1
|
Skolariki K, Vlamos P. Exploring gene-drug interactions for personalized treatment of post-traumatic stress disorder. Front Comput Neurosci 2024; 17:1307523. [PMID: 38274128 PMCID: PMC10808814 DOI: 10.3389/fncom.2023.1307523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Post-Traumatic Stress Disorder (PTSD) is a mental disorder that can develop after experiencing traumatic events. The aim of this work is to explore the role of genes and genetic variations in the development and progression of PTSD. Methods Through three methodological approaches, 122 genes and 184 Single Nucleotide Polymorphisms (SNPs) associated with PTSD were compiled into a single gene repository for PTSD. Using PharmGKB and DrugTargetor, 323 drug candidates were identified to target these 122 genes. The top 17 drug candidates were selected based on the statistical significance of the genetic associations, and their promiscuity (number of associated genestargets) and were further assessed for their suitability in terms of bioavailability and drug-like characteristics. Through functional analysis, insights were gained into the biological processes, cellular components, and molecular functions involved in PTSD. This formed the foundation for the next aspect of this study which was to propose an efficient treatment for PTSD by exploring drug repurposing methods. Results The main aim was to identify the drugs with the most favorable profile that can be used as a pharmacological approach for PTSD treatment. More in particular, according to the genetic variations present in each individual, the relevant biological pathway can be identified, and the drug candidate proposed will specifically target said pathway, accounting for the personalized aspect of this work. The results showed that the drugs used as off-label treatment for PTSD have favorable pharmacokinetic profiles and the potential drug candidates that arose from DrugTargetor were not very promising. Clozapine showed a promising pharmacokinetic profile and has been linked with decreased psychiatric symptoms. Ambrucin also showed a promising pharmacokinetic profile but has been mostly linked with cancer treatment.
Collapse
Affiliation(s)
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| |
Collapse
|
2
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
3
|
Two stereoisomers of 4‑hydroxy prenylamine and its hydrochloride salts. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, Fang H, Qian G. Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Front Immunol 2022; 13:988479. [PMID: 36211429 PMCID: PMC9537444 DOI: 10.3389/fimmu.2022.988479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein–protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor–gene interactions, DEG–microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Collapse
Affiliation(s)
- Hongwei Fang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Kong
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| |
Collapse
|
5
|
Nachtigall I, Bonsignore M, Hohenstein S, Bollmann A, Günther R, Kodde C, Englisch M, Ahmad-Nejad P, Schröder A, Glenz C, Kuhlen R, Thürmann P, Meier-Hellmann A. Effect of gender, age and vaccine on reactogenicity and incapacity to work after COVID-19 vaccination: a survey among health care workers. BMC Infect Dis 2022; 22:291. [PMID: 35346089 PMCID: PMC8960217 DOI: 10.1186/s12879-022-07284-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 01/14/2023] Open
Abstract
Abstract
Background
The aim of our study was to assess the impact the impact of gender and age on reactogenicity to three COVID-19 vaccine products: Biontech/Pfizer (BNT162b2), Moderna (mRNA-1273) and AstraZeneca (ChAdOx). Additional analyses focused on the reduction in working capacity after vaccination and the influence of the time of day when vaccines were administered.
Methods
We conducted a survey on COVID-19 vaccinations and eventual reactions among 73,000 employees of 89 hospitals of the Helios Group. On May 19th, 2021 all employees received an email, inviting all employees who received at least 1 dose of a COVID-19 to participate using an attached link. Additionally, the invitation was posted in the group’s intranet page. Participation was voluntary and non-traceable. The survey was closed on June 21st, 2021.
