1
|
Kelly C, Buscarini E, Manfredi G, Gregory S, Heneghan MA. Hepatic manifestations of hereditary haemorrhagic telangiectasia. Liver Int 2024; 44:2220-2234. [PMID: 38847503 DOI: 10.1111/liv.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 08/30/2024]
Abstract
Hereditary haemorrhagic telangiectasia is a genetic condition of abnormal blood vessel formation resulting from an imbalance of pro- and anti-angiogenic products of the transforming growth factor β/bone morphogenetic protein signalling pathway which contributes to vascular remodelling and maintenance. Hepatic vascular malformations are common although less frequently symptomatic, but may result in high-output cardiac failure, portal hypertension and biliary ischaemia. Whilst the understanding of the genetic and cell signalling pathways that are the hallmark of hereditary haemorrhagic telangiectasia have been clarified, there remain challenges in therapy for these patients. Only patients with symptomatic hepatic vascular malformations require treatment, with most (63%) responding to first-line medical therapy. For non-responders, bevacizumab is effective in reducing cardiac output in those with heart failure secondary to hepatic vascular malformations as well as other manifestations of the disease. Although liver transplantation is the only curative option, optimal timing is critical. Novel anti-angiogenetic drugs and those that target aberrant cell signalling pathway are being explored.
Collapse
Affiliation(s)
- Claire Kelly
- Institute of Liver Studies, Kings College Hospital, London, UK
| | | | - Guido Manfredi
- VASCERN HHT Reference Centre, ASST Maggiore Hospital, Crema, Italy
| | | | | |
Collapse
|
2
|
Mansur A, Radovanovic I. Defining the Role of Oral Pathway Inhibitors as Targeted Therapeutics in Arteriovenous Malformation Care. Biomedicines 2024; 12:1289. [PMID: 38927496 PMCID: PMC11201820 DOI: 10.3390/biomedicines12061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arteriovenous malformations (AVMs) are vascular malformations that are prone to rupturing and can cause significant morbidity and mortality in relatively young patients. Conventional treatment options such as surgery and endovascular therapy often are insufficient for cure. There is a growing body of knowledge on the genetic and molecular underpinnings of AVM development and maintenance, making the future of precision medicine a real possibility for AVM management. Here, we review the pathophysiology of AVM development across various cell types, with a focus on current and potential druggable targets and their therapeutic potentials in both sporadic and familial AVM populations.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
3
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
4
|
Wu CY, Cilic A, Pak O, Dartsch RC, Wilhelm J, Wujak M, Lo K, Brosien M, Zhang R, Alkoudmani I, Witte B, Pedersen F, Watz H, Voswinckel R, Günther A, Ghofrani HA, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Weissmann N, Hadzic S. CEACAM6 as a Novel Therapeutic Target to Boost HO-1-mediated Antioxidant Defense in COPD. Am J Respir Crit Care Med 2023; 207:1576-1590. [PMID: 37219322 DOI: 10.1164/rccm.202208-1603oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/23/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Anis Cilic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruth Charlotte Dartsch
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kevin Lo
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruoyu Zhang
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | | | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany; and
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
6
|
Hessels J, Kroon S, Boerman S, Nelissen RC, Grutters JC, Snijder RJ, Lebrin F, Post MC, Mummery CL, Mager JJ. Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. J Clin Med 2022; 11:5280. [PMID: 36142926 PMCID: PMC9503120 DOI: 10.3390/jcm11185280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Haploinsufficiency for Endoglin (ENG) and activin A receptor type II-like I (ACVRL1/ALK1) lead to the formation of weak and abnormal vessels in hereditary hemorrhagic telangiectasia (HHT). These cause epistaxis (nosebleeds) and/or gastrointestinal blood loss. In vitro in cultured endothelial cells, tacrolimus has been shown to increase ENG and ALK1 expression. It is, therefore, a potential treatment option. We report here a proof-of-concept study in patients with HHT and severe epistaxis and/or gastrointestinal bleeding who were treated daily with orally-administered tacrolimus for twenty weeks. Twenty-five patients with HHT (11 females (44%)) and median age of 59 years were enrolled. Five patients (20%) stopped the trial prematurely-four due to (serious) adverse events ((S)AE). Twenty patients were included in further analyses. Hemoglobin levels increased during tacrolimus treatment from 6.1 (IQR 5.2-6.9) mmol/L at baseline (9.8 g/dL) to 6.7 (6.5-7.1) mmol/L (10.8 g/dL), p = 0.003. The number of blood transfusions over the twenty weeks decreased from a mean of 5.0 (±9.2) to 1.9 (±3.5), p = 0.04. In 64% of the patients, at least one AE occurred. Oral tacrolimus, thus, significantly increased hemoglobin levels and decreased blood transfusion needs, epistaxis and/or gastrointestinal bleeding in patients with HHT. However, side-effects were common. Further investigation of the potential therapeutic benefit is justified by the outcome of the study.
