osteochondral Interface: Regenerative Engineering and Challenges. ACS Biomater Sci Eng 2023; 9:1205-1223. [PMID: 36752057 DOI: 10.1021/acsbiomaterials.2c01321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Osteochondral (OC) defects are debilitating for patients and represent a significant clinical problem for orthopedic surgeons as well as regenerative engineers due to their potential complications, which are likely to lead to osteoarthritis and related diseases. If they remain untreated or are treated suboptimally, OC lesions are known to impact the articular cartilage and the transition from cartilage to bone, that is, the cartilage-bone interface. An important component of the OC interface, that is, a selectively permeable membrane, the tidemark, still remains unaddressed in more than 90% of the published research in the past decade. This review focuses on the structure, composition, and function of the OC interface, regenerative engineering attempts with different scaffolding strategies and challenges ahead of us in recapitulating the native OC interface. There are different schools of thought regarding the structure of the native OC interface: stratified and graded. The former assumes the cartilage-to-bone interface to be hierarchically divided into distinct yet continuous zones of uncalcified cartilage-calcified cartilage-subchondral bone. The latter assumes the interface is continuously graded, that is, formed by an infinite number of layers. The cellular composition of the interface, either in respective layers or continuously changing in a graded manner, is chondrocytes, hypertrophic chondrocytes, and osteoblasts as moved from cartilage to bone. Functionally, the interface is assumed to play a role in enabling a smooth transition of loads exerted on the cartilage surface to the bone underneath. Regenerative engineering involves, first, a characterization of the native OC interface in terms of the composition, structure, and function, and, then, proposes the appropriate biomaterials, cells, and biomolecules either alone or in combination to eventually form a structure that mimics and functionally behaves similar to the native interface. The major challenge regarding regeneration of the OC interface appears to lie, in addition to others, in the formation of tidemark, which is a thin membrane separating the OC interface into two distinct zones: the avascular OC interface and the vascular OC interface. There is a significant amount of literature on regenerative approaches to the OC interface; however, only a small portion of them consider the importance of tidemark. Therefore, this review aims at highlighting the significance of the structural organization of the components of the OC interface and increasing the awareness of the orthopedics community regarding the importance of tidemark formation after clinical interventions or regenerative engineering attempts.
Collapse
Affiliation(s)
- Nuh Yildirim
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Amina Amanzhanova
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Gulzada Kulzhanova
- Nazarbayev University, School of Sciences and Humanities, Department of Biological Sciences, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Fariza Mukasheva
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Cevat Erisken
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| |
Collapse
|
18
|
Samie M, Khan AF, Rahman SU, Iqbal H, Yameen MA, Chaudhry AA, Galeb HA, Halcovitch NR, Hardy JG. Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering. Int J Biol Macromol 2023; 229:561-574. [PMID: 36587649 DOI: 10.1016/j.ijbiomac.2022.12.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Joint defects associated with a variety of etiologies often extend deep into the subchondral bone leading to functional impairment and joint immobility, and it is a very challenging task to regenerate the bone-cartilage interface offering significant opportunities for biomaterial-based interventions to improve the quality of life of patients. Herein drug-/bioactive-loaded porous tissue scaffolds incorporating nano-hydroxyapatite (nHAp), chitosan (CS) and either hydroxypropyl methylcellulose (HPMC) or Bombyx mori silk fibroin (SF) are fabricated through freeze drying method as subchondral bone substitute. A combination of spectroscopy and microscopy (Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and X-ray fluorescence (XRF) were used to analyze the structure of the porous biomaterials. The compressive mechanical properties of these scaffolds are biomimetic of cancellous bone tissues and capable of releasing drugs/bioactives (exemplified with triamcinolone acetonide, TA, or transforming growth factor-β1, TGF-β1, respectively) over a period of days. Mouse preosteoblast MC3T3-E1 cells were observed to adhere and proliferate on the tissue scaffolds as confirmed by the cell attachment, live-dead assay and alamarBlue™ assay. Interestingly, RT-qPCR analysis showed that the TA downregulated inflammatory biomarkers and upregulated the bone-specific biomarkers, suggesting such tissue scaffolds have long-term potential for clinical application.
Collapse
Affiliation(s)
- Muhammad Samie
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom; Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Haffsah Iqbal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Hanaa A Galeb
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, 21577 Jeddah, Saudi Arabia
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom.
| |
Collapse
|
19
|
Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication 2023; 15. [PMID: 36716498 DOI: 10.1088/1758-5090/acb73d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.
Collapse
Affiliation(s)
- Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ozum Sehnaz Caliskan
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, NC 27157, United States of America
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| |
Collapse
|
20
|
Chen L, Wei L, Su X, Qin L, Xu Z, Huang X, Chen H, Hu N. Preparation and Characterization of Biomimetic Functional Scaffold with Gradient Structure for Osteochondral Defect Repair. Bioengineering (Basel) 2023; 10:bioengineering10020213. [PMID: 36829707 PMCID: PMC9952804 DOI: 10.3390/bioengineering10020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Osteochondral (OC) defects cannot adequately repair themselves due to their sophisticated layered structure and lack of blood supply in cartilage. Although therapeutic interventions are reaching an advanced stage, current clinical therapies to repair defects are in their infancy. Among the possible therapies, OC tissue engineering has shown considerable promise, and multiple approaches utilizing scaffolds, cells, and bioactive factors have been pursued. The most recent trend in OC tissue engineering has been to design gradient scaffolds using different materials and construction strategies (such as bi-layered, multi-layered, and continuous gradient structures) to mimic the physiological and mechanical properties of OC tissues while further enabling OC repair. This review focuses specifically on design and construction strategies for gradient scaffolds and their role in the successful engineering of OC tissues. The current dilemmas in the field of OC defect repair and the efforts of tissue engineering to address these challenges were reviewed. In addition, the advantages and limitations of the typical fabrication techniques for gradient scaffolds were discussed, with examples of recent studies summarizing the future prospects for integrated gradient scaffold construction. This updated and enlightening review could provide insights into our current understanding of gradient scaffolds in OC tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Huang
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| | - Hong Chen
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| | - Ning Hu
- Correspondence: (X.H.); (H.C.); (N.H.); Tel.: +86-023-89011202 (X.H. & H.C. & N.H.)
