1
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Zhang Y, Zhang X, Zhao Q, Gurusamy S, Lu Y, Chen X, Yang Q, Zeng K, Li Y, Liu X, Zhang H. Immobilization of aldo-keto reductase on dopamine/polyethyleneimine functionalized magnetic cellulose nanocrystals to enhance the detoxification of patulin in fresh pear juice. Int J Biol Macromol 2024; 278:134689. [PMID: 39142475 DOI: 10.1016/j.ijbiomac.2024.134689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Patulin (PAT) is a highly toxic mycotoxin, which can contaminate fruits and their products and cause harm to human health. Cellulose nanocrystals (CNCs) were functionalized by magnetite nanoparticles, dopamine (DA) and polyethyleneimine (PEI) to form a multifunctional nanocarrier (DA/PEI@Fe3O4/CNCs) for immobilizing aldo-keto reductase (MgAKR) to degrade PAT. The MgAKR-DA/PEI@Fe3O4/CNCs were reusable and environmentally friendly due to its surface area, high magnetization value, and oxygen/amine function. The immobilization method significantly improved reusability, resistance to proteolysis, temperature stability and storage stability of MgAKR-DA/PEI@Fe3O4/CNCs. With NADPH as a coenzyme, the detoxification rate of MgAKR-DA/PEI@Fe3O4/CNCs on PAT reached 100 % in phosphate buffer and 98 % in fresh pear juice. The quality of fresh pear juice was unaffected by MgAKR-DA/PEI@Fe3O4/CNCs and could be quickly separated by magnet after detoxification, which was convenient for recycling. It has broad application prospects in the control of PAT contamination in beverage products containing fruit and vegetable ingredients.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xifei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Xuan Z, Wang K, Duan F, Lu L. Non-carrier immobilization of yeast cells by genipin crosslinking for the synthesis of prebiotic galactooligosaccharides from plant-derived galactose. Int J Biol Macromol 2024; 277:133991. [PMID: 39089904 DOI: 10.1016/j.ijbiomac.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced β-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of β-galactosidase in immobilized cells towards o-nitrophenyl β-D-galactoside were determined to be 3.446 mM and 2210 μmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.
Collapse
Affiliation(s)
- Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Hu S, Chen J, Jin J, Liu Y, Xu GT, Ou Q. Construction of living-cell tissue engineered amniotic membrane for ocular surface disease. BMC Ophthalmol 2024; 24:409. [PMID: 39300402 DOI: 10.1186/s12886-024-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Human amniotic membrane (AM) transplantation has been applied to treat ocular surface diseases, including corneal trauma. The focus of much deliberation is to balance the mechanical strength of the amniotic membrane, its resistance to biodegradation, and its therapeutic efficacy. It is commonly observed that the crosslinked human decellularized amniotic membranes lose the functional human amniotic epithelial cells (hAECs), which play a key role in curing the injured tissues. METHODS AND RESULTS In this study, we crosslinked human decellularized amniotic membranes (dAM) with genipin and re-planted the hAECs onto the genipin crosslinked AM. The properties of the AM were evaluated based on optical clarity, biodegradation, cytotoxicity, and ultrastructure. The crosslinked AM maintained its transparency. The color of crosslinked AM deepened with increasing concentrations of genipin. And the extracts from low concentrations of genipin crosslinked AM had no toxic effect on human corneal epithelial cells (HCECs), while high concentrations of genipin exhibited cytotoxicity. The microscopic observation and H&E staining revealed that 2 mg/mL genipin-crosslinked dAM (2 mg/mL cl-dAM) was more favorable for the attachment, migration, and proliferation of hAECs. Moreover, the results of the CCK-8 assay and the transwell assay further indicated that the living hAECs' tissue-engineered amniotic membranes could facilitate the proliferation and migration of human corneal stromal cells (HCSCs) in vitro. CONCLUSIONS In conclusion, the cl-dAM with living hAECs demonstrates superior biostability and holds significant promise as a material for ocular surface tissue repair in clinical applications.
Collapse
Affiliation(s)
- Shuqin Hu
- Department of Ophthalmology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahui Jin
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Liu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qingjian Ou
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Brown M, Okuyama H, Yamashita M, Tabrizian M, Li-Jessen NYK. Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39212941 DOI: 10.1089/ten.teb.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human vocal folds (VF), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, as well as, in situ crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials.
Collapse
Affiliation(s)
- Mika Brown
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada;
| | - Hideaki Okuyama
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada;
| | - Masaru Yamashita
- Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, Kagoshima, Japan;
| | - Maryam Tabrizian
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada
- McGill University, Faculty of Dentistry, Montreal, Quebec, Canada;
| | - Nicole Y K Li-Jessen
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada
- McGill University, Department of Otolaryngology - Head and Neck Surgery, Montreal, Quebec, Canada
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Research Institute of McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
6
|
Thambirajoo M, Md Fadilah NI, Maarof M, Lokanathan Y, Mohamed MA, Zakaria S, Bt Hj Idrus R, Fauzi MB. Functionalised Sodium-Carboxymethylcellulose-Collagen Bioactive Bilayer as an Acellular Skin Substitute for Future Use in Diabetic Wound Management: The Evaluation of Physicochemical, Cell Viability, and Antibacterial Effects. Polymers (Basel) 2024; 16:2252. [PMID: 39204471 PMCID: PMC11359669 DOI: 10.3390/polym16162252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium-carboxymethylcellulose (Na-CMC) bilayer scaffold that was later integrated with silver nanoparticles/graphene quantum dot nanoparticles (AgNPs/GQDs) as an acellular skin substitute for future use in diabetic wounds. The bilayer scaffold was prepared by layering the Na-CMC gauze onto the ovine tendon collagen type 1 (OTC-1). The bilayer scaffold was post-crosslinked with 0.1% (w/v) genipin (GNP) as a natural crosslinking agent. The physical and chemical characteristics of the bilayer scaffold were evaluated. The results demonstrate that crosslinked (CL) groups exhibited a high-water absorption capacity (>1000%) and an ideal water vapour evaporation rate (2000 g/m2 h) with a lower biodegradation rate and good hydrophilicity, compression, resilience, and porosity than the non-crosslinked (NC) groups. The minimum inhibitory concentration (MIC) of AgNPs/GQDs presented some bactericidal effects against Gram-positive and Gram-negative bacteria. The cytotoxicity tests on bilayer scaffolds demonstrated good cell viability for human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Therefore, the Na-CMC bilayer scaffold could be a potential candidate for future diabetic wound care.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi 43600, Malaysia;
| | - Sarani Zakaria
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| |
Collapse
|
7
|
Wang L, Yuan L, Dong Y, Huang W, Zhu J, Du X, Zhang C, Liu P, Mo J, Li B, Liu Z, Yu X, Yu H. Multifunctional 3D matrixes based on flexible bioglass nanofibers for potential application in postoperative therapy of osteosarcoma. Regen Biomater 2024; 11:rbae088. [PMID: 39165883 PMCID: PMC11333569 DOI: 10.1093/rb/rbae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Postoperative treatment of osteosarcoma is one of the major challenging clinical issues since both elimination of residual tumors and acceleration of bone regeneration should be considered. Photothermal therapy has been widely studied due to its advantages of small side-effect, low-toxicity, high local selectivity and noninversion, and bone tissue engineering is an inevitable trend in postoperative treatment of osteosarcoma. In this study, we combined the tissue engineering and photothermal therapy together, and developed a kind of multifunctional nanofibrous 3D matrixes for postoperative treatment of osteosarcoma. The flexible bioactive glass nanofibers (BGNFs) prepared by sol-gel electrospinning and calcination acted as the basic blocks, and the genipin-crosslinked gelatin (GNP-Gel) acted as the cement to bond the BGNFs forming a stable 3D structure. The stable porous 3D scaffolds were obtained through ice crystal templating method and freeze-drying technology. The obtained GNP-Gel/BGNF 3D matrixes showed a nanofibrous structure that highly biomimetics the extracellular matrix. The excellent compression recovery performance in water of these matrixes made them suitable for minimally invasive surgery. In addition, these 3D matrixes were not only biocompatible in vitro, but also benefit for the formation of mineralized bone in vivo. Furthermore, the dark blue GNP-Gel also acted as the photothermal agent, which endowed the GNP-Gel/BGNF 3D matrixes with efficient photothermal antitumor and photothermal antibacterial performance without addition of other toxic photothermal agents. Therefore, this study provides an ingenious avenue to prepare multifunctional nanofibrous 3D matrixes with photothermal therapy for postoperative treatment of osteosarcoma.
