1
|
Kent RN, Huang AH, Baker BM. Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites. Adv Healthc Mater 2024; 13:e2400668. [PMID: 39135411 PMCID: PMC11582515 DOI: 10.1002/adhm.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Indexed: 11/24/2024]
Abstract
This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Kent RN, Jewett ME, Buck TP, Said M, Hold LA, Crawford EA, Killian ML, Abraham AC, Huang AH, Baker BM. Engineered Microenvironmental Cues from Fiber-Reinforced Hydrogel Composites Drive Tenogenesis and Aligned Collagen Deposition. Adv Healthc Mater 2024; 13:e2400529. [PMID: 38441411 PMCID: PMC11281874 DOI: 10.1002/adhm.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 03/25/2024]
Abstract
Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues. Here, tunable and modular, fiber-reinforced, synthetic hydrogels are employed to elucidate salient microenvironmental determinants of tenogenesis and aligned collagen deposition by tendon progenitor cells. Transforming growth factor β3 drives a cell fate switch toward pro-regenerative or pro-fibrotic phenotypes, which can be biased toward the former by culture in softer microenvironments or inhibition of the RhoA/ROCK activity. Furthermore, studies demonstrate that topographical anisotropy in fiber-reinforced hydrogels critically mediates the alignment of de novo collagen fibrils, reflecting native tendon architecture. These findings inform the design of cell-free, injectable, synthetic hydrogels for tendon tissue regeneration and, likely, that of a range of load-bearing connective tissues.
Collapse
Affiliation(s)
- Robert N. Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Maggie E. Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Trevor P. Buck
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed Said
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - LeeAnn A. Hold
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Eileen A. Crawford
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Megan L. Killian
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Adam C. Abraham
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10027
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Huang S, Rao Y, Ju AL, Ker DFE, Blocki AM, Wang DM, Tuan RS. Non-collagenous proteins, rather than the collagens, are key biochemical factors that mediate tenogenic bioactivity of tendon extracellular matrix. Acta Biomater 2024; 176:99-115. [PMID: 38142795 DOI: 10.1016/j.actbio.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Ying Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Adler Leigh Ju
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Anna M Blocki
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| |
Collapse
|
5
|
Li K, Zhang X, Wang D, Tuan RS, Ker DFE. Synergistic effects of growth factor-based serum-free medium and tendon-like substrate topography on tenogenesis of mesenchymal stem cells. BIOMATERIALS ADVANCES 2023; 146:213316. [PMID: 36736265 DOI: 10.1016/j.bioadv.2023.213316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Addressing clinical challenges for tendon injuries requires a deeper understanding of the effects that biological and biophysical cues have on tenogenesis. Although prior studies have identified tenogenic growth factors (GFs) or elucidated the effects of substrate topography on tenocyte behavior, few have characterized their combined effect in the presence of a tendon-like substrate. In this study, we assessed the effect of biological (GFs) and biophysical (substrate topography) cues on tenogenic proliferation and differentiation under defined, serum-free conditions. Specifically, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured in a serum-free culture medium containing a GF cocktail comprised of fibroblast growth factor-2 (FGF-2), transforming growth factor-beta 3 (TGF-β3), and insulin-like growth factor-1 (IGF-1), either alone or in combination with tendon-like substrate topography produced by replica casting of tendon tissue sections. Our data demonstrated that the use of serum-free GF cocktail medium alone promoted hMSC proliferation, as shown via DNA staining as well as Ki67 protein levels and gene expression. In particular, gene expression of Ki67 was increased by 8.46-fold in all three donors relative to serum-free medium control. Also, serum-free GF cocktail promoted tenogenic differentiation, on the basis of expression of tendon-associated gene and protein markers, scleraxis (SCX), tenascin C (TNC), and collagen type I (COL1A1) including increased normalized collagen production by 1.4-fold in two donors relative to serum-free medium control. Interestingly, hMSCs cultured on a tendon-like substrate exhibited highly oriented cell morphology and extracellular matrix (ECM) alignment reminiscent of tendon. In particular, when this GF cocktail was combined with tendon-like topography, they showed a synergistically increased expression of tendon-related markers and anisotropic organization of ECM proteins with moderate-to-large effect sizes. Together, in addition to showing the utility of a GF cocktail for expansion and differentiation of tenocyte-like cells, our findings clearly demonstrate the synergistic relationship between GF-mediated and substrate topography-related effects on hMSC tenogenic differentiation. This information provides insights into the design of strategies that combine biological and biophysical cues for ex vivo tenocyte production and tendon tissue engineering.