| |
Collapse
|
21
|
Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater 2023; 20:574-597. [PMID: 35846846 PMCID: PMC9254262 DOI: 10.1016/j.bioactmat.2022.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The osteochondral defect repair has been most extensively studied due to the rising demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been proposed as a promising strategy to meet the demand of simultaneous regeneration of both cartilage and subchondral bone by constructing integrated gradient tissue-engineered osteochondral scaffold (IGTEOS). This review brought forward the main challenges of establishing a satisfactory IGTEOS from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue, and the limitations of obtaining the desired and required scaffold. Then, we comprehensively discussed and summarized the current tissue-engineered efforts to resolve the above challenges, including architecture strategies, fabrication techniques and in vitro/in vivo evaluation methods of the IGTEOS. Especially, we highlighted the advantages and limitations of various fabrication techniques of IGTEOS, and common cases of IGTEOS application. Finally, based on the above challenges and current research progress, we analyzed in details the future perspectives of tissue-engineered osteochondral construct, so as to achieve the perfect reconstruction of the cartilaginous and osseous layers of osteochondral tissue simultaneously. This comprehensive and instructive review could provide deep insights into our current understanding of IGTEOS.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ning Li
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
22
|
Xuan Y, Li L, Zhang C, Zhang M, Cao J, Zhang Z. The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization. Int J Nanomedicine 2023; 18:917-932. [PMID: 36844434 PMCID: PMC9951604 DOI: 10.2147/ijn.s393080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/29/2023] [Indexed: 02/22/2023] Open
Abstract
Background Repairing critical-sized bone defects secondary to traumatic or tumorous damage is a complex conundrum in clinical practice; in this case, artificial scaffolds exhibited preferable outcomes. Bredigite (BRT, Ca7MgSi4O16) bioceramic possesses excellent physicochemical properties and biological activity as a promising candidate for bone tissue engineering. Methods Structurally ordered BRT (BRT-O) scaffolds were fabricated by a three-dimensional (3D) printing technique, and the random BRT (BRT-R) scaffolds and clinically available β-tricalcium phosphate (β-TCP) scaffolds were compared as control groups. Their physicochemical properties were characterized, and RAW 264.7 cells, bone marrow mesenchymal stem cells (BMSCs), and rat cranial critical-sized bone defect models were utilized for evaluating macrophage polarization and bone regeneration. Results The BRT-O scaffolds exhibited regular morphology and homogeneous porosity. In addition, the BRT-O scaffolds released higher concentrations of ionic products based on coordinated biodegradability than the β-TCP scaffolds. In vitro, the BRT-O scaffolds facilitated RWA264.7 cells polarization to pro-healing M2 macrophage phenotype, whereas the BRT-R and β-TCP scaffolds stimulated more pro-inflammatory M1-type macrophages. A conditioned medium derived from macrophages seeding on the BRT-O scaffolds notably promoted the osteogenic lineage differentiation of BMSCs in vitro. The cell migration ability of BMSCs was significantly enhanced under the BRT-O-induced immune microenvironment. Moreover, in rat cranial critical-sized bone defect models, the BRT-O scaffolds group promoted new bone formation with a higher proportion of M2-type macrophage infiltration and expression of osteogenesis-related markers. Therefore, in vivo, BRT-O scaffolds play immunomodulatory roles in promoting critical-sized bone defects by enhancing the polarization of M2 macrophages. Conclusion 3D-printed BRT-O scaffolds can be a promising option for bone tissue engineering, at least partly through macrophage polarization and osteoimmunomodulation.