Collapse
Affiliation(s)
- Josefien Hessels
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Steven Kroon
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Sanne Boerman
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Rik C. Nelissen
- Department of Otorhinolaryngology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Jan C. Grutters
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3484 CX Utrecht, The Netherlands
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Franck Lebrin
- Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Marco C. Post
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3484 CX Utrecht, The Netherlands or
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Johannes-Jurgen Mager
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| |
Collapse
|
7
|
Wang QY, Feng YX, Zhu YW, Sun YX, Xu JD, Shi HM, Mao YM, Jiang HW. Case Report: Clinical characteristics and genetic analysis of two patients with hereditary hemorrhagic telangiectasia. Front Genet 2022; 13:954796. [PMID: 36092899 PMCID: PMC9452660 DOI: 10.3389/fgene.2022.954796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To analyze the clinical features and genetic characteristics of two patients with hereditary hemorrhagic telangiectasia (HHT) and to review the relevant literature.Methods: The clinical data of two HHT patients admitted to the author’s hospital between April 2019 and February 2022 were retrospectively analyzed. Meanwhile, the genetic analysis was performed with their consent.Results: The first patient was a 62-year-old woman who had been complaining of shortness of breath and fever for 20 days. Her previous medical history included brain abscess drainage and video-assisted thoracoscopic surgery for a pulmonary hemangioma. A right heart catheterization revealed no pulmonary arterial hypertension, and an abdominal enhanced magnetic resonance imaging revealed multiple arteriovenous malformations in the liver. Her ACVRL1 heterozygous variants were discovered through whole-exon gene testing. The second case involved a 47-year-old woman who had been experiencing chest tightness for the past 2 years. Several years ago, she underwent brain abscess drainage and embolization of a pulmonary arteriovenous fistula. Ultrasound revealed generalized hepatic vascular dilation, and enhanced computed tomography revealed numerous pulmonary venous fistulas scattered in both lungs as well as multiple arteriovenous malformations in the liver. Her whole-exon gene testing revealed that she, like her son, had heterozygous ENG variants.Conclusion: HHT patients may experience infection, bleeding, dyspnea, and other symptoms. Imaging is important in disease diagnosis and management because early detection and treatment can prevent major complications and disability or even death.
Collapse
Affiliation(s)
- Qiu-Ying Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yu-Xuan Feng
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ying-Wei Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yu-Xia Sun
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing-Duan Xu
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hui-Min Shi
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yi-Min Mao
- Department of Respiratory Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- *Correspondence: Yi-Min Mao,
| | - Hong-Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Sommer N, Theine FF, Pak O, Tello K, Richter M, Gall H, Wilhelm J, Savai R, Weissmann N, Seeger W, Ghofrani HA, Hecker M. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J Clin Med 2022; 11:jcm11144132. [PMID: 35887896 PMCID: PMC9319555 DOI: 10.3390/jcm11144132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial and immune cell dysfunction contributes to the development of pulmonary arterial hypertension (PAH). We thus aimed to investigate mitochondrial respiration and mitochondrial gene expression patterns in the peripheral blood mononuclear cells (PBMC) of patients with idiopathic and hereditary PAH and their correlation to disease parameters. Mitochondrial respiration determined using high-resolution respirometry was not significantly different in PBMC when comparing an outpatient cohort of PAH patients with healthy controls. However, when directly comparing mitochondrial respiration to the hemodynamic parameters of an inpatient PAH cohort, mitochondrial respiration negatively correlated with pulmonary vascular resistance (PVR) and positively correlated with the cardiac index (CI). Furthermore, microarray analysis shows upregulation of mitochondrial erythroid-specific 5-aminolevulinate synthase 2 (ALAS2), as well as the regulation of genes involved in iron and heme metabolism, in the PBMC of patients with PAH, with ALAS2 upregulation in PAH patients being confirmed on the protein level. Multiple regression analysis with age and gender as confounders showed that both PVR and hemoglobin content negatively correlated with maximal respiration. Therefore, we conclude that mitochondrial function in the PBMC of PAH patients is affected by disease severity. However, further studies to investigate cell-type-specific alterations and functional consequences are necessary.