Collapse
Affiliation(s)
- Ke Li
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
6
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
7
|
Rocha J, Araújo JC, Fangueiro R, Ferreira DP. Wetspun Polymeric Fibrous Systems as Potential Scaffolds for Tendon and Ligament Repair, Healing and Regeneration. Pharmaceutics 2022; 14:2526. [PMID: 36432717 PMCID: PMC9699541 DOI: 10.3390/pharmaceutics14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tendon and ligament traumatic injuries are among the most common diagnosed musculoskeletal problems. Such injuries limit joint mobility, reduce musculoskeletal performance, and most importantly, lower people's comfort. Currently, there are various treatments that are used to treat this type of injury, from surgical to conservative treatments. However, they're not entirely effective, as reinjures are frequent and, in some cases, fail to re-establish the lost functionality. Tissue engineering (TE) approaches aim to overcome these disadvantages by stimulating the regeneration and formation of artificial structures that resemble the original tissue. Fabrication and design of artificial fibrous scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of the tissues. Recently, polymeric nanofibers produced by wetspinning have been largely investigated to mimic, repair, and replace the damaged tissue. Wetspun fibrous structures are extensively used due to their exceptional properties, such as the ability to mimic the native tissue, their biodegradability and biocompatibility, and good mechanical properties. In this review, the tendon and ligament structure and biomechanics are presented. Then, promising wetspun multifunctional fibrous structures based on biopolymers, more specifically polyhydroxyalkanoates (PHA), polycaprolactone (PCL), and polyethylenes, will be discussed, as well as reinforcing agents such as cellulose nanocrystals (CNC), nanoparticles, and growth factors.
Collapse
Affiliation(s)
- Joana Rocha
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Joana C Araújo
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| |
Collapse
|
8
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
9
|
Calejo I, Labrador‐Rached CJ, Gomez‐Florit M, Docheva D, Reis RL, Domingues RMA, Gomes ME. Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Adv Healthc Mater 2022; 11:e2102863. [PMID: 35596614 DOI: 10.1002/adhm.202102863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Clinically relevant in vitro models of human tissue's health and disease are urgently needed for a better understanding of biological mechanisms essential for the development of novel therapies. Herein, physiological (healthy) and pathological (disease) tendon states are bioengineered by coupling the biological signaling of platelet lysate components with controlled 3D architectures of electrospun microfibers to drive the fate of human tendon cells in different composite living fibers (CLFs). In the CLFs-healthy model, tendon cells adopt a high cytoskeleton alignment and elongation, express tendon-related markers (scleraxis, tenomodulin, and mohawk) and deposit a dense tenogenic matrix. In contrast, cell crowding with low preferential orientation, high matrix deposition, and phenotypic drift leading to increased expression of nontendon related and fibrotic markers, are characteristics of the CLFs-diseased model. This diseased-like profile, also reflected in the increase of COL3/COL1 ratio, is further evident by the imbalance between matrix remodeling and degradation effectors, characteristic of tendinopathy. In summary, microengineered 3D in vitro models of human tendon healthy and diseased states are successfully fabricated. Most importantly, these innovative and versatile microphysiological models offer major advantages over currently used systems, holding promise for drugs screening and development of new therapies.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Claudia J. Labrador‐Rached
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuel Gomez‐Florit
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Denitsa Docheva
- Experimental Trauma Surgery Department of Trauma Surgery University Hospital Regensburg Franz‐Josef Strauss‐Allee 11 93053 Regensburg Germany
| | - Rui L. Reis
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
10
|
Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat Commun 2021; 12:5012. [PMID: 34408142 PMCID: PMC8373964 DOI: 10.1038/s41467-021-25328-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tendon self-renewal is a rare occurrence because of the poor vascularization of this tissue; therefore, reconstructive surgery using autologous tendon is often performed in severe injury cases. However, the post-surgery re-injury rate is relatively high, and the collection of autologous tendons leads to muscle weakness, resulting in prolonged rehabilitation. Here, we introduce an induced pluripotent stem cell (iPSC)-based technology to develop a therapeutic option for tendon injury. First, we derived tenocytes from human iPSCs by recapitulating the normal progression of step-wise narrowing fate decisions in vertebrate embryos. We used single-cell RNA sequencing to analyze the developmental trajectory of iPSC-derived tenocytes. We demonstrated that iPSC-tenocyte grafting contributed to motor function recovery after Achilles tendon injury in rats via engraftment and paracrine effects. The biomechanical strength of regenerated tendons was comparable to that of healthy tendons. We suggest that iPSC-tenocytes will provide a therapeutic option for tendon injury.