Collapse
Affiliation(s)
- Lihuan Wang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| | - Liting Yuan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yanbing Dong
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Wenli Huang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jichang Zhu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuexian Du
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Chenglin Zhang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Pengbi Liu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinpeng Mo
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Bingyan Li
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Zijin Liu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xi Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| |
Collapse
|
8
|
Li J, Xie L, Dou Z, Zhou Y, Mo J, Chen W. Genipin Activates Autophagy and Promotes Myoblast Differentiation by Activating AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15190-15197. [PMID: 38807430 DOI: 10.1021/acs.jafc.3c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cultured meat technology is expected to solve problems such as resource shortages and environmental pollution, but the muscle fiber differentiation efficiency of cultured meat is low. Genipin is the active compound derived from Gardenia jasminoides Ellis, which has a variety of activities. Additionally, genipin serves as a noncytotoxic agent for cross-linking, which is suitable as a foundational scaffold for in vitro tissue regeneration. However, the impact of genipin on myoblast differentiation remains to be studied. The research revealed that genipin was found to improve the differentiation efficiency of myoblasts. Genipin improved mitochondrial membrane potential by activating the AMPK signaling pathway of myoblasts, promoting mitochondrial biogenesis, and mitochondrial network remodeling. Genipin activated autophagy in myoblasts and maintained cellular homeostasis. Autophagy inhibitors blocked the pro-differentiation effect of genipin. These results showed that genipin improved the differentiation efficiency of myoblasts, which provided a theoretical basis for the development of cultured meat technology.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zishan Dou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
10
|
Lin S, Patrawalla NY, Zhai Y, Dong P, Kishore V, Gu L. Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees. MICROMACHINES 2024; 15:851. [PMID: 39064362 PMCID: PMC11278924 DOI: 10.3390/mi15070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen scaffolds. A clear understanding of the effects of collagen alignment and crosslinking degrees can help properly control these critical parameters for fabricating collagen scaffolds with desired mechanical properties. In this study, combined uniaxial mechanical testing and finite element method (FEM) were used to quantify the effects of fiber alignment and crosslinking degree on the mechanical properties of collagen threads. We have fabricated electrochemically aligned collagen (ELAC) and compared it with randomly distributed collagen at varying crosslinking degrees, which depend on genipin concentrations of 0.1% or 2% for crosslinking durations of 1, 4, and 24 h. Our results indicate that aligned collagen fibers and higher crosslinking degree contribute to a larger Young's modulus. Specifically, aligned fiber structure, compared to random collagen, significantly increases Young's modulus by 112.7% at a 25% crosslinking degree (0.1% (4 h), i.e., 0.1% genipin concentration with a crosslinking duration of 4 h). Moreover, the ELAC Young's modulus increased by 90.3% as the crosslinking degree doubled by changing the genipin concentration from 0.1% to 2% with the same 4 h crosslinking duration. Furthermore, verified computational models can predict mechanical properties based on specific crosslinking degrees and fiber alignments, which facilitate the controlled fabrication of collagen threads. This combined experimental and computational approach provides a systematic understanding of the interplay among fiber alignment, crosslinking parameters, and mechanical performance of collagen scaffolds. This work will enable the precise fabrication of collagen threads for desired tissue engineering performance, potentially advancing tissue engineering applications.
Collapse
Affiliation(s)
- Shengmao Lin
- School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China
| | - Nashaita Y. Patrawalla
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Yingnan Zhai
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Pengfei Dong
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Vipuil Kishore
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| |
Collapse
|
11
|
Kim J, Lee H, Lee G, Ryu D, Kim G. Fabrication of fully aligned self-assembled cell-laden collagen filaments for tissue engineering via a hybrid bioprinting process. Bioact Mater 2024; 36:14-29. [PMID: 38425743 PMCID: PMC10900255 DOI: 10.1016/j.bioactmat.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Cell-laden structures play a pivotal role in various tissue engineering applications, particularly in tissue restoration. Interactions between cells within bioprinted structures are crucial for successful tissue development and regulation of stem cell fate through intricate cell-to-cell signaling pathways. In this study, we developed a new technique that combines polyethylene glycol (PEG)-infused submerged bioprinting with a stretching procedure. This approach facilitated the generation of fully aligned collagen structures consisting of myoblasts and a low concentration (2 wt%) of collagen to efficiently encourage muscle tissue regeneration. By adjusting several processing parameters, we obtained biologically safe and mechanically stable cell-laden collagen filaments with uniaxial alignment. Notably, the cell filaments exhibited markedly elevated cellular activities compared to those exhibited by conventional bioprinted filaments, even at similar cell densities. Moreover, when we implanted structures containing adipose stem cells into mice, we observed a significantly increased level of myogenesis compared to that in normally bioprinted struts. Thus, this promising approach has the potential to revolutionize tissue engineering by fostering enhanced cellular interactions and promoting improved outcomes in regenerative medicine.