Collapse
Affiliation(s)
- Yaowei Xuan
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lin Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Min Zhang
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Junkai Cao
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhen Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Fu L, Zhao W, Zhang L, Gao C, Zhang X, Yang X, Cai Q. Mimicking osteochondral interface using pre-differentiated BMSCs/fibrous mesh complexes to promote tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2081-2103. [PMID: 35765951 DOI: 10.1080/09205063.2022.2096525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneous nature of osteochondral tissue requires the construction of implant with biomimetic gradients. Electrospun fibrous meshes with different designs provide the feasibility in arranging such a kind of gradient structure via layer-by-layer stacking. In this study, a kind of triphasic implant was constructed by layering pre-differentiated cell sheets, which were hold by electrospun poly(L-lactide)/gelatin (PLLA/Gel) fibrous meshes containing hyaluronic acid and chondroitin sulfate for the cartilage layer or hydroxyapatite for the bone layer. As for the calcified interlayer, the bone marrow mesenchymal stromal cells (BMSCs) seeded on PLLA/Gel fibrous mesh was pre-differentiated with a mixed osteoinductive/chondroinductive (1:1) medium. With this gradient construct being implanted in rabbit knee osteochondral defect, it was found that both the cartilage and subchondral bone were regenerated effectively with reproduced tidal line structure. The importance of implants with biomimetic gradients for osteochondral defect repair was confirmed, and cell sheets on electrospun fibrous meshes were flexible for gradient structure construction via the layer-by-layer stacking technology. HighlightsComposite fibrous meshes with tissue-specific components are electrospun.Confluent BMSCs on fibrous meshes are chondrogenically or osteogenically induced.BMSCs hypertrophy is induced with the mixture of chondroinductive and osteoinductive medium.The pre-differentiated cell/mesh complexes are stacked layer-by-layer to form gradient construct.The gradient construct efficiently promotes osteochondral regeneration in rabbit joint.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wenwen Zhao
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
- Foshan (Southern China) Institute for New Materials, Foshan, P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
24
|
Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels 2022; 8:648. [PMID: 36286148 PMCID: PMC9602414 DOI: 10.3390/gels8100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteochondral structure reconstruction by tissue engineering, a challenge in regenerative medicine, requires a scaffold that ensures both articular cartilage and subchondral bone remodeling. Functional hydrogels and scaffolds present a strategy for the controlled delivery of signaling molecules (growth factors and therapeutic drugs) and are considered a promising therapeutic approach. Icariin is a pharmacologically-active small molecule of prenylated flavonol glycoside and the main bioactive flavonoid isolated from Epimedium spp. The in vitro and in vivo testing of icariin showed chondrogenic and ostseoinductive effects, comparable to bone morphogenetic proteins, and suggested its use as an alternative to growth factors, representing a low-cost, promising approach for osteochondral regeneration. This paper reviews the complex structure of the osteochondral tissue, underlining the main aspects of osteochondral defects and those specifically occurring in osteoarthritis. The significance of icariin's structure and the extraction methods were emphasized. Studies revealing the valuable chondrogenic and osteogenic effects of icariin for osteochondral restoration were also reviewed. The review highlighted th recent state-of-the-art related to hydrogels and scaffolds enriched with icariin developed as biocompatible materials for osteochondral regeneration strategies.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
25
|
Progress in Osteochondral Regeneration with Engineering Strategies. Ann Biomed Eng 2022; 50:1232-1242. [PMID: 35994165 DOI: 10.1007/s10439-022-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Osteoarthritis, the main cause of disability worldwide, involves not only cartilage injury but also subchondral bone injury, which brings challenges to clinical repair. Tissue engineering strategies provide a promising solution to this degenerative disease. Articular cartilage connects to subchondral bone through the osteochondral interfacial tissue, which has a complex anatomical architecture, distinct cell distribution and unique biomechanical properties. Forming a continuous and stable osteochondral interface between cartilage tissue and subchondral bone is challenging. Thus, successful osteochondral regeneration with engineering strategies requires intricately coordinated interplay between cells, materials, biological factors, and physical/chemical factors. This review provides an overview of the anatomical composition, microstructure, and biomechanical properties of the osteochondral interface. Additionally, the latest research on the progress related to osteochondral regeneration is reviewed, especially discussing the fabrication of biomimetic scaffolds and the regulation of biological factors for osteochondral defects.
Collapse
|
26
|
Wan S, Bao D, Li J, Lin K, Huang Q, Li Q, Li L. Extracellular Vesicles from Hypoxic Pretreated Urine-Derived Stem Cells Enhance the Proliferation and Migration of Chondrocytes by Delivering miR-26a-5p. Cartilage 2022; 13:19476035221077401. [PMID: 35548888 PMCID: PMC9137301 DOI: 10.1177/19476035221077401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Stem-cell therapy is a promising treatment for cartilage defects. The newly identified urine-derived stem cells (USCs), which have multipotency and sufficient proliferative ability, are promising candidates for several tissue engineering therapies. In this study, we investigated the role of USC extracellular vehicles (EVs) in promoting the proliferation and migration of chondrocytes. DESIGN USCs were characterized by measuring induced multipotent differentiation and flow cytometry analysis of surface marker expression. The EVs were isolated from USCs under normoxic conditions (nor-EVs) and hypoxic conditions (hypo-EVs). Transmission electron microscopy and western blot analysis characterized the EVs. The chondrocytes were cultured in the USC-EVs. CCK-8 assay and EdU staining detected the proliferation of chondrocytes, and transwell assay detected their migration. miR-26a-5p expression in EVs was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The target relationship of miR-26a-5p and phosphatase and tensin homolog (PTEN) was predicted and confirmed. The roles of EVs-miR-26a-5p and PTEN on the proliferation and migration of chondrocytes were also investigated. RESULTS Hypo-EVs showed a superior effect in promoting the proliferation and migration of chondrocytes than nor-EVs. Mechanistically, USC-EVs delivered miR-26a-5p into chondrocytes to overexpress miR-26a-5p. PTEN was identified as an miR-26a-5p target in chondrocytes. The effects of EVs-miR-26a-5p on promoting the proliferation and migration of chondrocytes were mediated by its regulation of PTEN. CONCLUSION Our study suggested that hypoxic USC-EVs may represent a promising strategy for osteoarthritis by promoting the proliferation and migration of chondrocytes via miR-26a-5p transfer.
Collapse
Affiliation(s)
- Sha Wan
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jia Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Kefu Lin
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Qi Huang
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Qiang Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Lang Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
- Lang Li, Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, No. 20 Ximianqiao Cross Street, Wuhou District, Chengdu 610041, China.