Collapse
Affiliation(s)
- Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Correspondence:
| | - Finn Fabian Theine
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Oleg Pak
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Khodr Tello
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Manuel Richter
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hossein A. Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias Hecker
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| |
Collapse
|
9
|
Riera-Mestre A, Cerdà P, Iriarte A, Graupera M, Viñals F. Translational medicine in hereditary hemorrhagic telangiectasia. Eur J Intern Med 2022; 95:32-37. [PMID: 34538686 DOI: 10.1016/j.ejim.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022]
Abstract
Scientific community have gained lots of new insights in the genetic and biochemical background of different conditions, rare diseases included, settling the basis for preclinical models that are helping to identify new biomarkers and therapeutic targets. Translational Medicine (TM) is an interdisciplinary area of biomedicine with an essential role in bench-to-bedside transition enhancement, generating a circular flow of knowledge transference between research environment and clinical setting, always centered in patient needs. Here, we present different tools used in TM and an overview of what is being done related to hereditary hemorrhagic telangiectasia (HHT), as a disease's model. This work is focused on how this combination of basic and clinical research impacts in HHT patient's daily clinical management and also looking into the future. Further randomized clinical trials with HHT patients should assess the findings of this bench-to-bedside transition. The benefits of this basic and clinical research combination, may not only be important for HHT patients but for patients with other vascular diseases sharing angiogenic disturbances.
Collapse
Affiliation(s)
- A Riera-Mestre
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain.
| | - P Cerdà
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Iriarte
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Graupera
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona 08916, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - F Viñals
- Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain; Program Against Cancer Therapeutic Resistance, Hospital Duran i Reynals, Institut Catala d'Oncologia, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
10
|
Tessier S, Lipton BA, Ido F, Longo S, Nanda S. Pathogenesis and therapy of arteriovenous malformations: A case report and narrative review. Int J Crit Illn Inj Sci 2021; 11:167-176. [PMID: 34760664 PMCID: PMC8547675 DOI: 10.4103/ijciis.ijciis_127_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/03/2022] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal communications between arteries and veins that lack intervening capillary beds. They have been described in almost every organ in the body, emerging sporadically or as part of well-described syndromes. Hereditary hemorrhagic telangiectasia (HHT) is a rare, progressive, and lifelong disease characterized by AVMs and recurrent hemorrhaging. In the last 2 decades, significant advances have been made in understanding the pathogenesis of this condition. The accumulation of knowledge has led to a natural evolution of therapy, from open surgery to endovascular procedures, and now to a role for medications in certain AVMs. Here, we review a case of HHT and describe the most up-to-date clinical practice, including diagnosis of HHT, subtypes of HHT, and medical therapy.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Brooke A Lipton
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Firas Ido
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Santo Longo
- Department of Pathology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Sudip Nanda
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| |
Collapse
|
11
|
Pruijsen JM, Kroon S, Mager JJ, Bungener LB, van der Doef HPJ. Tacrolimus in Gastrointestinal Bleeding in a Young Boy With Hereditary Hemorrhagic Telangiectasia. JPGN REPORTS 2021; 2:e133. [PMID: 37206467 PMCID: PMC10191567 DOI: 10.1097/pg9.0000000000000133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/12/2021] [Indexed: 05/21/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease in which gastrointestinal bleeding is a rare presenting symptom in children. Gastrointestinal bleeding in children is treated locally by endoscopy. When a focus of bleeding cannot be reached by endoscopy, management of these patients can be challenging. Previous reports showed a favorable outcome of treatment with tacrolimus in an adult HHT patient with liver vascular malformations and epistaxis and in a HHT patient with pulmonary hypertension. We report the first pediatric HHT patient who benefited from tacrolimus treatment. Our case demonstrated a remarkable decline in blood transfusions and better quality of life during the period of tacrolimus treatment.
Collapse
Affiliation(s)
- Jessica M. Pruijsen
- From the Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven Kroon
- Department of Pulmonology, St. Antonius Hospital Nieuwegein, The Netherlands
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital Nieuwegein, The Netherlands
| | - Laura B. Bungener
- Department of Laboratory Medicine, Transplantation Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hubert P. J. van der Doef
- From the Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Seebauer CT, Freigang V, Schwan FE, Fischer R, Bohr C, Kühnel TS, Andorfer KEC. Hereditary Hemorrhagic Telangiectasia: Success of the Osler Calendar for Documentation of Treatment and Course of Disease. J Clin Med 2021; 10:jcm10204720. [PMID: 34682843 PMCID: PMC8541180 DOI: 10.3390/jcm10204720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/28/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT; Rendu-Osler-Weber syndrome) affects the capillary and larger vessels, leading to arteriovenous shunts. Epistaxis is the main symptom impairing quality of life. The aim of the Osler Calendar is to offer information about the extent of the systemic disease and the current state of treatment. A care plan with information on the rare disease and self-treatment of epistaxis was created. Organ examinations and ongoing treatments were recorded. A questionnaire documents the treatment success, including patient satisfaction, frequency of hemorrhage and hemoglobin levels. The patients using the Osler Calendar for at least one year (n = 54) were surveyed. Eighty-five percent of patients (n = 46) used the calendar to gain information about HHT. Seventy-two percent (n = 39) used the Osler Calendar for instructions on the self-treatment of nosebleeds. The calendar increased patients’ understanding for the need for organ screenings from 48% (n = 26) to 81% (n = 44). Seventy-nine percent (n = 43) of patients confirmed that the Osler Calendar documented their therapeutic process either well or very well. Fifty-two percent (n = 28) saw an improvement in the therapeutic process due to the documentation. The Osler Calendar records the individual intensity of the disease and facilitates the communication between attending physicians. It is a tool for specialists to review treatment strategies. Furthermore, the calendar enhances patients’ comprehension of their condition.