Collapse
|
11
|
Jin GZ. Enhanced growth and myogenic differentiation of spheroid-derived C2C12 cells. Biosci Biotechnol Biochem 2021; 85:1227-1234. [PMID: 33704409 DOI: 10.1093/bbb/zbab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022]
Abstract
Among many factors of controlling stem cell differentiation, the key transcription factor upregulation via physical force is a good strategy on the lineage-specific differentiation of stem cells. The study aimed to compare growth and myogenic potentials between the parental cells (PCs) and the 1-day-old C2C12 spheroid-derived cells (SDCs) in two-dimensional (2D) and three-dimensional (3D) culture conditions through examination of the cell proliferation and the expression of myogenic genes. The data showed that 1-day-old spheroids had more intense expression of MyoD gene with respect to the PCs. The proliferation of the SDCs is significantly higher than the PCs in a time-dependent manner. The SDCs had also significantly higher myogenic potential than the PCs in 2D and 3D culture conditions. The results suggest that MyoD gene upregulation through cell-cell contacts is the good approach for preparation of seed cells in muscle tissue engineering.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Li ZJ, Yang QQ, Zhou YL. Basic Research on Tendon Repair: Strategies, Evaluation, and Development. Front Med (Lausanne) 2021; 8:664909. [PMID: 34395467 PMCID: PMC8359775 DOI: 10.3389/fmed.2021.664909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Tendon is a fibro-elastic structure that links muscle and bone. Tendon injury can be divided into two types, chronic and acute. Each type of injury or degeneration can cause substantial pain and the loss of tendon function. The natural healing process of tendon injury is complex. According to the anatomical position of tendon tissue, the clinical results are different. The wound healing process includes three overlapping stages: wound healing, proliferation and tissue remodeling. Besides, the healing tendon also faces a high re-tear rate. Faced with the above difficulties, management of tendon injuries remains a clinical problem and needs to be solved urgently. In recent years, there are many new directions and advances in tendon healing. This review introduces tendon injury and sums up the development of tendon healing in recent years, including gene therapy, stem cell therapy, Platelet-rich plasma (PRP) therapy, growth factor and drug therapy and tissue engineering. Although most of these therapies have not yet developed to mature clinical application stage, with the repeated verification by researchers and continuous optimization of curative effect, that day will not be too far away.