Collapse
Affiliation(s)
- JuYeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - Hyeongjin Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| |
Collapse
|
12
|
Ma RX, Li RF, Deng XQ, Qiao RQ, Li JK, Song KX, Ji SL, Hu YC. Repair of tendons treated with peracetic acid-ethanol and gamma irradiation by EDC combined with NHS: a morphological, biochemical and biomechanical study in vitro. Cell Tissue Bank 2024; 25:427-442. [PMID: 36797536 DOI: 10.1007/s10561-023-10080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
The purpose of this study was to investigate whether 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) combined with n-hydroxysuccinimide (NHS) can repair tendon damage caused by peracetic acid-ethanol and gamma irradiation sterilization. The semitendinosus tendons of 15 New Zealand white rabbits were selected as experimental materials, and the tendons were sterilized in a solution containing 1% (v/w) peracetic acid and 24% (v/w) ethanol. After 15 kGy gamma irradiation sterilization, the tendons were randomly divided into three groups (n = 10). The tendons were repaired with EDCs of 0, 2.5 and 5 mM combined with 5 mM NHS for 6 h, the tendons were temporarily stored at - 80 ± °C. The arrangement and spatial structure of collagen fibers were observed by light microscopy and scanning electron microscopy, the collagen type and collagen crimp period were observed under a polarizing microscope, and the collagen fibril diameter and its distribution were measured by transmission electron microscopy, from which the collagen fibril index and mass average diameter were calculated. The resistance of collagen to enzymolysis was detected by the free hydroxyproline test, and tensile fracture and cyclic loading tests of each group of tendons were carried out, from which the elastic modulus, maximum stress, maximum strain, strain energy density and cyclic creep strain were calculated. The obtained results showed that the gap between loose collagen fibers in the 0 mM control group was wider, the parallel arrangement of tendons in the 2.5 and 5 mM groups was more uniform and regular and the fiber space decreased, the crimp period in the 5 mM group was lower than that in the 0 mM group (P < 0.05), and the concentration of hydroxyproline in the 5 mM group (711.64 ± 77.95 μg/g) was better than that in the control group (1150.57 ± 158.75 μg/g). The elastic modulus of the 5 mM group (424.73 ± 150.96 MPa) was better than that of the 0 mM group (179.09 ± 37.14 MPa). Our results show that EDC combined with NHS can repair damaged tendons after peracetic acid-ethanol and gamma radiation treatment, and 5 mM EDC has better morphological performance, anti-enzymolysis ability and biomechanical properties than 2.5 mM EDC.
Collapse
Affiliation(s)
- Rong-Xing Ma
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300211, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui-Feng Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Rui-Qi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ji-Kai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kun-Xiu Song
- Department of Hand and Microsurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Shao-Lin Ji
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yong-Cheng Hu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300211, China.
| |
Collapse
|
13
|
Ahmad SS, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review. Int J Biol Macromol 2024; 267:131411. [PMID: 38588841 DOI: 10.1016/j.ijbiomac.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
14
|
Dai X, Yuan M, Yang Y, Dang M, Yang J, Shi J, Liu D, Li M, Yao H, Fei W. Dual cross-linked COL1/HAp bionic gradient scaffolds containing human amniotic mesenchymal stem cells promote rotator cuff tendon-bone interface healing. BIOMATERIALS ADVANCES 2024; 158:213799. [PMID: 38364326 DOI: 10.1016/j.bioadv.2024.213799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The tendon-bone interface heals through scar tissue, while the lack of a natural interface gradient structure and collagen fibre alignment leads to the occurrence of retearing. Therefore, the promotion of tendon healing has become the focus of regenerative medicine. The purpose of this study was to develop a gradient COL1/ hydroxyapatite (HAp) biomaterial loaded with human amniotic mesenchymal stem cells (hAMSCs). The performance of common cross-linking agents, Genipin, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and dual cross-linked materials were compared to select the best cross-linking mechanism to optimize the biological and mechanical properties of the scaffold. The optimal COL1/HAp-loaded with hAMSCs were implanted into the tendon-bone rotator cuff interfaces in rats and the effect on the tendon-bone healing was assessed by micro-CT, histological analysis, and biomechanical properties. The results showed that Genipin and EDC/NHS dual cross-linked COL1/HAp had good biological activity and mechanical properties and promoted the proliferation and differentiation of hAMSCs. Animal experiments showed that the group using a scaffold loaded with hAMSCs had excellent continuity and orientation of collagen fibers, increased fibrocartilage and bone formation, and significantly higher biomechanical functions than the control group at the interface at 12 weeks post operation. This study demonstrated that dual cross-linked gradient COL1/HAp-loaded hAMSCs could promote interface healing, thereby providing a feasible strategy for tendon-bone interface regeneration.
Collapse
Affiliation(s)
- Xiaomei Dai
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225001, PR China; Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China
| | - Meijuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225001, PR China; Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Mengbo Dang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Jian Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Dianwei Liu
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Mingjun Li
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| | - Wenyong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
15
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
16
|
Jiang Z, Song Z, Cao C, Yan M, Liu Z, Cheng X, Wang H, Wang Q, Liu H, Chen S. Multiple Natural Polymers in Drug and Gene Delivery Systems. Curr Med Chem 2024; 31:1691-1715. [PMID: 36927424 DOI: 10.2174/0929867330666230316094540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhendong Liu
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Xingbo Cheng
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Hongbo Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Qingnan Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, 450003, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
17
|
Dibazar ZE, Zarei M, Mohammadikhah M, Oudah SK, Elyasi M, Kokabi H, Shahgolzari M, Asl LD, Azizy M. Crosslinking strategies for biomimetic hydrogels in bone tissue engineering. Biophys Rev 2023; 15:2027-2040. [PMID: 38192345 PMCID: PMC10771399 DOI: 10.1007/s12551-023-01141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/03/2023] [Indexed: 01/10/2024] Open
Abstract
Bone tissue engineering has become a popular area of study for making biomimetic hydrogels to treat bone diseases. In this work, we looked at biocompatible hydrogels that can be injected into bone defects that require the smallest possible surgery. Mineral ions can be attached to polymer chains to make useful hydrogels that help bones heal faster. These ions are very important for the balance of the body. In the chemically-triggered sector, advanced hydrogels cross-linked by different molecular agents have many advantages, such as being selective, able to form gels, and having mechanical properties that can be modified. In addition, different photo-initiators can be used to make photo cross linkable hydrogels react quickly and moderately under certain light bands. Enzyme-triggered hydrogels are another type of hydrogel that can be used to repair bone tissue because they are biocompatible and gel quickly. We also look at some of the important factors mentioned above that could change how well bone tissue engineering works as a therapy. Finally, this review summarizes the problems that still need to be solved to make clinically relevant hydrogels.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz, 5165687386 Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz university of medical sciences, Tabriz, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Milad Elyasi
- Otolaryngology department, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Hadi Kokabi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Leila Delnabi Asl
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Azizy
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
18
|
Shi W, Gao Y, Wu Y, Sun J, Xu B, Lu X, Wang Q. A multifunctional polydopamine/genipin/alendronate nanoparticle licences fibrin hydrogels osteoinductive and immunomodulatory potencies for repairing bone defects. Int J Biol Macromol 2023; 249:126072. [PMID: 37524274 DOI: 10.1016/j.ijbiomac.2023.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Here, we fabricated a hybrid nanoparticle composed of polydopamine nanoparticles (pNPs), alendronate (Al) and genipin (GP) for cranial bone defect repair. Al was crosslinked into pNPs via GP (Al@pNPs), after which hybrid nanoparticles were obtained. By embedding these Al@pNPs into the fibrin hydrogels, a multifunctional bone repair scaffold was fabricated (Al@pNPs/Fg). The Al@pNPs/Fg exhibited three synergistic effects on the bone microenvironment: i) enhanced ectomesenchymal stem cell (EMSC) osteogenic differentiation by activating the piezo 1 channel; ii) inhibited the formation and function of osteoclasts related to the NF-κB signaling pathways; and iii) promoted M2 polarization and anti-inflammatory factor expression under normal and simulated inflammatory conditions. Al@pNPs/Fg ultimately promoted cranial bone defect regeneration in an SD rat model. This simple and low-cost technology provides a new approach to constructing an efficient delivery system and has desirable biological properties, providing a tissue-committed niche for the repair of bone defects.