Collapse
Affiliation(s)
- Caroline T. Seebauer
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
- Correspondence:
| | - Viola Freigang
- Department of Trauma, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Franziska E. Schwan
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
| | - René Fischer
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
| | - Christopher Bohr
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
| | - Thomas S. Kühnel
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
| | - Kornelia E. C. Andorfer
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (F.E.S.); (R.F.); (C.B.); (T.S.K.); (K.E.C.A.)
| |
Collapse
|
13
|
Agnew C, Ayaz P, Kashima R, Loving HS, Ghatpande P, Kung JE, Underbakke ES, Shan Y, Shaw DE, Hata A, Jura N. Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization. Nat Commun 2021; 12:4950. [PMID: 34400635 PMCID: PMC8368100 DOI: 10.1038/s41467-021-25248-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Risa Kashima
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hanna S Loving
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer E Kung
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Structural Biology, Genentech, Inc., South San Francisco, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Akiko Hata
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
15
|
Hereditary hemorrhagic telangiectasia: systemic therapies, guidelines, and an evolving standard of care. Blood 2021; 137:888-895. [PMID: 33171488 DOI: 10.1182/blood.2020008739] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) management is evolving because of the emergence and development of antiangiogenic therapies to eliminate bleeding telangiectasias and achieve hemostasis. This progress is reflected in recent clinical recommendations published in the Second International Guidelines for the Diagnosis and Treatment of HHT, in which systemic therapies including antiangiogenics and antifibrinolytics are now recommended as standard treatment options for bleeding. This review highlights the new recommendations especially relevant to hematologists in managing bleeding, anticoagulation, and anemia in patients with HHT.
Collapse
|
16
|
Abston E, Hon S, Rodriguez-Lopez J, Moll M, Lanuti M, Farber HW, Wilson KC. Treatment of pulmonary hypertension in patients with Hereditary Hemorrhagic Telangiectasia - A case series and systematic review. Pulm Pharmacol Ther 2021; 68:102033. [PMID: 33895318 DOI: 10.1016/j.pupt.2021.102033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
RATIONALE Pulmonary Arterial Hypertension (PAH), a rare complication of HHT is associated with poor outcome. There are no trials to date that have investigated whether pulmonary vasodilator therapy improves hemodynamics or survival in this disease. OBJECTIVE To determine whether pulmonary vasodilator therapy improves survival, exercise capacity, or hemodynamics in HHT patients with pre-capillary PH. METHODS We performed a before-and-after observational study on a multicenter cohort of subjects with HHT-PAH who received intravenous prostanoid therapy. We then conducted a systematic review, searching Medline and EMBASE through December 2019. Studies that enrolled HHT-PAH subjects and reported treatment outcomes were selected. PROSPERO #158179. RESULTS Twenty-one articles were selected. Studies were before-and-after observational studies, case reports, and case series. Among all subjects with HHT-PAH, both mPAP (65 ± 19 pre-treatment vs 51 ± 16 mmHg post-treatment p = 0.04) and PVR (12 ± 6 pre-treatment vs 8 ± 4 WU post-treatment p = 0.01) improved with treatment. The mPAP improved with either oral (57 ± 17 pre-treatment versus 44 ± 13 mmHg post-treatment, p = 0.03) or intravenous (80 ± 15 pre-treatment versus 64 ± 16 mmHg post-treatment, p = 0.017) therapy. PVR also improved with either oral (10 ± 4 pre-treatment versus 6 ± 3 WU post-treatment, p = 0.004) or intravenous (17 ± 5 pre-treatment versus 10 ± 4 WU post-treatment, p = 0.04) therapy. Survival among HHT-PAH patients who received oral or intravenous therapy was not different (p = 0.2). Unadjusted survival among HHT-PAH patients was longer than that of IPAH patients (p = 0.008). There was no difference in side effects among HHT-PAH patient who received oral or intravenous therapy (p = 0.1). CONCLUSION Pulmonary vasodilator therapy is effective in improving hemodynamics of subjects with HHT-PAH and was not associated with increased risk of side effects.