Results
8375 participants reported on 16,727 vaccinations. Reactogenicity was reported after 74.6% of COVID-19 vaccinations. After 23.0% vaccinations the capacity to work was affected. ChAdOx induced impairing reactogenicity mainly after the prime vaccination (70.5%), while mRNA-1273 led to more pronounced reactions after the second dose (71.6%). Heterologous prime-booster vaccinations with ChAdOx followed by either mRNA-1273 or BNT162b2 were associated with the highest risk for impairment (81.4%). Multivariable analyses identified the factors older age, male gender and vaccine BNT162b as independently associated with lower odds ratio for both, impairing reactogenicity and incapacity to work. In the comparison of vaccine schedules, the heterologous combination ChAdOx + BNT162b or mRNA-1273 was associated with the highest and the homologue prime-booster vaccination with BNT162b with the lowest odds ratios. The time of vaccination had no significant influence.
Conclusions
Around 75% of the COVID-19 vaccinations led to reactogenicity and nearly 25% of them led to one or more days of work loss. Major risk factors were female gender, younger age and the administration of a vaccine other than BNT162b2. When vaccinating a large part of a workforce against COVID-19, especially in professions with a higher proportion of young and women such as health care, employers and employees must be prepared for a noticeable amount of absenteeism. Assuming vaccine effectiveness to be equivalent across the vaccine combinations, to minimize reactogenicity, employees at risk should receive a homologous prime-booster immunisation with BNT162b2.
Trial registration: The study was approved by the Ethic Committee of the Aerztekammer Berlin on May 27th, 2021 (Eth-37/21) and registered in the German Clinical Trials Register (DRKS 00025745). The study was supported by the Helios research grant HCRI-ID 2021-0272.
Collapse
|
6
|
Choi BJ, Koo Y, Kim TY, Lim HS, Yoon D. Data-driven drug-induced QT prolongation surveillance using adverse reaction signals derived from 12-lead and continuous electrocardiogram data. PLoS One 2022; 17:e0263117. [PMID: 35100302 PMCID: PMC8803188 DOI: 10.1371/journal.pone.0263117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Drug-induced QT prolongation is one of the most common side effects of drug use and can cause fatal outcomes such as sudden cardiac arrest. This study adopts the data-driven approach to assess the QT prolongation risk of all the frequently used drugs in a tertiary teaching hospital using both standard 12-lead ECGs and intensive care unit (ICU) continuous ECGs. We used the standard 12-lead ECG results (n = 1,040,752) measured in the hospital during 1994–2019 and the continuous ECG results (n = 4,835) extracted from the ICU’s patient-monitoring devices during 2016–2019. Based on the drug prescription frequency, 167 drugs were analyzed using 12-lead ECG data under the case-control study design and 60 using continuous ECG data under the retrospective cohort study design. Whereas the case-control study yielded the odds ratio, the cohort study generated the hazard ratio for each candidate drug. Further, we observed the possibility of inducing QT prolongation in 38 drugs in the 12-lead ECG analysis and 7 drugs in the continuous ECG analysis. The seven drugs (vasopressin, vecuronium, midazolam, levetiracetam, ipratropium bromide, nifedipine, and chlorpheniramine) that showed a significantly higher risk of QT prolongation in the continuous ECG analysis were also identified in the 12-lead ECG data analysis. The use of two different ECG sources enabled us to confidently assess drug-induced QT prolongation risk in clinical practice. In this study, seven drugs showed QT prolongation risk in both study designs.