| |
Collapse
|
27
|
Klimek K, Benko A, Vandrovcova M, Travnickova M, Douglas TEL, Tarczynska M, Broz A, Gaweda K, Ginalska G, Bacakova L. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro. BIOMATERIALS ADVANCES 2022; 135:212724. [PMID: 35929204 DOI: 10.1016/j.bioadv.2022.212724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlan-based scaffold was designed for osteochondral tissue engineering applications. To achieve biomimetic properties, it was enriched with a protein component - whey protein isolate as well as a ceramic ingredient - hydroxyapatite granules. The scaffold was fabricated via a simple and cost-efficient method, which represents a significant advantage. Importantly, this technique allowed generation of a scaffold with two distinct, but integrated phases. Scanning electron microcopy and optical profilometry observations demonstrated that phases of biomaterial possessed different structural properties. The top layer of the biomaterial (mimicking the cartilage) was smoother than the bottom one (mimicking the subchondral bone), which is beneficial from a biological point of view because unlike bone, cartilage is a smooth tissue. Moreover, mechanical testing showed that the top layer of the biomaterial had mechanical properties close to those of natural cartilage. Although the mechanical properties of the bottom layer of scaffold were lower than those of the subchondral bone, it was still higher than in many analogous systems. Most importantly, cell culture experiments indicated that the biomaterial possessed high cytocompatibility towards adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells in vitro. Both phases of the scaffold enhanced cell adhesion, proliferation, and chondrogenic differentiation of stem cells (revealing its chondroinductive properties in vitro) as well as osteogenic differentiation of these cells (revealing its osteoinductive properties in vitro). Given all features of the novel curdlan-based scaffold, it is worth noting that it may be considered as promising candidate for osteochondral tissue engineering applications.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Aleksandra Benko
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 A. Mickiewicza Av., 30-059 Krakow, Poland
| | - Marta Vandrovcova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Martina Travnickova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Gillow Avenue, LA1 4YW Lancaster, United Kingdom; Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Marta Tarczynska
- Medical University of Lublin, Department and Clinic of Orthopaedics and Traumatology, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Antonin Broz
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Krzysztof Gaweda
- Medical University of Lublin, Department and Clinic of Orthopaedics and Traumatology, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Grazyna Ginalska
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| |
Collapse
|
28
|
Klimek K, Tarczynska M, Truszkiewicz W, Gaweda K, Douglas TEL, Ginalska G. Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation-A Pilot In-Vitro Study. Cells 2022; 11:282. [PMID: 35053397 PMCID: PMC8773726 DOI: 10.3390/cells11020282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young's modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA 1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA 1 4YW, UK
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| |
Collapse
|
29
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
30
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
31
|
Zeinali R, del Valle LJ, Torras J, Puiggalí J. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Int J Mol Sci 2021; 22:ijms22073504. [PMID: 33800709 PMCID: PMC8036748 DOI: 10.3390/ijms22073504] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with respect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.
Collapse
Affiliation(s)
- Reza Zeinali
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Joan Torras
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| |
Collapse
|
32
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
33
|
Fu L, Zhang L, Zhang X, Chen L, Cai Q, Yang X. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Biomed Mater 2021; 16:022006. [PMID: 33440367 DOI: 10.1088/1748-605x/abdb73] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The repair and treatment of articular cartilage injury is a huge challenge of orthopedics. Currently, most of the clinical methods applied in treating cartilage injuries are mainly to relieve pains rather than to cure them, while the strategy of tissue engineering is highly expected to achieve the successful repair of osteochondral defects. Clear understandings of the physiological structures and mechanical properties of cartilage, bone and osteochondral tissues have been established, but the understanding of their physiological heterogeneity still needs further investigation. Apart from the gradients in the micromorphology and composition of cartilage-to-bone extracellular matrixes, an oxygen gradient also exists in natural osteochondral tissue. The response of hypoxia-inducible factor (HIF)-mediated cells to oxygen would affect the differentiation of stem cells and the maturation of osteochondral tissue. This article reviews the roles of oxygen level and HIF signaling pathway in the development of articular cartilage tissue, and their prospective applications in bone and cartilage tissue engineering. The strategies for regulating HIF signaling pathway and how these strategies finding their potential applications in the regeneration of integrated osteochondral tissue are also discussed.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
36
|
Korpayev S, Kaygusuz G, Şen M, Orhan K, Oto Ç, Karakeçili A. Chitosan/collagen based biomimetic osteochondral tissue constructs: A growth factor-free approach. Int J Biol Macromol 2020; 156:681-690. [PMID: 32320808 DOI: 10.1016/j.ijbiomac.2020.04.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering approach offers alternative strategies to develop multi-layered/multi-component osteochondral mimetic constructs to meet the requirements of the heterogeneous and layered structure of native osteochondral tissue. Herein, an iterative overlaying process to fabricate a multi-layered scaffold with a gradient composition and layer specific structure have been developed by combining the natural extracellular matrix (ECM) components-chitosan, type I collagen, type II collagen, nanohydroxyapatite- of the osteochondral tissue in biomimetic compositions. Subchondral bone layer was prepared by using freeze-drying method to obtain 3D porous scaffolds. The calcified cartilage and cartilage layers were prepared by thermal gelation method in the hydrogel form. Osteochondral scaffolds fabricated by iterative overlaying of each distinct layer exhibited a porous, continuous gradient structure and supported cell proliferation in a co-culture of MC3T3-E1 preosteoblasts and ATDC5 chondrocytes. Histology and biochemical analysis showed enhanced extracellular matrix production and demonstrated collagen and glycosaminoglycan deposition. Expression of genes specific for bone, calcified cartilage and cartilage were improved in the osteochondral scaffold. Overall, these findings suggest that iterative overlaying of freeze-dried scaffolds and hydrogel matrices prepared by using ECM components in biomimetic ratios to fabricate gradient, multi-layered structures can be a promising strategy without the need for growth factors.