Collapse
Affiliation(s)
- Zhi Jie Li
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qian Qian Yang
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - You Lang Zhou
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| |
Collapse
|
13
|
Abdulmalik S, Ramos D, Rudraiah S, Banasavadi-Siddegowda YK, Kumbar SG. The glucagon-like peptide 1 receptor agonist Exendin-4 induces tenogenesis in human mesenchymal stem cells. Differentiation 2021; 120:1-9. [PMID: 34062407 DOI: 10.1016/j.diff.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/21/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
Tendon injuries are common and account for up to 50% of musculoskeletal injuries in the United States. The poor healing nature of the tendon is attributed to poor vascularization and cellular composition. In the absence of FDA-approved growth factors for tendon repair, engineering strategies using bioactive factors, donor cells, and delivery matrices to promote tendon repair and regeneration are being explored. Growth factor alternatives in the form of small molecules, donor cells, and progenitors offer several advantages and enhance the tendon healing response. Small drug molecules and peptides offer stability over growth factors that are known to suffer from relatively short biological half-lives. The primary focus of this study was to assess the ability of the exendin-4 (Ex-4) peptide, a glucagon-like peptide 1 (GLP-1) receptor agonist, to induce tenocyte differentiation in bone marrow-derived human mesenchymal stem cells (hMSCs). We treated hMSCs with varied doses of Ex-4 in culture media to evaluate proliferation and tendonogenic differentiation. A 20 nM Ex-4 concentration was optimal for promoting cell proliferation and tendonogenic differentiation. Tendonogenic differentiation of hMSCs was evaluated via gene expression profile, immunofluorescence, and biochemical analyses. Collectively, the levels of tendon-related transcription factors (Mkx and Scx) and extracellular matrix (Col-I, Dcn, Bgn, and Tnc) genes and proteins were elevated compared to media without Ex-4 and other controls including insulin and IGF-1 treatments. The tendonogenic factor Ex-4 in conjunction with hMSCs appear to enhance tendon regeneration.
Collapse
Affiliation(s)
- Sama Abdulmalik
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Biomedical Engineering, Storrs, CT, USA
| | - Daisy Ramos
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Materials Science and Engineering, Storrs, CT, USA
| | - Swetha Rudraiah
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of St. Joseph, Department of Pharmaceutical Sciences, Hartford, CT, USA
| | | | - Sangamesh G Kumbar
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Biomedical Engineering, Storrs, CT, USA; University of Connecticut, Materials Science and Engineering, Storrs, CT, USA.
| |
Collapse
|
14
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15:419-441. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2025]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
15
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
16
|
Zhang BY, Xu P, Luo Q, Song GB. Proliferation and tenogenic differentiation of bone marrow mesenchymal stem cells in a porous collagen sponge scaffold. World J Stem Cells 2021; 13:115-127. [PMID: 33584983 PMCID: PMC7859984 DOI: 10.4252/wjsc.v13.i1.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Collagen is one of the most commonly used natural biomaterials for tendon tissue engineering. One of the possible practical ways to further enhance tendon repair is to combine a porous collagen sponge scaffold with a suitable growth factor or cytokine that has an inherent ability to promote the recruitment, proliferation, and tenogenic differentiation of cells. However, there is an incomplete understanding of which growth factors are sufficient and optimal for the tenogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in a collagen sponge-based 3D culture system.
AIM To identify one or more ideal growth factors that benefit the proliferation and tenogenic differentiation of rat BMSCs in a porous collagen sponge scaffold.
METHODS We constructed a 3D culture system based on a type I collagen sponge scaffold. The surface topography of the collagen sponge scaffold was observed by scanning electron microscopy. Primary BMSCs were isolated from Sprague-Dawley rats. Cell survival on the surfaces of the scaffolds with different growth factors was assessed by live/dead assay and CCK-8 assay. The mRNA and protein expression levels were confirmed by quantitative real-time polymerase chain reaction and Western blot, respectively. The deposited collagen was assessed by Sirius Red staining.
RESULTS Transforming growth factor β1 (TGF-β1) showed great promise in the tenogenic differentiation of BMSCs compared to growth differentiation factor 7 (GDF-7) and insulin-like growth factor 1 (IGF-1) in both the 2D and 3D cultures, and the 3D culture enhanced the differentiation of BMSCs into tenocytes well beyond the level of induction in the 2D culture after TGF-β1 treatment. In the 2D culture, the proliferation of the BMSCs showed no significant changes compared to the control group after TGF-β1, IGF-1, or GDF-7 treatment. However, TGF-β1 and GDF-7 could increase the cell proliferation in the 3D culture. Strangely, we also found more dead cells in the BMSC-collagen sponge constructs that were treated with TGF-β1. Moreover, TGF-β1 promoted more collagen deposition in both the 2D and 3D cultures.
CONCLUSION Collagen sponge-based 3D culture with TGF-β1 enhances the responsiveness of the proliferation and tenogenic differentiation of rat BMSCs.