Collapse
Affiliation(s)
- Eric Abston
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Center for Thoracic Cancers, Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| | - Stephanie Hon
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Division of Pulmonary, Critical Care, And Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Josanna Rodriguez-Lopez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Matt Moll
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Lanuti
- Center for Thoracic Cancers, Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Harrison W Farber
- Division of Pulmonary, Critical Care, And Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin C Wilson
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Bofarid S, Hosman AE, Mager JJ, Snijder RJ, Post MC. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int J Mol Sci 2021; 22:3471. [PMID: 33801690 PMCID: PMC8038106 DOI: 10.3390/ijms22073471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy.
Collapse
Affiliation(s)
- Sala Bofarid
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Anna E. Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Marco C. Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
- Department of Cardiology, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
18
|
Droege F, Dingemann J, Thangavelu K, Kuerten CHL, Dahlfrancis PM, Kaiser C, Kaster F, Zioga E, Meyer C, Lueb C, Sure U, Lang S, Geisthoff U. [Implementation and development of a center for hereditary hemorrhagic telangiectasia]. Laryngorhinootologie 2021; 100:372-381. [PMID: 33723832 DOI: 10.1055/a-1402-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Hereditary Hemorrhagic Telangiectasia (HHT) is a rare and systemic disorder which is characterized by recurrent epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVM). An interdisciplinary concept is recommended. MATERIAL AND METHODS We performed a retrospective review of consecutive patients who were referred to our newly established HHT Center of Excellence (HHT COE) for evaluation and treatment between April 2014 and August 2019. RESULTS A network of over 20 departments was established at the University Hospital Essen. In 261 of the 282 patients (93 %), who were referred to the hospital's COE, the HHT diagnosis was at least possible. Most patients suffered from several symptoms (epistaxis and / or telangiectasia: > 80 %, visceral involvement: 65 %) and received a variety of treatments, often in a multidisciplinary setting. Alongside this direct treatment, the COE leader manages the coordination of the center and its public relations, which involves more than 900 e-mails per year. International collaboration and exchanges of expertise within the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN) can improve the treatment of patients with HHT particularly where these cases are complex. CONCLUSIONS An HHT COE provides an interdisciplinary network where highly specialized diagnostic and therapeutic processes can be updated and optimized continuously.
Collapse
Affiliation(s)
- Freya Droege
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Julia Dingemann
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Kruthika Thangavelu
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| | | | | | - Christina Kaiser
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Friederike Kaster
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Eleni Zioga
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Corinna Meyer
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Carolin Lueb
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Ulrich Sure
- Klinik für Neurochirurgie, Universitätsklinikum Essen, Germany
| | - Stephan Lang
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Essen, Germany
| | - Urban Geisthoff
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| |
Collapse
|
19
|
Snodgrass RO, Chico TJA, Arthur HM. Hereditary Haemorrhagic Telangiectasia, an Inherited Vascular Disorder in Need of Improved Evidence-Based Pharmaceutical Interventions. Genes (Basel) 2021; 12:174. [PMID: 33513792 PMCID: PMC7911152 DOI: 10.3390/genes12020174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality. Smaller AVMs, known as telangiectases, are prevalent on the skin and mucosal lining of the nose, mouth and gastrointestinal tract and are prone to haemorrhage. HHT is primarily associated with a reduction in endoglin (ENG) or ACVRL1 activity due to loss-of-function mutations. ENG and ACVRL1 transmembrane receptors are expressed on endothelial cells (ECs) and bind to circulating ligands BMP9 and BMP10 with high affinity. Ligand binding to the receptor complex leads to activation of the SMAD1/5/8 signalling pathway to regulate downstream gene expression. Various genetic animal models demonstrate that disruption of this pathway in ECs results in AVMs. The vascular abnormalities underlying AVM formation result from abnormal EC responses to angiogenic and haemodynamic cues, and include increased proliferation, reduced migration against the direction of blood flow and an increased EC footprint. There is growing evidence that targeting VEGF signalling has beneficial outcomes in HHT patients and in animal models of this disease. The anti-VEGF inhibitor bevacizumab reduces epistaxis and has a normalising effect on high cardiac output in HHT patients with hepatic AVMs. Blocking VEGF signalling also reduces vascular malformations in mouse models of HHT1 and HHT2. However, VEGF signalling is complex and drives numerous downstream pathways, and it is not yet clear which pathway (or combination of pathways) is critical to target. This review will consider the recent evidence gained from HHT clinical and preclinical studies that are increasing our understanding of HHT pathobiology and informing therapeutic strategies.