Collapse
Affiliation(s)
- Serdar Korpayev
- Ankara University, Biotechnology Institute, 06100 Ankara, Turkey
| | - Gülşah Kaygusuz
- Ankara University, Faculty of Medicine, Department of Pathology, 06100 Ankara, Turkey
| | - Murat Şen
- Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800, Beytepe, Ankara, Turkey; Hacettepe University, Institute of Science, Polymer Science and Technology Division, Beytepe, 06800 Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of Dentomaxillofacial Radiology, 06100, Ankara Turkey; OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral &Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Basic Science, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
37
|
Yan X, Chen YR, Song YF, Yang M, Ye J, Zhou G, Yu JK. Scaffold-Based Gene Therapeutics for Osteochondral Tissue Engineering. Front Pharmacol 2020; 10:1534. [PMID: 31992984 PMCID: PMC6970981 DOI: 10.3389/fphar.2019.01534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress in osteochondral tissue engineering has been made for biomaterials designed to deliver growth factors that promote tissue regeneration. However, due to diffusion characteristics of hydrogels, the accurate delivery of signaling molecules remains a challenge. In comparison to the direct delivery of growth factors, gene therapy can overcome these challenges by allowing the simultaneous delivery of growth factors and transcription factors, thereby enhancing the multifactorial processes of tissue formation. Scaffold-based gene therapy provides a promising approach for tissue engineering through transfecting cells to enhance the sustained expression of the protein of interest or through silencing target genes associated with bone and joint disease. Reports of the efficacy of gene therapy to regenerate bone/cartilage tissue regeneration are widespread, but reviews on osteochondral tissue engineering using scaffold-based gene therapy are sparse. Herein, we review the recent advances in gene therapy with a focus on tissue engineering scaffolds for osteochondral regeneration.
Collapse
Affiliation(s)
- Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
38
|
Hu X, Li W, Li L, Lu Y, Wang Y, Parungao R, Zheng S, Liu T, Nie Y, Wang H, Song K. A biomimetic cartilage gradient hybrid scaffold for functional tissue engineering of cartilage. Tissue Cell 2019; 58:84-92. [PMID: 31133251 DOI: 10.1016/j.tice.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022]
Abstract
Osteochondral tissue has a complex layered structure that is not self-repairing after a cartilage defect. Therefore, constructing a biomimetic gradient scaffold that meets the specific structural requirements of osteochondral tissue is a major challenge in the field of cartilage tissue engineering. In this study, chitosan/Sodium β-glycerophosphate/Gelatin (Cs/GP/Gel) biomimetic gradient scaffolds were prepared by regulating the mass ratio of single layer raw materials. The same ratio of Cs/GP/Gel hybrid scaffold material was used as the control. Physical properties such as water absorption, porosity and the degradation rate of the material were compared to optimize the proportion of scaffold materials. P3 Bone Mesenchymal Stem Cells (BMSCs) were inoculated on the gradient and the control scaffolds to investigate its biocompatibility. Scanning electron microscopy (SEM) results show that 3:1:2, 6:1:3.5, 9:1:5, 12:1:6.5, 15:1:8 Cs/GP/Gel gradient scaffolds had excellent three-dimensional porous structures. Channels were also shown to have been interconnected, and the walls of the pores were folded. In the longitudinal dimension, gradient scaffolds had an obvious stratified structure and pore gradient gradualism, that effectively simulated the natural physiological stratified structure of real cartilage. The diameter of the pores in the control scaffold was uniform and without any pore gradient. Gradient scaffolds had good water absorption (584.24 ± 3.79˜677.47 ± 1.70%), porosity (86.34 ± 5.10˜95.20 ± 2.86%) and degradation (86.09 ± 2.46˜92.48 ± 3.86%). After considering the physical properties assessed, the Cs/GP/Gel gradient scaffold with a ratio of 9:1:5 was found to be the most suitable material to support osteochondral tissue. BMSCs were subsequently inoculated on the proportional gradient and hybrid scaffolds culture. These cells survived, distributed and extended well on the gradient and hybrid scaffold material. The biomimetic gradient scaffold designed and prepared in this study provides an important foundation for the development of new gradient composite biomedical materials for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanguo Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hongfei Wang
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
39
|
Erickson AE, Sun J, Lan Levengood SK, Swanson S, Chang FC, Tsao CT, Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevices 2019; 21:34. [PMID: 30906951 DOI: 10.1007/s10544-019-0373-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prolonged osteochondral tissue damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. Here, a bilayer scaffold for osteochondral tissue regeneration was fabricated using thermally-induced phase separation (TIPS). Two distinct polymer solutions were layered before TIPS, and the resulting porous, bilayer scaffold was characterized by seamless interfacial integration and a mechanical stiffness gradient reflecting the native osteochondral microenvironment. Chitosan is a critical component of both scaffold layers to facilitate cell attachment and the formation of polyelectrolyte complexes with other biologically relevant natural polymers. The articular cartilage region was optimized for hyaluronic acid content and stiffness, while the subchondral bone region was defined by higher stiffness and osteoconductive hydroxyapatite content. Following co-culture with chondrocyte-like (SW-1353 or mesenchymal stem cells) and osteoblast-like cells (MG63), cell proliferation and migration to the interface along with increased gene expression associated with relevant markers of osteogenesis and chondrogenesis indicates the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Ariane E Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jialu Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Sheeny K Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Shawn Swanson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ching T Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Xiao H, Huang W, Xiong K, Ruan S, Yuan C, Mo G, Tian R, Zhou S, She R, Ye P, Liu B, Deng J. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine 2019; 14:2011-2027. [PMID: 30962685 PMCID: PMC6435123 DOI: 10.2147/ijn.s191627] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background One of the main problems associated with the development of osteochondral reparative materials is that the accurate imitation of the structure of the natural osteochondral tissue and fabrication of a suitable scaffold material for osteochondral repair are difficult. The long-term outcomes of single- or bilayered scaffolds are often unsatisfactory because of the absence of a progressive osteochondral structure. Therefore, only scaffolds with gradient pore sizes are suitable for osteochondral repair to achieve better proliferation and differentiation of the stem cells into osteochondral tissues to complete the repair of defects. Methods A silk fibroin (SF) solution, chitosan (CS) solution, and nano-hydroxyapatite (nHA) suspension were mixed at the same weight fraction to obtain osteochondral scaffolds with gradient pore diameters by centrifugation, freeze-drying, and chemical cross-linking. Results The scaffolds prepared in this study are confirmed to have a progressive structure starting from the cartilage layer to bone layer, similar to that of the normal osteochondral tissues. The prepared scaffolds are cylindrical in shape and have high internal porosity. The structure consists of regular and highly interconnected pores with a progressively increasing pore distribution as well as a progressively changing pore diameter. The scaffold strongly absorbs water, and has a suitable degradation rate, sufficient space for cell growth and proliferation, and good resistance to compression. Thus, the scaffold can provide sufficient nutrients and space for cell growth, proliferation, and migration. Further, bone marrow mesenchymal stem cells seeded onto the scaffold closely attach to the scaffold and stably grow and proliferate, indicating that the scaffold has good biocompatibility with no cytotoxicity. Conclusion In brief, the physical properties and biocompatibility of our scaffolds fully comply with the requirements of scaffold materials required for osteochondral tissue engineering, and they are expected to become a new type of scaffolds with gradient pore sizes for osteochondral repair.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Wenliang Huang