Collapse
Affiliation(s)
- Wentao Shi
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province 214122, PR China.
| | - Yan Gao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Yiqing Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Jiaqi Sun
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Bai Xu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Xiaojie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
19
|
Pratiwi RD, El Muttaqien S, Gustini N, Difa NS, Syahputra G, Rosyidah A. Eco-friendly synthesis of chitosan and its medical application: from chitin extraction to nanoparticle preparation. ADMET AND DMPK 2023; 11:435-455. [PMID: 37937250 PMCID: PMC10626508 DOI: 10.5599/admet.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Indexed: 11/09/2023] Open
Abstract
Background and Purpose Chitosan, a chitin deacetylation product, has been applied in nanoparticle or nano-chitosan for medical applications. However, the chitin extraction from crustacean shells and other natural resources, chitin deacetylation, and crosslinking of the chitosan forming the nano-chitosan mostly involve hazardous chemical and physical processes. The risks of these processes to human health and the environment attract the attention of scientists to develop safer and greener techniques. This review aims to describe the progress of harmless chitosan synthesis. Experimental Approach All strongly related publications to each section, which were found on scientific search engines (Google Scholar, Scopus, and Pubmed), were studied, selected, and then used as references in writing this review. No limitation for the publication year was applied. The publications were searched from April 2022 - June 2023. Key Results Nano-chitosan could be synthesized in harmless techniques, including the preparation of the chitosan raw materials and crosslinking the chitosan polymer. Enzymatic processes in shell deproteination in the chitin extraction and deacetylation are preferable to reduce the negative effects of conventional chemical-physical processes. Mild alkalines and deep eutectic solvents also provide similar benefits. In the nano-chitosan synthesis, naturally derived compounds (carrageenan, genipin, and valinin) show potency as safer crosslinkers, besides tripolyphosphate, the most common safe crosslinker. Conclusion A list of eco-friendly and safer processes in the synthesis of nano-chitosan has been reported in recent years. These findings are suggested for the nano-chitosan synthesis on an industrial scale in the near future.
Collapse
Affiliation(s)
- Riyona Desvy Pratiwi
- Research Center for Vaccine and Drug, Organization Research of Health, The National Research and Innovation Agency, Jalan Raya Bogor Km 46 Cibinong, Bogor 16911, West Java, Indonesia
| | | | | | | | | | | |
Collapse
|
20
|
Zhang A, Cheng Z, Chen Y, Shi P, Gan W, Zhang Y. Emerging tissue engineering strategies for annulus fibrosus therapy. Acta Biomater 2023:S1742-7061(23)00337-9. [PMID: 37330029 DOI: 10.1016/j.actbio.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. IVD herniation manifests as the nucleus pulposus (NP) protruding beyond the boundaries of the intervertebral disc due to disruption of the annulus fibrosus (AF). With a deepening understanding of the importance of the AF structure in the pathogenesis of intervertebral disc degeneration, numerous advanced therapeutic strategies for AF based on tissue engineering, cellular regeneration, and gene therapy have emerged. However, there is still no consensus concerning the optimal approach for AF regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions. STATEMENT OF SIGNIFICANCE: Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. However, there is still no consensus concerning the optimal approach for annulus fibrosus (AF) regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
22
|
Wang Z, Jin X, Zhang B, Kong J, Deng R, Wu K, Xie L, Liu X, Kang R. Stress stimulation maintaining by genipin crosslinked hydrogel promotes annulus fibrosus healing. J Orthop Translat 2023; 40:104-115. [PMID: 37457311 PMCID: PMC10338907 DOI: 10.1016/j.jot.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To explore the repair effect of tissue engineering for annulus fibrosus (AF) injury in stress-stimulation environment. Methods Non-adhesive fibrinogen (Fib) representing the repair with non-stress stimulation and adhesive hydrogel of fibrinogen, thrombin and genipin mixture (Fib-T-G) representing the repair with stress stimulation were prepared to repair the AF lesion. The relationship between adhesion and stress stimulation was studied in rheological measurements, tension tests and atomic force microscopy (AFM) experiments. The repair effect of stress stimulation was studied in designed acellular AF scaffold models with fissures and defects. The models were repaired by the two different hydrogels, then implanted subcutaneously and cultured for 21 d in rats. Histology and qPCR of COL1A1, COL2A1, aggrecan, RhoA, and ROCK of the tissue engineering of the interface were evaluated afterward. Moreover, the repair effect was also studied in an AF fissure model in caudal disc of rats by the two different hydrogels. Discs were harvested after 21 d, and the disc degeneration score and AF healing quality were evaluated by histology. Result In interfacial stress experiment, Fib-T-G hydrogel showed greater viscosity than Fib hydrogel (24.67 ± 1.007 vs 459333 ± 169205 mPa s). Representative force-displacement and sample modulus for each group demonstrate that Fib-T-G group significantly increased the interfacial stress level and enhanced the modulus of samples, compared with Fib group (P < 0.01). The Fib-T-G group could better bond the interface to resist the loading strain force with the broken point at 1.11 ± 0.10 N compared to the Fib group at 0.12 ± 0.08 N (P < 0.01). Focusing on the interfacial healing in acellular AF scaffold model, compared with Fib + MSCs group, the fissure and defect were connected closely in Fib-T-G + MSCs group (P < 0.01). Relative higher gene expression of COL2A1 and RhoA in Fib-T-G + MSCs group than Fib + MSCs group in AF fissure and AF defect model (P < 0.05). The immunohistochemistry staining showed more positive staining of COL2A1 and RhoA in Fib-T-G + MSCs group than in Fib + MSCs group in both AF fissure and AF defect models. The degree of disc degeneration was more severe in Fib + MSCs group than Fib-T-G + MSCs group in vivo experiment (11.80 ± 1.11 vs 7.00 ± 1.76, P < 0.01). The dorsal AF defect in Fib-T-G + MSCs group (0.02 ± 0.01 mm2) was significantly smaller than that (0.13 ± 0.05 mm2) in Fib + MSCs group (P < 0.05). Immunohistochemical staining showed more positive staining of COL2A1 and Aggrecan in Fib-T-G + MSCs group than in Fib + MSCs group. Conclusion Genipin crosslinked hydrogel can bond the interface of AF lesions and transfer strain force. Stress stimulation maintained by adhesive hydrogel promotes AF healing. The translational potential of this article We believe the effect of stress stimulation could be concluded through this study and provides more ideals in mechanical effects for further research, which is a key technique for repairing intervertebral disc in clinic. The adhesive hydrogel of Fib-T-G+MSCs has low toxicity and helps bond the interface of AF lesion and transfer strain force, having great potential in the repair of AF lesion.