Collapse
Affiliation(s)
- Bing-Yu Zhang
- Department of College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Pu Xu
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Guan-Bin Song
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
17
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Nakajima T, Ikeya M. Development of pluripotent stem cell-based human tenocytes. Dev Growth Differ 2020; 63:38-46. [PMID: 33270251 DOI: 10.1111/dgd.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step-wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human-induced PSCs and their application in cell therapy have long been challenging. PSC-derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Dyment NA, Barrett JG, Awad H, Bautista CA, Banes A, Butler DL. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res 2020; 38:2318-2330. [PMID: 32579266 PMCID: PMC7722018 DOI: 10.1002/jor.24784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Bioreactors are powerful tools with the potential to model tissue development and disease in vitro. For nearly four decades, bioreactors have been used to create tendon and ligament tissue-engineered constructs in order to define basic mechanisms of cell function, extracellular matrix deposition, tissue organization, injury, and tissue remodeling. This review provides a historical perspective of tendon and ligament bioreactors and their contributions to this advancing field. First, we demonstrate the need for bioreactors to improve understanding of tendon and ligament function and dysfunction. Next, we detail the history and evolution of bioreactor development and design from simple stretching of explants to fabrication and stimulation of two- and three-dimensional constructs. Then, we demonstrate how research using tendon and ligament bioreactors has led to pivotal basic science and tissue-engineering discoveries. Finally, we provide guidance for new basic, applied, and clinical research utilizing these valuable systems, recognizing that fundamental knowledge of cell-cell and cell-matrix interactions combined with appropriate mechanical and chemical stimulation of constructs could ultimately lead to functional tendon and ligament repairs in the coming decades.
Collapse
Affiliation(s)
- Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Jennifer G. Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia Tech, Leesburg, VA
| | - Hani Awad
- Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627
| | | | - Albert Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, NC
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC
| | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
20
|
Hypoxia-Induced Mesenchymal Stem Cells Exhibit Stronger Tenogenic Differentiation Capacities and Promote Patellar Tendon Repair in Rabbits. Stem Cells Int 2020; 2020:8822609. [PMID: 33133195 PMCID: PMC7591963 DOI: 10.1155/2020/8822609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-β1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.
Collapse
|
21
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
22
|
Javanshir S, Younesi Soltani F, Dowlati G, Parham A, Naderi-Meshkin H. Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6. Mol Biol Rep 2020; 47:6855-6862. [PMID: 32875433 DOI: 10.1007/s11033-020-05742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Javanshir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Younesi Soltani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Dowlati
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
23
|
Hurley-Novatny A, Arumugasaamy N, Kimicata M, Baker H, Mikos AG, Fisher JP. Concurrent multi-lineage differentiation of mesenchymal stem cells through spatial presentation of growth factors. Biomed Mater 2020; 15:055035. [PMID: 32526725 PMCID: PMC7648258 DOI: 10.1088/1748-605x/ab9bb0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Severe tendon and ligament injuries are estimated to affect between 300 000 and 400 000 people annually. Surgical repairs of these injuries often have poor long-term clinical outcomes because of resection of the interfacial tissue-the enthesis-and subsequent stress concentration at the attachment site. A healthy enthesis consists of distinct regions of bone, fibrocartilage, and tendon, each with distinct cell types, extracellular matrix components, and architecture, which are important for tissue function. Tissue engineering, which has been proposed as a potential strategy for replacing this tissue, is currently limited by its inability to differentiate multiple lineages of cells from a single stem cell population within a single engineered construct. In this study, we develop a multi-phasic gelatin methacrylate hydrogel construct system for spatial presentation of proteins, which is then validated for multi-lineage differentiation towards the cell types of the bone-tendon enthesis. This study determines growth factor concentrations for differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes/fibrochondrocytes, and tenocytes, which maintain similar differentiation profiles in 3D hydrogel culture as assessed by qPCR and immunofluorescence staining. Finally, it is shown that this method is able to guide heterogeneous and spatially confined changes in mesenchymal stem cell genes and protein expressions with the tendency to result in osteoblast-, fibrochondrocyte-, and tenocyte-like expression profiles. Overall, we demonstrate the utility of the culture technique for engineering other musculoskeletal tissue interfaces and provide a biochemical approach for recapitulating the bone-tendon enthesis in vitro.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America. Center for Engineering Complex Tissues, University of Maryland and Rice University, College Park, MD 20742, United States of America