Collapse
Affiliation(s)
- Byung Jin Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeryung Koo
- BUD.on Inc, Jeonju, Jeollabuk-do, Republic of Korea
| | | | - Hong-Seok Lim
- Department of Cardiology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Dukyong Yoon
- BUD.on Inc, Jeonju, Jeollabuk-do, Republic of Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Mokrov GV. Linked biaromatic compounds as cardioprotective agents. Arch Pharm (Weinheim) 2021; 355:e2100428. [PMID: 34967027 DOI: 10.1002/ardp.202100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVDs) are widespread in the modern world, and their number is constantly growing. For a long time, CVDs have been the leading cause of morbidity and mortality worldwide. Drugs for the treatment of CVD have been developed almost since the beginning of the 20th century, and a large number of effective cardioprotective agents of various classes have been created. Nevertheless, the need for the design and development of new safe drugs for the treatment of CVD remains. Literature data indicate that a huge number of cardioprotective agents of various generations and mechanisms correspond to a single generalized pharmacophore model containing two aromatic nuclei linked by a linear linker. In this regard, we put forward a concept for the design of a new generation of cardioprotective agents with a multitarget mechanism of action within the indicated pharmacophore model. This review is devoted to a generalization of the currently known compounds with cardioprotective properties and corresponding to the pharmacophore model of biaromatic compounds linked by a linear linker. Particular attention is paid to the history of the creation of these drugs, approaches to their design, and analysis of the structure-action relationship within each class.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russia
| |
Collapse
|
8
|
Joseph A, Kumar GJ, Pawar SD, Hirlekar BU, Bharatam PV, Konda S, Mudiam MKR, Murty US, Sahu PL, Dubey S, Radhakrishnanand P, Adye DR, Borkar RM, Thirupathi C, Kumar P. Analytical developments of p-hydroxy prenylamine reference material for dope control research: Characterization and purity assessment. Drug Test Anal 2021; 14:224-232. [PMID: 34617411 DOI: 10.1002/dta.3171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Prenylamine was initially used for the treatment of angina pectoris and later on withdrawn from the market in 1988 due to cardiac arrhythmias concern. The major phase I metabolite of prenylamine is p-hydroxy prenylamine that has a chiral center in the structure. Even though p-hydroxy prenylamine was synthesized earlier, it lacked complete analytical developments for chiral high-performance liquid chromatography (HPLC) separation. However, p-hydroxy prenylamine reference material is not commercially available. The innovation of this manuscript is the development and validation of a chiral HPLC separation method and more extensive characterization of the reference material than previously reported method. Therefore, it was hypothesized to develop and validate normal phase HPLC method for p-hydroxy prenylamine reference material. p-Hydroxy prenylamine was synthesized in two batches and characterized successfully using 13 C NMR, 1 H NMR, high-resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A normal phase chiral HPLC method was developed to analyze the p-hydroxy prenylamine purity. Separation of the p-hydroxy prenylamine enantiomers were achieved using ultra-high-performance liquid chromatography (UHPLC) on a ChiralCel ODH column at wavelength of 220 nm. The developed method was validated in terms of its linearity, accuracy, precision, and robustness for purification, purity assessment, and stability studies. Proton and carbon peaks were confirmed by nuclear magnetic resonance (NMR) analysis. Functional groups were confirmed by FT-IR. Loss on drying was 0.3% and 0.6% for Batches 1 and 2, respectively. The purity of the developed reference material for Batches 1 and 2 was found to be 99.59% and 100%, respectively. Therefore, the synthesized batches of p-hydroxy prenylamine can be used in dope testing as reference material.