Collapse
Affiliation(s)
- Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Xiaoyu Jin
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Botao Zhang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Jiaxin Kong
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Ke Wu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Lin Xie
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| |
Collapse
|
23
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
24
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
25
|
Development and cytotoxicity evaluation of a cylindrical pH-responsive chitosan-genipin hydrogel for the oral delivery of diclofenac sodium. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
27
|
Britton S, Lee K, Azizova L, Shaw G, Ayre WN, Mansell JP. Immobilised teicoplanin does not demonstrate antimicrobial activity against Staphylococcus aureus. Sci Rep 2022; 12:16661. [PMID: 36198734 PMCID: PMC9534865 DOI: 10.1038/s41598-022-20310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Antibacterial bone biomaterial coatings appeal to orthopaedics, dentistry and veterinary medicine. Achieving the successful, stable conjugation of suitable compounds to biomaterial surfaces is a major challenge. A pragmatic starting point is to make use of existing, approved antibiotics which are known to remain functional in a stationary, immobilised state. This includes the macrocyclic glycopeptide, teicoplanin, following the discovery, in the 1990's, that it could be used as a chiral selector in chromatographic enantiomeric separations. Importantly teicoplanin works at the level of the bacterial cell wall making it a potential candidate for biomaterial functionalisations. We initially sought to functionalise titanium (Ti) with polydopamine and use this platform to capture teicoplanin, however we were unable to avoid the natural affinity of the antibiotic to the oxide surface of the metal. Whilst the interaction between teicoplanin and Ti was robust, we found that phosphate resulted in antibiotic loss. Before contemplating the covalent attachment of teicoplanin to Ti we examined whether a commercial teicoplanin stationary phase could kill staphylococci. Whilst this commercially available material could bind N-Acetyl-L-Lys-D-Ala-D-Ala it was unable to kill bacteria. We therefore strongly discourage attempts at covalently immobilising teicoplanin and/or other glycopeptide antibiotics in the pursuit of novel antibacterial bone biomaterials.
Collapse
Affiliation(s)
- S Britton
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - K Lee
- Department of Chemistry, Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - L Azizova
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - G Shaw
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - W Nishio Ayre
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - J P Mansell
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
28
|
Genipin-crosslinked gelatin-based composite hydrogels reinforced with amino-functionalized microfibrillated cellulose. Int J Biol Macromol 2022; 222:3155-3167. [DOI: 10.1016/j.ijbiomac.2022.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
29
|
Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci 2022; 23:ijms23179721. [PMID: 36077119 PMCID: PMC9456225 DOI: 10.3390/ijms23179721] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue is a nanocomposite consisting of an organic and inorganic matrix, in which the collagen component and the mineral phase are organized into complex and porous structures. Hydroxyapatite (HA) is the most used ceramic biomaterial since it mimics the mineral composition of the bone in vertebrates. However, this biomimetic material has poor mechanical properties, such as low tensile and compressive strength, which make it not suitable for bone tissue engineering (BTE). For this reason, HA is often used in combination with different polymers and crosslinkers in the form of composites to improve their mechanical properties and the overall performance of the implantable biomaterials developed for orthopedic applications. This review summarizes recent advances in HA-based biocomposites for bone regeneration, addressing the most widely employed inorganic matrices, the natural and synthetic polymers used as reinforcing components, and the crosslinkers added to improve the mechanical properties of the scaffolds. Besides presenting the main physical and chemical methods in tissue engineering applications, this survey shows that HA biocomposites are generally biocompatible, as per most in vitro and in vivo studies involving animal models and that the results of clinical studies on humans sometimes remain controversial. We believe this review will be helpful as introductory information for scientists studying HA materials in the biomedical field.
Collapse
Affiliation(s)
- Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| |
Collapse
|
30
|
Koskinen Holm C, Qu C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci 2022; 23:ijms23137401. [PMID: 35806407 PMCID: PMC9266888 DOI: 10.3390/ijms23137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air–liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| |
Collapse
|
31
|
Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater 2022; 12:327-339. [PMID: 35128180 PMCID: PMC8784310 DOI: 10.1016/j.bioactmat.2021.10.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering has emerged as a significant research area that provides promising novel tools for the preparation of biomimetic hydrogels applied in bone-related diseases (e.g., bone defects, cartilage damage, osteoarthritis, etc.). Herein, thermal sensitive polymers (e.g., PNIPAAm, Soluplus, etc.) were introduced into main chains to fabricate biomimetic hydrogels with injectability and compatibility for those bone defect need minimally invasive surgery. Mineral ions (e.g., calcium, copper, zinc, and magnesium), as an indispensable role in maintaining the balance of the organism, were linked with polymer chains to form functional hydrogels for accelerating bone regeneration. In the chemically triggered hydrogel section, advanced hydrogels crosslinked by different molecular agents (e.g., genipin, dopamine, caffeic acid, and tannic acid) possess many advantages, including extensive selectivity, rapid gel-forming capacity and tunable mechanical property. Additionally, photo crosslinking hydrogel with rapid response and mild condition can be triggered by different photoinitiators (e.g., I2959, LAP, eosin Y, riboflavin, etc.) under specific wavelength of light. Moreover, enzyme triggered hydrogels were also utilized in the tissue regeneration due to its rapid gel-forming capacity and excellent biocompatibility. Particularly, some key factors that can determine the therapy effect for bone tissue engineering were also mentioned. Finally, brief summaries and remaining issues on how to properly design clinical-oriented hydrogels were provided in this review.