| | | | | | | | | | | |
Collapse
|
24
|
Sang R, Liu Y, Kong L, Qian L, Liu C. Effect of Acellular Amnion With Increased TGF-β and bFGF Levels on the Biological Behavior of Tenocytes. Front Bioeng Biotechnol 2020; 8:446. [PMID: 32478059 PMCID: PMC7240037 DOI: 10.3389/fbioe.2020.00446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
The human amniotic membrane has been a subject for clinical and basic research for nearly 100 years, but weak rejection has been reported. The purpose of this research is to remove the cellular components of the amnion for eliminating its immune-inducing activity to the utmost extent. The amniotic membrane treated by acid removed the epithelial cell, fibroblast, and sponge layers and retained only the basal and dense layers. In vitro, biological effects of the new material on tenocytes were evaluated. The levels of transforming growth factor (TGF-β1), fibroblast growth factor (bFGF) proteins were measured. In vivo, the tendon injury model of chickens was constructed to observe effects on tendon adhesion and healing. The acellular amniotic membrane effectively removed the cell components of the amnion while retaining the fibrous reticular structure. Abundant collagen fibers enhanced the tensile strength of amnion, and a 3D porous structure provided enough 3D space structure for tenocyte growth. In vitro, acellular amnion resulted in the fast proliferation trend for tenocytes with relatively static properties by releasing TGF-β1 and bFGF. In vivo, the experiment revealed the mechanism of acellular amnion in promoting endogenous healing and barrier exogenous healing by evaluating tendon adhesion, biomechanical testing, and labeling fibroblasts/tendon cells and monocytes/macrophages with vimentin and CD68. The acellular amnion promotes endogenous healing and barrier exogenous healing by releasing the growth factors such as TGF-β1 and bFGF, thereby providing a new direction for the prevention and treatment of tendon adhesion.
Collapse
Affiliation(s)
- Rongli Sang
- Analytical and Testing Research Center, North China University of Science and Technology, Tangshan, China
| | - Yuanyuan Liu
- Tangshan Vocational and Technical College, Tangshan, China
| | - Lingyu Kong
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ligang Qian
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Baoding, China
| | - Chunjie Liu
- Department of Orthopedics, Tangshan Workers Hospital, Tangshan, China
| |
Collapse
|
25
|
Haramshahi SMA, Bonakdar S, Moghtadaei M, Kamguyan K, Thormann E, Tanbakooei S, Simorgh S, Brouki-Milan P, Amini N, Latifi N, Joghataei MT, Samadikuchaksaraei A, Katebi M, Soleimani M. Tenocyte-imprinted substrate: a topography-based inducer for tenogenic differentiation in adipose tissue-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2020; 15:035014. [PMID: 31896091 DOI: 10.1088/1748-605x/ab6709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tendon tissue engineering based on stem cell differentiation has attracted a great deal of attention in recent years. Previous studies have examined the effect of cell-imprinted polydimethylsiloxane (PDMS) substrate on induction differentiation in stem cells. In this study, we used tenocyte morphology as a positive mold to create a tenocyte-imprinted substrate on PDMS. The morphology and topography of this tenocyte replica on PDMS was evaluated with scanning electron microscopy (SEM) and atomic force microscopy. The tenogenic differentiation induction capacity of the tenocyte replica in adipose tissue-derived mesenchymal stem cells (ADSCs) was then investigated and compared with other groups, including tissue replica (which was produced similarly to the tenocyte replica and was evaluated by SEM), decellularized tendon, and bone morphogenic protein (BMP)-12, as other potential inducers. This comparison gives us an estimate of the ability of tenocyte-imprinted PDMS (called cell replica in the present study) to induce differentiation compared to other inducers. For this reason, ADSCs were divided into five groups, including control, cell replica, tissue replica, decellularized tendon and BMP-12. ADSCs were seeded on each group separately and investigated by the real-time reverse transcription polymerase chain reaction (RT-PCR) technique after seven and 14 days. Our results showed that in spite of the higher effect of the growth factor on tenogenic differentiation, the cell replica can also induce tenocyte marker expression (scleraxis and tenomodulin) in ADSCs. Moreover, the tenogenic differentiation induction capacity of the cell replica was greater than tissue replica. Immunocytochemistry analysis revealed that ADSCs seeding on the cell replica for 14 days led to scleraxis and tenomodulin expression at the protein level. In addition, immunohistochemistry indicated that contrary to the promising results in vitro, there was little difference between ADSCs cultured on tenocyte-imprinted PDMS and untreated ADSCs. The results of such studies could lead to the production of inexpensive cell culture plates or biomaterials that can induce differentiation in stem cells without growth factors or other supplements.