Collapse
Affiliation(s)
- Ryan O. Snodgrass
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Timothy J. A. Chico
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Helen M. Arthur
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
20
|
Gariballa N, Ali BR. Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFβ Signaling Pathway: Future Therapeutic Perspectives. Front Mol Biosci 2020; 7:575608. [PMID: 33195419 PMCID: PMC7658374 DOI: 10.3389/fmolb.2020.575608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
The transforming growth factor signaling pathway (TGFβ) controls a wide range of cellular activities in adulthood as well as during embryogenesis including cell growth, differentiation, apoptosis, immunological responses and other cellular functions. Therefore, germline mutations in components of the pathway have given rise to a heterogeneous spectrum of hereditary diseases with variable phenotypes associated with malformations in the cardiovascular, muscular and skeletal systems. Our extensive literature and database searches revealed 47 monogenic diseases associated with germline mutations in 24 out of 41 gene variant encoding for TGFβ components. Most of the TGFβ components are membrane or secretory proteins and they are therefore expected to pass through the endoplasmic reticulum (ER), where fidelity of proteins folding is stringently monitored via the ER quality control machineries. Elucidation of the molecular mechanisms of mutant proteins’ folding and trafficking showed the implication of ER associated protein degradation (ERAD) in the pathogenesis of some of the diseases. For example, hereditary hemorrhagic telangiectasia types 1 and 2 (HHT1 and HHT2) and familial pulmonary arterial hypertension (FPAH) associated with mutations in Endoglin, ALK1 and BMPR2 components of the signaling pathway, respectively, have all exhibited loss of function phenotype as a result of ER retention of some of their disease-causing variants. In some cases, this has led to premature protein degradation through the proteasomal pathway. We anticipate that ERAD will be involved in the mechanisms of other TGFβ signaling components and therefore warrants further research. In this review, we highlight advances in ER quality control mechanisms and their modulation as a potential therapeutic target in general with particular focus on prospect of their implementation in the treatment of monogenic diseases associated with TGFβ components including HHT1, HHT2, and PAH. In particular, we emphasis the need to establish disease mechanisms and to implement such novel approaches in modulating the molecular pathway of mutant TGFβ components in the quest for restoring protein folding and trafficking as a therapeutic approach.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
21
|
Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, Patel R, Gillen M, Diao L, Chatterjee PK, He M, Al-Abed Y, Wang P, Metz CN, Oh SP, Blanc L, Campagne F, Marambaud P. Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest 2020; 130:942-957. [PMID: 31689244 DOI: 10.1172/jci127425] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1/ENG/Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated PI3K/Akt/mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR inhibitor, sirolimus, and the receptor tyrosine kinase inhibitor, nintedanib, could synergistically fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs - including in HHT patient blood outgrowth ECs - and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus nintedanib might provide therapeutic benefit in patients with HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Haitian Zhao
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | | | - Julien Papoin
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Hyunwoo Choi
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Radhika Patel
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Matthew Gillen
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Li Diao
- Center for Immunology and Inflammation
| | | | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Christine N Metz
- Institute of Molecular Medicine, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - S Paul Oh
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Lionel Blanc
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Philippe Marambaud
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
22
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
23
|
Liu J, Yang J, Tang X, Li H, Shen Y, Gu W, Zhao S. Homozygous GDF2-Related Hereditary Hemorrhagic Telangiectasia in a Chinese Family. Pediatrics 2020; 146:peds.2019-1970. [PMID: 32669404 DOI: 10.1542/peds.2019-1970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 11/24/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) can be clinically diagnosed, but children often lack characteristic features. We report a family with homozygous growth differentiation factor 2 (GDF2)-related HHT diagnosed by genetic testing. A boy aged 5 years and 2 months presented with isolated hypoxemia. He was the product of a consanguineous marriage; his parents were second cousins. Physical examination revealed cyanosis of nail beds and clubbed fingers. Pulse oxygen saturation was 84% to 89%. Lung function, contrast-enhanced lung computed tomography, and noncontrast echocardiography were normal. A pulmonary perfusion scan revealed radioactivity in the brain and bilateral kidney, suggesting the existence of a intrapulmonary shunt. Whole-exome sequencing revealed a homozygous variant [c.1060_1062delinsAG (p.Tyr354ArgfsTer15)] in GDF2, which was found to be inherited from his heterozygous parents. At the age of 8 years, he developed epistaxis, and an angiogram revealed diffuse pulmonary arteriovenous malformations. At the age of 9 years, he was treated with sirolimus, and his condition improved significantly. However, his now 7-year-old sister with the same homozygous variant currently has no symptoms. Physical examinations revealed 1 pinpoint-sized telangiectasia on the chest of his mother and a vascular lesion on the forehead of his sister. Additionally, the patient's father and great-uncle had a history of mild to moderate epistaxis. Mutation in GDF2 is a rare cause of HHT. Ours is the first report of homozygous GDF2-related HHT; in addition, this variant has not been reported previously. In our report, we also confirm variable expressivity, even with the same pathogenic variant in GDF2-related HHT.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital and Capital Medical University, Xicheng District, Beijing, People's Republic of China; and