Collapse
Affiliation(s)
- Xu Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 201900, China
| | - Xiao Chen
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, China
| |
Collapse
|
32
|
Utami Nike D, Md Fadilah NI, Sallehuddin N, Nor Azlan AYH, Imran FH, Maarof M, Fauzi MB. Genipin-Crosslinking Effects on Biomatrix Development for Cutaneous Wound Healing: A Concise Review. Front Bioeng Biotechnol 2022; 10:865014. [PMID: 35677301 PMCID: PMC9169157 DOI: 10.3389/fbioe.2022.865014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Split skin graft (SSG), a standard gold treatment for wound healing, has numerous limitations such as lack of fresh skin to be applied, tedious process, severe scarring, and keloid formation followed by higher risks of infection. Thus, there is a gap in producing polymeric scaffolds as an alternative for wound care management. Bioscaffold is the main component in tissue engineering technology that provides porous three-dimensional (3D) microarchitecture for cells to survive. Upon skin tissue reconstruction, the 3D-porous structure ensures sufficient nutrients and gaseous diffusion and cell penetration that improves cell proliferation and vascularization for tissue regeneration. Hence, it is highly considered a promising candidate for various skin wound healing applications. To date, natural-based crosslinking agents have been extensively used to tailor the physicochemical and mechanical properties of the skin biomatrix. Genipin (GNP) is preferable to other plant-based crosslinkers due to its biological activities, such as antiinflammatory and antioxidant, which are key players to boost skin wound healing. In addition, it has shown a noncytotoxic effect and is biocompatible with human skin cells. This review validated the effects of GNP in biomatrix fabrication for skin wound healing from the last 7 years of established research articles and stipulated the biomaterial development-scale point of view. Lastly, the possible role of GNP in the skin wound healing cascade is also discussed. Through the literature output, it can be concluded that GNP has the capability to increase the stability of biomatrix and maintain the skin cells viability, which will contribute in accelerating wound healing.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nusaibah Sallehuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yasser Hamdi Nor Azlan
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Farrah Hani Imran
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mh Busra Fauzi,
| |
Collapse
|
33
|
Liu J, Zhou F, Zhou Q, Hu S, Chen H, Zhu X, Shi F, Yan J, Huang J, Sun J, Zhang F, Gu N. A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. BIOMATERIALS ADVANCES 2022; 136:212777. [PMID: 35929315 DOI: 10.1016/j.bioadv.2022.212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Granular scaffolds have been extensively used in the clinic to repair irregular maxillofacial defects. There remain some challenges for the repair of trabecular structures in cancellous bone due to the reticular lamella-like morphology. In this study, we fabricated a novel granular scaffold by rational design of components with different degradation rates so that the morphology of the novel scaffold can evolve to match the growth period of bone cells. Here, polycaprolactone (PCL) was used to fabricate porous microspheres as a skeleton with slow degradation. The macropores were filled with quick degraded gelatin to form complete microspheres. Asynchronous degradation of the two components altered the morphology of the evolutive scaffold from compact to porous, gradually exposing the ridge-like skeletons. This scaffold reversed the decline of cellular adhesion to simple porous skeletons during the initial adhesion. Furthermore, the cells were able to grow into the pores and adhere onto the skeletons with an elongated cellular morphology, facilitating osteogenic differentiation. This novel scaffold was experimentally proven to promote the regeneration of alveolar bone along with a good percentage of bone volume and the formation of trabecular structures. We believe this morphology-evolved scaffold is highly promising for regenerative applications in the clinic.
Collapse
Affiliation(s)
- Jun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qiao Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Xinchen Zhu
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi 214001, China
| | - Fan Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianli Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
34
|
Boehm AK, Hillebrandt KH, Dziodzio T, Krenzien F, Neudecker J, Spuler S, Pratschke J, Sauer IM, Andreas MN. Tissue engineering for the diaphragm and its various therapeutic possibilities – A Systematic Review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Agnes K Boehm
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Karl H Hillebrandt
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Tomasz Dziodzio
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Felix Krenzien
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Jens Neudecker
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Simone Spuler
- Muscle Research Unit Experimental and Clinical Research Center Charité Universitätsmedizin Berlin and Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtz‐Gemeinschaft Lindenberger Weg 80 Berlin 13125 Germany
| | - Johann Pratschke
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Igor M Sauer
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Marco N Andreas
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| |
Collapse
|
35
|
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Martin I, Sannino A, Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. J Biomed Mater Res A 2022; 110:1372-1385. [PMID: 35262240 DOI: 10.1002/jbm.a.37379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022]
Abstract
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Institute of Polymers, Composites and Biomaterials - National Research Council, Naples, Italy
| | - Fabiana Gullotta
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,ENEA, Division for Sustainable Materials - Research Centre of Brindisi, Brindisi, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| |
Collapse
|
36
|
Jiang YH, Lou YY, Li TH, Liu BZ, Chen K, Zhang D, Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am J Transl Res 2022; 14:1146-1159. [PMID: 35273719 PMCID: PMC8902548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Cartilage defects are one of the hardest injures to cure, given the limited regenerative ability of cartilage tissues. Moreover, cartilage defects affect an increasing number of people worldwide. Therefore, scientists have attempted to develop effective strategies to repair cartilage defects in recent years. Recent advances in tissue engineering have led to the strategies for inducing cartilage regeneration. Among the emerging strategies, scaffolds are commonly used in cartilage tissue engineering (CTE) as they provide favorable environment for the growth and proliferation of chondrocytes. An ideal scaffolding material should be highly biocompatible. Type I collagen is one such material, which is widely used in CTE. However, type I collagen has poor mechanical properties and stability, which limit its use. Cross-linking is a simple method known to improve degradability, biological and mechanical properties of biomaterials by enhancing chemical and physical interactions between polymers. Cross-linking can be induced through chemical, physical or biological processes. In this review, we present cross-linking methods that can enhance the mechanical strength of type I collagen for CTE and highlight future directions in this field.