Collapse
Affiliation(s)
- Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajpar I, Barrett JG. Multi-differentiation potential is necessary for optimal tenogenesis of tendon stem cells. Stem Cell Res Ther 2020; 11:152. [PMID: 32272975 PMCID: PMC7146987 DOI: 10.1186/s13287-020-01640-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tendon injury is a significant clinical problem due to poor healing and a high reinjury rate; successful treatment is limited by our poor understanding of endogenous tendon stem cells. Recent evidence suggests that adult stem cells are phenotypically diverse, even when comparing stem cells isolated from the same tissue from the same individual, and may in fact exist on a spectrum of proliferation and differentiation capacities. Additionally, the relationships between and clinical relevance of this phenotypic variation are poorly understood. In particular, tenogenic capacity has not been studied in comparison to tenogenic differentiation and cell proliferation. Toward this end, we performed a comprehensive assessment of cell proliferation and differentiation capacity toward four connective tissue lineages (tendon, cartilage, bone, and adipose) using tendon stem cell lines derived from single cells released directly from tendon tissue to (1) evaluate the differences, if any, in tenogenic potential, and (2) identify the relationships between differentiation phenotypes and proliferation capacity. Methods Tendon stem cells were derived from the endotenon of superficial digital flexor tendon from 3 horses. The cell suspension from each horse was separately plated simultaneously (1) at moderate density to generate a heterogenous population of cells—parent tendon cell line—and (2) at low density to separate single cells from each other to allow isolation of colonies that derive from single mother cells—clonal tendon stem cell lines. Thirty clonal tendon stem cell lines—10 from each horse—and each parent tendon cell line were assessed for tenogenesis, tri-lineage differentiation, and cell proliferation. Differentiation was confirmed by lineage-specific cell staining and quantified by the relative gene expression of lineage-specific markers. Statistical significance was determined using analysis of variance and post hoc Tukey’s tests. Results Three distinct differentiation phenotypes—differentiation potency toward all 4 tissue lineages and two tri-lineage differentiation potencies—were identified in tendon clonal stem cell lines. These phenotypes were differentiation toward (1) tendon, cartilage, bone, and adipose (TCOA); (2) tendon, cartilage, and bone (TCO); and (3) tendon, cartilage, and adipose (TCA). Further, clonal cell lines that differentiated toward all four lineages had the highest expression of scleraxis and mohawk upon tenogenesis. Moreover, cell proliferation was significantly different between phenotypic groups, as evidenced by increased numbers of cumulative cell population doublings in clonal cell lines that did not differentiate toward adipose. Conclusions Our study provides evidence of the heterogenous character of adult stem cells and identifies key differences in tendon stem cell differentiation and proliferative potentials from the same individual and from the same tendon. Isolation of tendon stem cell lines with the capacity to differentiate into all four connective tissue lineages may yield improved therapeutic benefits in clinical models of repair and promote a native, regenerative phenotype in engineered tendons. Future studies may be targeted to understanding the functional contributions of each tendon stem cell phenotype in vivo and identifying additional cell phenotypes.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, 17690 Old Waterford Road, Leesburg, VA, 20176, USA
| | - Jennifer G Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, 17690 Old Waterford Road, Leesburg, VA, 20176, USA.
| |
Collapse
|
27
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|