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Kun Xiong
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Shiqiang Ruan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Cheng Yuan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Gang Mo
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Renyuan Tian
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Sirui Zhou
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Rongfeng She
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang 550002, Guizhou Province, People's Republic of China
| | - Peng Ye
- Emergency and Trauma Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Bin Liu
- Surgical Laboratory, Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Jiang Deng
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| |
Collapse
|
41
|
Salonius E, Muhonen V, Lehto K, Järvinen E, Pyhältö T, Hannula M, Aula AS, Uppstu P, Haaparanta A, Rosling A, Kellomäki M, Kiviranta I. Gas‐foamed poly(lactide‐co‐glycolide) and poly(lactide‐co‐glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 2019; 13:406-415. [DOI: 10.1002/term.2801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eve Salonius
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Kalle Lehto
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Elina Järvinen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Tuomo Pyhältö
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| | - Markus Hannula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Antti S. Aula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
- Department of Medical Physics, Imaging CentreTampere University Hospital Tampere Finland
| | - Peter Uppstu
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Anne‐Marie Haaparanta
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Minna Kellomäki
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| |
Collapse
|
42
|
Mahapatra C, Kim JJ, Lee JH, Jin GZ, Knowles JC, Kim HW. Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. J Tissue Eng 2019; 10:2041731419826433. [PMID: 30728938 PMCID: PMC6357292 DOI: 10.1177/2041731419826433] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bone/cartilage interfacial tissue engineering needs to satisfy the differential properties and architectures of the osteochondral region. Therefore, biphasic or multiphasic scaffolds that aim to mimic the gradient hierarchy are widely used. Here, we find that two differently structured (topographically) three-dimensional scaffolds, namely, "dense" and "nanofibrous" surfaces, show differential stimulation in osteo- and chondro-responses of cells. While the nanofibrous scaffolds accelerate the osteogenesis of mesenchymal stem cells, the dense scaffolds are better in preserving the phenotypes of chondrocytes. Two types of porous scaffolds, generated by a salt-leaching method combined with a phase-separation process using the poly(lactic acid) composition, had a similar level of porosity (~90%) and pore size (~150 μm). The major difference in the surface nanostructure led to substantial changes in the surface area and water hydrophilicity (nanofibrous ≫ dense); as a result, the nanofibrous scaffolds increased the cell-to-matrix adhesion of mesenchymal stem cells significantly while decreasing the cell-to-cell contracts. Importantly, the chondrocytes, when cultured on nanofibrous scaffolds, were prone to lose their phenotype, including reduced chondrogenic expressions (SOX-9, collagen type II, and Aggrecan) and glycosaminoglycan content, which was ascribed to the enhanced cell-matrix adhesion with reduced cell-cell contacts. On the contrary, the osteogenesis of mesenchymal stem cells was significantly accelerated by the improved cell-to-matrix adhesion, as evidenced in the enhanced osteogenic expressions (RUNX2, bone sialoprotein, and osteopontin) and cellular mineralization. Based on these findings, we consider that the dense scaffold is preferentially used for the chondral-part, whereas the nanofibrous structure is suitable for osteo-part, to provide an optimal biphasic matrix environment for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
43
|
Dang W, Wang X, Li J, Deng C, Liu Y, Yao Q, Wang L, Chang J, Wu C. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities. Theranostics 2018; 8:4372-4392. [PMID: 30214627 PMCID: PMC6134938 DOI: 10.7150/thno.27088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022] Open
Abstract
When osteochondral tissues suffer from focal or degenerative lesions caused by trauma or disorders, it is a tough challenge to regenerate them because of the limited self-healing capacity of articular cartilage. In this study, a series of Mo-doped bioactive glass ceramic (Mo-BGC) scaffolds were prepared and then systematically characterized. The released MoO42- ions from 7.5Mo-BGC scaffolds played a vital role in regenerating articular cartilage and subchondral bone synchronously. Methods: The Mo-BGC scaffolds were fabricated through employing both a sol-gel method and 3D printing technology. SEM, EDS, HRTEM, XRD, ICPAES and mechanical strength tests were respectively applied to analyze the physicochemical properties of Mo-BGC scaffolds. The proliferation and differentiation of rabbit chondrocytes (RCs) and human bone mesenchymal stem cells (HBMSCs) cultured with dilute solutions of 7.5Mo-BGC powder extract were investigated in vitro. The co-culture model was established to explore the possible mechanism of stimulatory effects of MoO42- ions on the RCs and HBMSCs. The efficacy of regenerating articular cartilage and subchondral bone using 7.5Mo-BGC scaffolds was evaluated in vivo. Results: The incorporation of Mo into BGC scaffolds effectively enhanced the compressive strength of scaffolds owing to the improved surface densification. The MoO42- ions released from the 7.5Mo-BGC powders remarkably promoted the proliferation and differentiation of both RCs and HBMSCs. The MoO42- ions in the co-culture system significantly stimulated the chondrogenic differentiation of RCs and meanwhile induced the chondrogenesis of HBMSCs. The chondrogenesis stimulated by MoO42- ions happened through two pathways: 1) MoO42- ions elicited anabolic responses through activating the HIF-1α signaling pathway; 2) MoO42- ions inhibited catabolic responses and protected cartilage matrix from degradation. The in vivo study showed that 7.5Mo-BGC scaffolds were able to significantly promote cartilage/bone regeneration when implanted into rabbit osteochondral defects for 8 and 12 weeks, displaying bi-lineage bioactivities. Conclusion: The 3D-printed Mo-BGC scaffolds with bi-lineage bioactivities and activated anabolic responses could offer an effective strategy for cartilage/bone interface regeneration.