Collapse
Affiliation(s)
- Athira Joseph
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Sachin Dattram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Bhakti Umesh Hirlekar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Satyanand Konda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - P L Sahu
- National Dope Testing Laboratory, J.L.N Stadium Complex, East Gate No. 10, Near MTNL Building, New Delhi, 110003, India
| | - Sachin Dubey
- National Dope Testing Laboratory, J.L.N Stadium Complex, East Gate No. 10, Near MTNL Building, New Delhi, 110003, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Daya Raju Adye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Choppari Thirupathi
- Daicel Chiral Technologies (India) Private Limited, IKP Knowledge Park, Survey No. 542/2, Koltur Village, Shamirpet Mandal, Medchal-Malkagiri, Hyderabad, Telanagana, 500101, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| |
Collapse
|
9
|
Schilling U, Henrich A, Muehlan C, Krause A, Dingemanse J, Ufer M. Impact of Daridorexant, a Dual Orexin Receptor Antagonist, on Cardiac Repolarization Following Bedtime Dosing: Results from a Thorough QT Study Using Concentration-QT Analysis. Clin Drug Investig 2021; 41:711-721. [PMID: 34331678 DOI: 10.1007/s40261-021-01062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Daridorexant is a new dual orexin receptor antagonist currently in late-stage clinical development for the treatment of insomnia. This randomized, double-blind, placebo-controlled, four-period crossover study investigated the effect of daridorexant at a therapeutic and supratherapeutic dose on QT interval duration. METHODS Thirty-six healthy subjects received single oral doses of daridorexant (50 mg; 200 mg), moxifloxacin (400 mg; open label), and placebo. All treatments were administered at bedtime to mimic therapeutic practice. The primary analysis was based on linear mixed-effects concentration-QT modelling. Triplicate ECG data were extracted from Holter recordings at baseline and until 24 h post dosing at time points matching those for pharmacokinetic sampling. Plasma concentrations of daridorexant were determined over 24 h. RESULTS Assay sensitivity was demonstrated based on mean baseline- and placebo-corrected QT interval using Fridericia's formula (ΔΔQTcF) > 5 ms following moxifloxacin administration (p < 0.01). Following daridorexant administration, mean (90% confidence interval, CI) ΔΔQTcF was 1.40 ms (0.48; 2.32 ms) and 1.84 ms (-0.12; 3.79 ms) at the Cmax of 747 ng/mL (50 mg dose) and 1809 ng/mL (200 mg dose), respectively, i.e., the upper bounds of the CIs were < 10 ms defined as threshold of regulatory concern. Lack of relevant QT prolongation was confirmed by secondary by-time point analysis and absence of relevant findings in the categorical outlier analysis. Daridorexant was safe and well tolerated and its pharmacokinetics were consistent with previous data. CONCLUSION Daridorexant does not impair cardiac repolarization evidenced by absence of relevant QT prolongation at therapeutic and supratherapeutic doses. Clinical Trials Registration ID: NCT04250506.
Collapse
Affiliation(s)
- Uta Schilling
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Andrea Henrich
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Clemens Muehlan
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Andreas Krause
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
10
|
Ito A, Zhao Q, Tanaka Y, Yasui M, Katayama R, Sun S, Tanimoto Y, Nishikawa Y, Kage-Nakadai E. Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans. Biogerontology 2020; 22:119-131. [PMID: 33216250 DOI: 10.1007/s10522-020-09907-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
Accumulating studies have argued that the mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that promotes longevity in model organisms. In the present study, we screened an off-patent drug library to identify compounds that activate UPRmt using a mitochondrial chaperone hsp-6::GFP reporter system in Caenorhabditis elegans. Metolazone, a diuretic primarily used to treat congestive heart failure and high blood pressure, was identified as a prominent hit as it upregulated hsp-6::GFP and not the endoplasmic reticulum chaperone hsp-4::GFP. Furthermore, metolazone specifically induced the expression of mitochondrial chaperones in the HeLa cell line. Metolazone also extended the lifespan of worms in a atfs-1 and ubl-5-dependent manner. Notably, metolazone failed to increase lifespan in worms with knocked-down nkcc-1. These results suggested that metolazone activates the UPRmt across species and prolongs the lifespan of C. elegans.
Collapse
Affiliation(s)
- Ai Ito
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Quichi Zhao
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoichiro Tanaka
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Masumi Yasui
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Rina Katayama
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Simo Sun
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshihiko Tanimoto
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshikazu Nishikawa
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Eriko Kage-Nakadai
- Faculty of Human Life Science, Department of Food and Nutrition, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan.
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan.
| |
Collapse
|
11
|
Schwach V, Slaats RH, Passier R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front Cardiovasc Med 2020; 7:50. [PMID: 32322588 PMCID: PMC7156610 DOI: 10.3389/fcvm.2020.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Rolf H Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|