Collapse
|
37
|
Kim DS, Kim JH, Baek SW, Lee JK, Park SY, Choi B, Kim TH, Min K, Han DK. Controlled vitamin D delivery with injectable hyaluronic acid-based hydrogel for restoration of tendinopathy. J Tissue Eng 2022; 13:20417314221122089. [PMID: 36082312 PMCID: PMC9445534 DOI: 10.1177/20417314221122089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Tendinopathy is a term used to describe tendon disorders that are marked by pain and a loss of function. Recent studies demonstrated that inflammation plays an important role throughout the broad spectrum of tendinopathy. Conventional treatments such as steroid injections, analgesics, and physical modalities simply give pain relief and do not alter the disease progression without the tendon regeneration effect. Tenocytes are responsible for maintaining the tendon matrix and understanding how they function is essential to studying new treatments for tendinopathy. Our previous study showed the protective effects of vitamin D (Vit D) on damaged tenocytes. Besides its well-known effects on bone metabolism, the non-classical action of Vit D is the pleiotropic effects on modulating immune function. In the present study, we developed a Vit D delivery system with hyaluronic acid (HA), which is one of the major components of the extracellular matrix that has anti-inflammation and wound-healing properties. A novel Vit D delivery system with cross-linked HA hydrogel (Gel) and Tween 80 (T80), Vit D@Gel/T80, could be a new regeneration technique for the treatment of tendinopathy. Vit D@Gel/T80 reduced TNF-α induced damage to human tenocytes in vitro. In an animal study, the Vit D@Gel/T80 injected group demonstrated tendon restoration features. As a result, this Vit D@Gel/T80 system might be a local injection material in the treatment for tendinopathy.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Ren L, He G, Zhou Y, Dai J, Miao W, Ouyang C, Liu J, Chen G. Hydrogel based on nanocellulose/polydopamine/gelatin are used for the treatment of MRSA infected wound with broad-spectrum antibacterial, antioxidant property and tissue suitability. Biomater Sci 2022; 10:3174-3187. [DOI: 10.1039/d2bm00157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most wound dressings have a series of problems when dealing with bacterial infection of wounds, for example, for lack of sufficient antibacterial and antioxidant capacity, comfort and mechanical properties are...
Collapse
|
39
|
Riacci L, Sorriento A, Ricotti L. Genipin-Based Crosslinking of Jellyfish Collagen 3D Hydrogels. Gels 2021; 7:gels7040238. [PMID: 34940298 PMCID: PMC8700866 DOI: 10.3390/gels7040238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/30/2023] Open
Abstract
Collagen-based hydrogels are an attractive option in the field of cartilage regeneration with features of high biocompatibility and low immunogenic response. Crosslinking treatments are often employed to create stable 3D gels that can support and facilitate cell embodiment. In this study, we explored the properties of JellaGel™, a novel jellyfish material extracted from Rhizostoma pulmo. In particular, we analyzed the influence of genipin, a natural crosslinker, on the formation of 3D stable JellaGel™ hydrogels embedding human chondrocytes. Three concentrations of genipin were used for this purpose (1 mM, 2.5 mM, and 5 mM). Morphological, thermal, and mechanical properties were investigated for the crosslinked materials. The metabolic activity of embedded chondrocytes was also evaluated at different time points (3, 7, and 14 days). Non-crosslinked hydrogels resulted in an unstable matrix, while genipin-crosslinked hydrogels resulted in a stable matrix, without significant changes in their properties; their collagen network revealed characteristic dimensions in the order of 20 µm, while their denaturation temperature was 57 °C. After 7 and 14 days of culture, chondrocytes showed a significantly higher metabolic activity within the hydrogels crosslinked with 1 mM genipin, compared to those crosslinked with 5 mM genipin.
Collapse
Affiliation(s)
- Laura Riacci
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence: (L.R.); (A.S.)
| | - Angela Sorriento
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence: (L.R.); (A.S.)
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
40
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Lee SC, Lee NH, Patel KD, Jun SK, Park JH, Knowles JC, Kim HW, Lee HH, Lee JH. A Study on Myogenesis by Regulation of Reactive Oxygen Species and Cytotoxic Activity by Selenium Nanoparticles. Antioxidants (Basel) 2021; 10:antiox10111727. [PMID: 34829599 PMCID: PMC8615179 DOI: 10.3390/antiox10111727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced by skeletal muscle during contractile activity and even at rest. However, the ROS generated from excessive exercise or traumatic damage may produce more ROS than can be neutralized by an antioxidant capacity, which can be harmful to muscle function. In particular, selenium is a known antioxidant that regulates physiological functions such as cell differentiation and anti-inflammatory function. In this study, we developed nano-sized antioxidative biomaterials using selenium to investigate the protective and differentiation effects against C2C12 myoblasts in an H2O2-induced oxidative stress environment. The selenium nanoparticles (SeNPs) were produced with a size of 35.6 ± 4.3 nm and showed antioxidant effects according to the 3,3′,5,5′-tetramethylbenzidine assay. Then, SeNPs were treated to C2C12 cells with or without H2O2. Our results showed that SeNPs reduced C2C12 apoptosis and intracellular ROS levels. Additionally, SeNPs effectively up-regulated in the presence of H2O2, MyoD, MyoG, α-actinin, and myosin heavy chain, which are well known to increase during myoblast differentiation as assayed by qRT-PCR, immunocytochemistry-staining, western blotting. These results demonstrate that SeNPs can accelerate differentiation with its protective effects from the ROS environment and can be applied to the treatment of skeletal muscle in a cellular redox environment.
Collapse
Affiliation(s)
- Sang-Cheol Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Soo-Kyung Jun
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea;
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London WC1E 6HH, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Chungcheongnam-do, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (H.-H.L.); (J.-H.L.); Tel.: +82-41-550-3083 (H.-H.L.); +82-41-550-3081 (J.-H.L.); Fax: +82-41-559-7839 (H.-H.L. & J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-C.L.); (N.-H.L.); (K.D.P.); (J.-H.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (H.-H.L.); (J.-H.L.); Tel.: +82-41-550-3083 (H.-H.L.); +82-41-550-3081 (J.-H.L.); Fax: +82-41-559-7839 (H.-H.L. & J.-H.L.)