Collapse
Affiliation(s)
- Wentao Dang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Jiayi Li
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Cuijun Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Liming Wang
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
44
|
Singh YP, Moses JC, Bhunia BK, Nandi SK, Mandal BB. Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering. J Mater Chem B 2018; 6:5671-5688. [PMID: 32254974 DOI: 10.1039/c8tb01344f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The osteochondral healthcare market is driven by the increasing demand for affordable and biomimetic scaffolds. To meet this demand, silk fibroin (SF) from Bombyx mori and Antheraea assamensis is used to fabricate a biphasic scaffold, with fiber-free and fiber-reinforced phases, stimulating cartilage and bone revival. The fabrication is a facile reproducible process using single polymer (SF), for both phases, designed in a continuous and integrated manner. Physicochemical and mechanical scaffold characterization, display interconnected pores with differential swelling and tunable degradation. The compressive modulus values, extend to 40 kPa and 25%, for tensile strain, at elongation. The scaffold support, for growth and proliferation of chondrocytes and osteoblasts, for respective cartilage and bone regeneration, is verified from in vitro assessment. Up-regulation of alkaline phosphatase (ALP) activity, extracellular matrix secretion and gene expression are significant; with acceptable in vitro immune response. Upon implantation in rabbit osteochondral defects for 8 weeks, the histological and micro-CT examinations show biphasic scaffolds significantly enhance regeneration of cartilage and subchondral bone tissues, as compared to monophasic scaffolds. The regenerated bone mineral density (BMD) ranges from 600-700 mg hydroxyapatite (HA) per cm3. The results, therefore, showcase the critically positive characteristics of in vitro ECM deposition, and in vivo regeneration of osteochondral tissue by this hierarchically structured biphasic scaffold.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | | | | | | | | |
Collapse
|
45
|
Longley R, Ferreira AM, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. Int J Mol Sci 2018; 19:E1755. [PMID: 29899285 PMCID: PMC6032374 DOI: 10.3390/ijms19061755] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Cartilage lesions of the knee are common disorders affecting people of all ages; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral defect appears. Osteochondral (OC) tissue compromises soft cartilage over hard subchondral bone with a calcified cartilage interface between these two tissues. Osteochondral defects can be caused by numerous factors such as trauma and arthritis. Tissue engineering offers the possibility of a sustainable and effective treatment against osteochondral defects, where the damaged tissue is replaced with a long-lasting bio-manufactured replacement tissue. This review evaluates both bi-phasic and multi-phasic scaffold-based approaches of osteochondral tissue regeneration, highlighting the importance of having an interface layer between the bone and cartilage layer. The significance of a biomimetic approach is also evidenced and shown to be more effective than the more homogenous design approach to osteochondral scaffold design. Recent scaffold materials and manufacturing techniques are reviewed as well as the current clinical progress with osteochondral regeneration scaffolds.
Collapse
Affiliation(s)
- Ryan Longley
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
46
|
Synthetic Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:31-52. [DOI: 10.1007/978-3-319-76711-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Gentile P, Ghione C, Ferreira AM, Crawford A, Hatton PV. Alginate-based hydrogels functionalised at the nanoscale using layer-by-layer assembly for potential cartilage repair. Biomater Sci 2018; 5:1922-1931. [PMID: 28752866 DOI: 10.1039/c7bm00525c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage are frequently difficult to repair, in part because of the poor regenerative capacity of this tissue. To date, no successful system for complete regeneration of the most challenging cartilage defects has been demonstrated. The aim of this work was to develop functionalised hydrogels at the nanoscale by Layer-by-Layer (LbL) assembly to promote cartilage healing. Hydrogels, based on sodium alginate (NaAlg) and gelatin (G), were prepared by an external gelation method consisting of CaCl2 diffusion and genipin addition for G crosslinking. Successively, hydrogels were coated with G to obtain a positive charge on the surface, then functionalised by LbL assembly to create 16 nanolayers, based on poly(styrene sulfonate)/poly(allyl amine) (PSS/PAH), including a specific peptide sequence (CTATVHL) and transforming growth factors β1 (TGF-β1). Physico-chemical properties were evaluated by XPS, ATR-FTIR and rheological analyses while in vitro cytocompatibility was studied using bovine articular chondrocytes (BAC). XPS spectra showed N1s and S2p peaks, indicating that PAH and PSS have been introduced with success. ATR-FTIR indicated the specific PAH and PSS absorption peaks. Finally, the biomolecule incorporation influenced positively the processes of BAC adhesion and proliferation, and glycosamynoglycan secretion. The functionalised alginate-based hydrogels described here are ideally suited to chondral regeneration in terms of their integrity, stability, and cytocompatibility.