| | - Xiaolei Tang
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China;
| | - Yuelin Shen
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Weiyue Gu
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health and Capital Medical University, Xicheng District, Beijing, People's Republic of China;
| |
Collapse
|
24
|
Albiñana V, Cuesta AM, de Rojas-P I, Gallardo-Vara E, Recio-Poveda L, Bernabéu C, Botella LM. Review of Pharmacological Strategies with Repurposed Drugs for Hereditary Hemorrhagic Telangiectasia Related Bleeding. J Clin Med 2020; 9:E1766. [PMID: 32517280 PMCID: PMC7356836 DOI: 10.3390/jcm9061766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
The diagnosis of hereditary hemorrhagic telangiectasia (HHT) is based on the Curaçao criteria: epistaxis, telangiectases, arteriovenous malformations in internal organs, and family history. Genetically speaking, more than 90% of HHT patients show mutations in ENG or ACVRL1/ALK1 genes, both belonging to the TGF-β/BMP9 signaling pathway. Despite clear knowledge of the symptoms and genes of the disease, we still lack a definite cure for HHT, having just palliative measures and pharmacological trials. Among the former, two strategies are: intervention at "ground zero" to minimize by iron and blood transfusions in order to counteract anemia. Among the later, along the last 15 years, three different strategies have been tested: (1) To favor coagulation with antifibrinolytic agents (tranexamic acid); (2) to increase transcription of ENG and ALK1 with specific estrogen-receptor modulators (bazedoxifene or raloxifene), antioxidants (N-acetylcysteine, resveratrol), or immunosuppressants (tacrolimus); and (3) to impair the abnormal angiogenic process with antibodies (bevacizumab) or blocking drugs like etamsylate, and propranolol. This manuscript reviews the main strategies and sums up the clinical trials developed with drugs alleviating HHT.
Collapse
Affiliation(s)
- Virginia Albiñana
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Angel M. Cuesta
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Isabel de Rojas-P
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA;
| | - Lucía Recio-Poveda
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, 28040 Madrid, Spain
| | - Luisa María Botella
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 9 Ramiro de Maeztu Street, 28040 Madrid, Spain; (V.A.); (A.M.C.); (I.d.R.-P.); (L.R.-P.); (C.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, 28040 Madrid, Spain
| |
Collapse
|
25
|
Efficacy and Safety of a 0.1% Tacrolimus Nasal Ointment as a Treatment for Epistaxis in Hereditary Hemorrhagic Telangiectasia: A Double-Blind, Randomized, Placebo-Controlled, Multicenter Trial. J Clin Med 2020; 9:jcm9051262. [PMID: 32357559 PMCID: PMC7287684 DOI: 10.3390/jcm9051262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia is a rare but ubiquitous genetic disease. Epistaxis is the most frequent and life-threatening manifestation and tacrolimus, an immunosuppressive agent, appears to be an interesting new treatment option because of its anti-angiogenic properties. Our objective was to evaluate, six weeks after the end of the treatment, the efficacy on the duration of nosebleeds of tacrolimus nasal ointment, administered for six weeks to patients with hereditary hemorrhagic telangiectasia complicated by nosebleeds, and we performed a prospective, multicenter, randomized, placebo-controlled, double-blinded, ratio 1:1 phase II study. Patients were recruited from three French Hereditary Hemorrhagic Telangiectasia (HHT) centers between May 2017 and August 2018, with a six-week follow-up, and we included people aged over 18 years, diagnosed with hereditary hemorrhagic telangiectasia and epistaxis (total duration > 30 min/6 weeks prior to inclusion). Tacrolimus ointment 0.1% was self-administered by the patients twice daily. About 0.1 g of product was to be administered in each nostril with a cotton swab. A total of 50 patients was randomized and treated. Mean epistaxis duration before and after treatment in the tacrolimus group were 324.64 and 249.14 min, respectively, and in the placebo group 224.69 and 188.14 min, respectively. Epistaxis duration improved in both groups, with no significant difference in our main objective comparing epistaxis before and after treatment (p = 0.77); however, there was a significant difference in evolution when comparing epistaxis before and during treatment (p = 0.04). Toxicity was low and no severe adverse events were reported. In conclusion, tacrolimus nasal ointment, administered for six weeks, did not improve epistaxis in HHT patients after the end of the treatment. However, the good tolerance, associated with a significant improvement in epistaxis duration during treatment, encouraged us to perform a phase 3 trial on a larger patient population with a main outcome of epistaxis duration during treatment and a longer treatment time.