| |
Collapse
|
42
|
Nike DU, Katas H, Mohd NF, Hiraoka Y, Tabata Y, Idrus RBH, Fauzi MB. Characterisation of Rapid In Situ Forming Gelipin Hydrogel for Future Use in Irregular Deep Cutaneous Wound Healing. Polymers (Basel) 2021; 13:3152. [PMID: 34578052 PMCID: PMC8468405 DOI: 10.3390/polym13183152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
The irregular deep chronic wound is a grand challenge to be healed due to multiple factors including slow angiogenesis that causing regenerated tissue failure. The narrow gap of deep wounds could hinder and slow down normal wound healing. Thus, the current study aimed to develop a polymerised genipin-crosslinked gelatin (gelipin) hydrogel (GNP_GH) as a potential biodegradable filler for the abovementioned limitations. Briefly, GNP_GH bioscaffolds have been developed successfully within three-minute polymerisation at room temperature (22-24 °C). The physicochemical and biocompatibility of GNP_GH bioscaffolds were respectively evaluated. Amongst GNP_GH groups, the 0.1%GNP_GH10% displayed the highest injectability (97.3 ± 0.6%). Meanwhile, the 0.5%GNP_GH15% degraded within more than two weeks with optimum swelling capacity (108.83 ± 15.7%) and higher mechanical strength (22.6 ± 3.9 kPa) than non-crosslinked gelatin hydrogel 15% (NC_GH15%). Furthermore, 0.1%GNP_GH15% offered higher porosity (>80%) and lower wettability (48.7 ± 0.3) than NC_GH15%. Surface and cross-section SEM photographs displayed an interconnected porous structure for all GNP_GH groups. The EDX spectra and maps represented no major changes after GNP modification. Moreover, no toxicity effect of GNP_GH against dermal fibroblasts was shown during the biocompatibility test. In conclusion, the abovementioned findings indicated that gelipin has excellent physicochemical properties and acceptable biocompatibility as an acellular rapid treatment for future use in irregular deep cutaneous wounds.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Fatimah Mohd
- Kumpulan Perubatan Johor Ampang Puteri Specialist Hospital, Ampang, Kuala Lumpur 68000, Malaysia;
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City 581-0000, Japan;
| | - Yasuhiko Tabata
- Department of Biomaterials, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| |
Collapse
|
43
|
Liu CF, Chang KC, Sun YS, Nguyen DT, Huang HH. Combining Sandblasting, Alkaline Etching, and Collagen Immobilization to Promote Cell Growth on Biomedical Titanium Implants. Polymers (Basel) 2021; 13:polym13152550. [PMID: 34372152 PMCID: PMC8347351 DOI: 10.3390/polym13152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Our objective in this study was to promote the growth of bone cells on biomedical titanium (Ti) implant surfaces via surface modification involving sandblasting, alkaline etching, and type I collagen immobilization using the natural cross-linker genipin. The resulting surface was characterized in terms topography, roughness, wettability, and functional groups, respectively using field emission scanning electron microscopy, 3D profilometry, and attenuated total reflection-Fourier transform infrared spectroscopy. We then evaluated the adhesion, proliferation, initial differentiation, and mineralization of human bone marrow mesenchymal stem cells (hMSCs). Results show that sandblasting treatment greatly enhanced surface roughness to promote cell adhesion and proliferation and that the immobilization of type I collagen using genipin enhanced initial cell differentiation as well as mineralization in the extracellular matrix of hMSCs. Interestingly, the nano/submicro-scale pore network and/or hydrophilic features on sandblasted rough Ti surfaces were insufficient to promote cell growth. However, the combination of all proposed surface treatments produced ideal surface characteristics suited to Ti implant applications.
Collapse
Affiliation(s)
- Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
| | - Kai-Chun Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ying-Sui Sun
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: ; Tel.: +886-2-28267068
| |
Collapse
|
44
|
Han HW, Patel KD, Kwak JH, Jun SK, Jang TS, Lee SH, Knowles JC, Kim HW, Lee HH, Lee JH. Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules 2021; 11:1028. [PMID: 34356651 PMCID: PMC8301847 DOI: 10.3390/biom11071028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibitory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed.
Collapse
Affiliation(s)
- Hee-Won Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Jin-Hwan Kwak
- Department of Life Science, Handong Global University, Pohang 37554, Korea;
| | - Soo-Kyung Jun
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea;
| | - Tae-Su Jang
- Department of Pre-Medi, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan 31116, Korea;
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
45
|
Generation and Evaluation of Novel Biomaterials Based on Decellularized Sturgeon Cartilage for Use in Tissue Engineering. Biomedicines 2021; 9:biomedicines9070775. [PMID: 34356839 PMCID: PMC8301329 DOI: 10.3390/biomedicines9070775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Because cartilage has limited regenerative capability, a fully efficient advanced therapy medicinal product is needed to treat severe cartilage damage. We evaluated a novel biomaterial obtained by decellularizing sturgeon chondral endoskeleton tissue for use in cartilage tissue engineering. In silico analysis suggested high homology between human and sturgeon collagen proteins, and ultra-performance liquid chromatography confirmed that both types of cartilage consisted mainly of the same amino acids. Decellularized sturgeon cartilage was recellularized with human chondrocytes and four types of human mesenchymal stem cells (MSC) and their suitability for generating a cartilage substitute was assessed ex vivo and in vivo. The results supported the biocompatibility of the novel scaffold, as well as its ability to sustain cell adhesion, proliferation and differentiation. In vivo assays showed that the MSC cells in grafted cartilage disks were biosynthetically active and able to remodel the extracellular matrix of cartilage substitutes, with the production of type II collagen and other relevant components, especially when adipose tissue MSC were used. In addition, these cartilage substitutes triggered a pro-regenerative reaction mediated by CD206-positive M2 macrophages. These preliminary results warrant further research to characterize in greater detail the potential clinical translation of these novel cartilage substitutes.
Collapse
|
46
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han HW, Kwak JH, Jang TS, Knowles JC, Kim HW, Lee HH, Lee JH. Grapefruit Seed Extract as a Natural Derived Antibacterial Substance against Multidrug-Resistant Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10010085. [PMID: 33477436 PMCID: PMC7830962 DOI: 10.3390/antibiotics10010085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria are increasing due to the abuse and misuse of antibiotics, and nosocomial infections by MDR bacteria are also increasing. The aim of this study was to identify new substances that can target MDR bacteria among 12 plant extracts that are known to have antibacterial effects. The experiments were performed by the disk diffusion test and microdilution minimum inhibitory concentration (MIC) test, as described by the Clinical and Laboratory Standards Institute (CLSI). By screening against methicillin-sensitive Staphylococcus aureus (MSSA), grapefruit seed extract (GSE) was selected from 12 plant extracts for subsequent experiments. GSE showed antibacterial effects against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) in the disk diffusion test. Even at the lowest concentration, GSE showed antibacterial activity in the microdilution MIC test. As a result, we can conclude that GSE is a naturally derived antibacterial substance that exhibits a favorable antibacterial effect even at a very low concentration, so it is a good candidate for a natural substance that can be used to prevent or reduce nosocomial infections as coating for materials used in medical contexts or by mixing a small amount with other materials.
Collapse
Affiliation(s)
- Hee-Won Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do 31116, Korea; (H.-W.H.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
| | - Jin-Hwan Kwak
- Department of Life Science, Handong Global University, 558 Handong-ro, Pohang, Gyeongsangbuk-do 37554, Korea;
| | - Tae-Su Jang
- Department of Pre-Medi, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea;
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do 31116, Korea; (H.-W.H.); (J.C.K.); (H.-W.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do 31116, Korea; (H.-W.H.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do 31116, Korea; (H.-W.H.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Correspondence: (H.-H.L.); (J.-H.L.); Tel.: +82-(0)-41-550-3083 (H.-H.L.); +82-41-550-3081 (J.-H.L.); Fax: +82-(0)-41-559-7839 (H.-H.L.); +82-41-559-7839 (J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do 31116, Korea; (H.-W.H.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do 31116, Korea
- Correspondence: (H.-H.L.); (J.-H.L.); Tel.: +82-(0)-41-550-3083 (H.-H.L.); +82-41-550-3081 (J.-H.L.); Fax: +82-(0)-41-559-7839 (H.-H.L.); +82-41-559-7839 (J.-H.L.)
| |
Collapse
|