Collapse
Affiliation(s)
- P Gentile
- School of Mechanical and Systems Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | | | |
Collapse
|
48
|
Jin GZ, Kim HW. Chondrogenic Potential of Dedifferentiated Rat Chondrocytes Reevaluated in Two- and Three-Dimensional Culture Conditions. Tissue Eng Regen Med 2018; 15:163-172. [PMID: 30603544 PMCID: PMC6171694 DOI: 10.1007/s13770-017-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
For the cartilage repair, the cell sources currently adopted are primarily chondrocytes or mesenchymal stem cells (MSCs). Due to the fact that chondrocytes dedifferentiate during 2-dimensional (2D) expansion, MSCs are generally more studied and considered to have higher potential for cartilage repair purposes. Here we question if the dedifferentiated chondrocytes can regain the chondrogenic potential, to find potential applications in cartilage repair. For this we chose chondrocytes at passage 12 (considered to have sufficiently dedifferentiated) and the expression of chondrogenic phenotypes and matrix syntheses were examined over 14 days. In particular, the chondrogenic potential of MSCs was also compared. Results showed that the dedifferentiated chondrocytes proliferated actively over 14 days with almost 2.5-fold increase relative to MSCs. Moreover, the chondrogenic ability of chondrocytes was significantly higher than that of MSCs, as confirmed by the expression of a series of mRNA levels and the production of cartilage extracellular matrix molecules in 2D-monolayer and 3-dimensional (3D)-spheroid cultures. Of note, the significance was higher in 3D-culture than in 2D-culture. Although more studies are needed such as the use of different cell passages and human cell source, and the chondrogenic confirmation under in vivo conditions, this study showing that the dedifferentiated chondrocytes can also be a suitable cell source for the cell-based cartilage repair, as a counterpart of MSCs, will encourage further studies regarding this issue.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
49
|
Yang Y, Chen J, Bonani W, Chen B, Eccheli S, Maniglio D, Migliaresi C, Motta A. Sodium oleate induced rapid gelation of silk fibroin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1219-1231. [PMID: 29557722 DOI: 10.1080/09205063.2018.1452417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silk fibroin has acquired increasing interest in the last years for application in medicine and namely in tissue engineering. Several methods have been developed to process fibroin and for the fabrication of nets, sponges, films and gels. This paper deals with the fabrication and characterization of fibroin hydrogels obtained by using sodium oleate as gelation agent. Gels have been prepared by mixing Silk fibroin (SF) and Sodium oleate (SO) water solutions in different concentrations, and a quite wide frame of compositions have been explored. Rheological tests have been performed to determine the gelation times, scanning electron microscopies have been made to evaluate morphologies, FTIR analysis has been done to determine the conformation of the starting materials and of the resulting gels, water content has been measured and cytotoxicity tests have been performed to validate the potential biomedical use of the hydrogels. Depending on the SF and SO different gelation times have been obtained thanks to the formation of intermolecular bonds between the fibroin chains. The obtained fastest gelation of about 80 s could make this specific formulation compatible with in situ gelation. By changing composition, gels with different morphologies, rheological properties and water contents have been prepared.
Collapse
Affiliation(s)
- Yuejiao Yang
- a School of Enviromental and Chemical Engineering , Shanghai University , Shanghai , China.,b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy
| | - Jie Chen
- a School of Enviromental and Chemical Engineering , Shanghai University , Shanghai , China
| | - Walter Bonani
- b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy.,c European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Trento , Italy
| | - Bin Chen
- a School of Enviromental and Chemical Engineering , Shanghai University , Shanghai , China
| | - Sabrina Eccheli
- b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy
| | - Devid Maniglio
- b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy.,c European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Trento , Italy
| | - Claudio Migliaresi
- b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy.,c European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Trento , Italy
| | - Antonella Motta
- b Department of Industrial Engineering and BIOtech Research Center , University of Trento , Trento , Italy.,c European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Trento , Italy
| |
Collapse
|
50
|
Ghosh P, Gruber SMS, Lin CY, Whitlock PW. Microspheres containing decellularized cartilage induce chondrogenesis in vitro and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 3D scaffold. Biofabrication 2018; 10:025007. [PMID: 29394158 DOI: 10.1088/1758-5090/aaa637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, articular cartilage was decellularized preserving a majority of the inherent proteins, cytokines, growth factors and sGAGs. The decellularized cartilage matrix (dCM) was then encapsulated in poly(lactic acid) microspheres (MS + dCM) via double emulsion. Blank microspheres without dCM, MS(-), were also produced. The microspheres were spherical in shape and protein encapsulation efficiency within MS + dCM was 63.4%. The sustained release of proteins from MS + dCM was observed over 4 weeks in vitro. Both MS + dCM and MS(-) were cytocompatible. The sustained delivery of retained growth factors and cytokines from MS + dCM promoted cell migration in contrast to MS(-). Subsequently, chondrogenesis of human mesenchymal stem cells was upregulated in presence of MS + dCM as evidenced from immunohistochemistry, biochemical quantification and qPCR studies. Specifically, collagen II, aggrecan and SOX 9 gene expression were increased in the presence of MS + dCM by an order or more in magnitude compared to MS(-) with concomitant downregulation of hypertrophic genes (COL X) despite being cultured in the absence of chondrogenic media, (p < 0.05). Lastly, microspheres containing alkaline phosphatase (MS + ALP), a surrogate to assess the thermal stability of dCM proteins, incorporated within poly(caprolactone) filaments showed that the enzyme remained functional after filament production by melt extrusion. The establishment of a novel, thermally stable process for producing filaments containing chondroinductive microspheres provides evidence supporting subsequent development of a clinically-relevant, 3D scaffold fabricated from them for osteochondral regeneration and repair.
Collapse
Affiliation(s)
- Paulomi Ghosh
- Department of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | | | | | | |
Collapse
|