Collapse
|
26
|
Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, Rosenkranz S, Hoeper MM, Kiely DG. Current and future treatments of pulmonary arterial hypertension. Br J Pharmacol 2020; 178:6-30. [PMID: 32034759 DOI: 10.1111/bph.15016] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life-limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Sebastien Bonnet
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Steve Provencher
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France. AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Cologne, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Bevacizumab for treating Hereditary Hemorrhagic Telangiectasia patients with severe hepatic involvement or refractory anemia. PLoS One 2020; 15:e0228486. [PMID: 32032395 PMCID: PMC7006931 DOI: 10.1371/journal.pone.0228486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Objective To report our clinical experience with bevacizumab in a cohort of Hereditary Hemorrhagic Telangiectasia (HHT) patients with severe hepatic involvement and/or refractory anemia. Methods Observational, ambispective study of the Institutional Registry of HHT at Hospital Italiano de Buenos Aires. Patients were treated with bevacizumab due to iron deficiency refractory anemia secondary to nasal/gastrointestinal bleeding and/or high output cardiac failure. We describe basal clinical data, bevacizumab schedules, efficacy outcomes and adverse events. Wilcoxon signed ranks test and longitudinal analysis were conducted. Results Twenty adult patients were included from July 2013 to June 2019. Clinical indications were: 13 for anemia, 4 for heart failure and 3 for both. In the anemia group, median pretreatment hemoglobin was 8.1 g/dl [IQR: 7.2–8.4] and median transfusion requirement was 4 units [2–6]. In heart failure group, pretreatment median cardiac index was 4.5 L/min/m2 [4.1–5.6] and cardiac output was 8.3 L/min [7.5–9.2]. Bevacizumab 5 mg/kg/dose every 2 weeks for 6 applications was scheduled. By the end of induction, median hemoglobin at 3 months was 10.9 g/dl [9.5–12.8] (p = 0.01) and median transfusion requirement 0 units [0–1] (p<0.01), and this effect was more or less sustained during a year. Regarding heart failure group, two patients had complete hemodynamic response and achieved liver transplantation and two had partial response. No serious adverse events were registered. Conclusion Bevacizumab is a promising line of treatment for HHT patients with refractory anemia. For patients with high output cardiac failure, bevacizumab may be useful as bridge therapy awaiting for liver transplantation.
Collapse
|
28
|
Yokokawa T, Sugimoto K, Kimishima Y, Misaka T, Yoshihisa A, Morisaki H, Yamada O, Nakazato K, Ishida T, Takeishi Y. Pulmonary Hypertension and Hereditary Hemorrhagic Telangiectasia Related to an ACVRL1 Mutation. Intern Med 2020; 59:221-227. [PMID: 31511490 PMCID: PMC7008044 DOI: 10.2169/internalmedicine.3625-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension and hereditary hemorrhagic telangiectasia (HHT) have an association mediated by activin A receptor type II-like 1 (ACVRL1) gene pathogenic variants. A 30-year-old woman was previously admitted to a hospital due to lung hemorrhage, and was diagnosed with pulmonary hypertension, but stopped follow-up visits. At 48 years of age, she was admitted to our hospital and was diagnosed with HHT. Genetic testing revealed an ACVRL1 pathogenic variant. After the initiation of pulmonary vasodilator treatment, the patient's mean pulmonary artery pressure started to decrease from 43 mmHg, declining to 37 mmHg when she was 58 years of age. This is the first report describing the 28-year follow-up of an HHT and pulmonary hypertension patient with an ACVRL1 mutation.
Collapse
Affiliation(s)
- Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Pulmonary Hypertension, Fukushima Medical University, Japan
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Pulmonary Hypertension, Fukushima Medical University, Japan
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Japan
| | - Osamu Yamada
- Department of Pathology, National Cerebral and Cardiovascular Center, Japan
| | - Kazuhiko Nakazato
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| |
Collapse
|
29
|
Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020; 15:4. [PMID: 31910860 PMCID: PMC6945546 DOI: 10.1186/s13023-019-1281-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.
Collapse
Affiliation(s)
- Florian Robert
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Agnès Desroches-Castan
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sophie Dupuis-Girod
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.,Hospices Civils de Lyon, Service de Génétique, Hôpital Femme-Mère-Enfants, F-69677, Bron, France.,Centre National de Référence pour la Maladie de Rendu-Osler, F-69677, Bron, France
| | - Jean-Jacques Feige
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.
| |
Collapse
|
30
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|