1
|
Liu B, Azfar M, Legchenko E, West JA, Martin S, Van den Haute C, Baekelandt V, Wharton J, Howard L, Wilkins MR, Vangheluwe P, Morrell NW, Upton PD. ATP13A3 variants promote pulmonary arterial hypertension by disrupting polyamine transport. Cardiovasc Res 2024; 120:756-768. [PMID: 38626311 PMCID: PMC11135649 DOI: 10.1093/cvr/cvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/18/2024] Open
Abstract
AIMS Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.
Collapse
Affiliation(s)
- Bin Liu
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Mujahid Azfar
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Ekaterina Legchenko
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, Hills Road, Cambridge CB2 0QQ, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - John Wharton
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Luke Howard
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Martin R Wilkins
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Peter Vangheluwe
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicholas W Morrell
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Paul D Upton
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| |
Collapse
|
2
|
Montani D, Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Humbert M, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. [Genetic counselling and testing in pulmonary arterial hypertension - A consensus statement on behalf of the International Consortium for Genetic Studies in PAH - French version]. Rev Mal Respir 2023; 40:838-852. [PMID: 37923650 DOI: 10.1016/j.rmr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- D Montani
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France.
| | - C A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne; Laboratory for Molecular Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Allemagne
| | - C Belge
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - W K Chung
- Department of Pediatrics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, États-Unis
| | - S Gräf
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni; NIHR BioResource, for Translational Research - Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, Royaume-Uni
| | - E Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne
| | - M Humbert
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - R Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - J A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Espagne; CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Espagne; ITHACA, European Reference Network, Brussels, Belgique
| | - F Soubrier
- Département de génétique, Inserm UMR_S1166, AP-HP, hôpital Pitié-Salpêtrière, Institute for Cardio-metabolism and Nutrition (ICAN), Sorbonne université, Paris, France
| | - R C Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, Royaume-Uni
| | - N W Morrell
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni
| |
Collapse
|
3
|
Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Montani D, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. Genetic counselling and testing in pulmonary arterial hypertension: a consensus statement on behalf of the International Consortium for Genetic Studies in PAH. Eur Respir J 2023; 61:2201471. [PMID: 36302552 PMCID: PMC9947314 DOI: 10.1183/13993003.01471-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Catharina Belge
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NIHR BioResource for Translational Research - Rare Diseases, University of Cambridge, Cambridge, UK
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - David Montani
- Université Paris-Saclay, AP-HP, French Referral Center for Pulmonary Hypertension, Pulmonary Department, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Jair A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Florent Soubrier
- Sorbonne Université, AP-HP, Département de Génétique, INSERM UMR_S1166, Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nicholas W Morrell
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Gene panel diagnostics reveals new pathogenic variants in pulmonary arterial hypertension. Respir Res 2022; 23:74. [PMID: 35346192 PMCID: PMC8962083 DOI: 10.1186/s12931-022-01987-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background A genetic predisposition can lead to the rare disease pulmonary arterial hypertension (PAH). Most mutations have been identified in the gene BMPR2 in heritable PAH. However, as of today 15 further PAH genes have been described. The exact prevalence across these genes particularly in other PAH forms remains uncertain. We present the distribution of mutations across PAH genes identified at the largest German referral centre for genetic diagnostics in PAH over a course of > 3 years. Methods Our PAH-specific gene diagnostics panel was used to sequence 325 consecutive PAH patients from March 2017 to October 2020. For the first year the panel contained thirteen PAH genes: ACVRL1, BMPR1B, BMPR2, CAV1, EIF2AK4, ENG, GDF2, KCNA5, KCNK3, KLF2, SMAD4, SMAD9 and TBX4.These were extended by the three genes ATP13A3, AQP1 and SOX17 from March 2018 onwards following the genes’ discovery. Results A total of 79 mutations were identified in 74 patients (23%). Of the variants 51 (65%) were located in the gene BMPR2 while the other 28 variants were found in ten further PAH genes. We identified disease-causing variants in the genes AQP1, KCNK3 and SOX17 in families with at least two PAH patients. Mutations were not only detected in patients with heritable and idiopathic but also with associated PAH. Conclusions Genetic defects were identified in 23% of the patients in a total of 11 PAH genes. This illustrates the benefit of the specific gene panel containing all known PAH genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01987-x.
Collapse
|
5
|
Welch CL, Chung WK. Channelopathy Genes in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:265. [PMID: 35204766 PMCID: PMC8961593 DOI: 10.3390/biom12020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. The underlying pathogenetic mechanisms are heterogeneous and current therapies aim to decrease pulmonary vascular resistance but no curative treatments are available. Causal genetic variants can be identified in ~13% of adults and 43% of children with PAH. Knowledge of genetic diagnoses can inform clinical management of PAH, including multimodal medical treatment, surgical intervention and transplantation decisions, and screening for associated conditions, as well as risk stratification for family members. Roles for rare variants in three channelopathy genes-ABCC8, ATP13A3, and KCNK3-have been validated in multiple PAH cohorts, and in aggregate explain ~2.7% of PAH cases. Complete or partial loss of function has been demonstrated for PAH-associated variants in ABCC8 and KCNK3. Channels can be excellent targets for drugs, and knowledge of mechanisms for channel mutations may provide an opportunity for the development of PAH biomarkers and novel therapeutics for patients with hereditary PAH but also potentially more broadly for all patients with PAH.
Collapse
Affiliation(s)
- Carrie L. Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Wendy K. Chung
- Department of Pediatrics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
7
|
Machado RD, Welch CL, Haimel M, Bleda M, Colglazier E, Coulson JD, Debeljak M, Ekstein J, Fineman JR, Golden WC, Griffin EL, Hadinnapola C, Harris MA, Hirsch Y, Hoover-Fong JE, Nogee L, Romer LH, Vesel S, Gräf S, Morrell NW, Southgate L, Chung WK. Biallelic variants of ATP13A3 cause dose-dependent childhood-onset pulmonary arterial hypertension characterised by extreme morbidity and mortality. J Med Genet 2021; 59:906-911. [PMID: 34493544 PMCID: PMC9411922 DOI: 10.1136/jmedgenet-2021-107831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Background The molecular genetic basis of pulmonary arterial hypertension (PAH) is heterogeneous, with at least 26 genes displaying putative evidence for disease causality. Heterozygous variants in the ATP13A3 gene were recently identified as a new cause of adult-onset PAH. However, the contribution of ATP13A3 risk alleles to child-onset PAH remains largely unexplored. Methods and results We report three families with a novel, autosomal recessive form of childhood-onset PAH due to biallelic ATP13A3 variants. Disease onset ranged from birth to 2.5 years and was characterised by high mortality. Using genome sequencing of parent–offspring trios, we identified a homozygous missense variant in one case, which was subsequently confirmed to cosegregate with disease in an affected sibling. Independently, compound heterozygous variants in ATP13A3 were identified in two affected siblings and in an unrelated third family. The variants included three loss of function variants (two frameshift, one nonsense) and two highly conserved missense substitutions located in the catalytic phosphorylation domain. The children were largely refractory to treatment and four died in early childhood. All parents were heterozygous for the variants and asymptomatic. Conclusion Our findings support biallelic predicted deleterious ATP13A3 variants in autosomal recessive, childhood-onset PAH, indicating likely semidominant dose-dependent inheritance for this gene.
Collapse
Affiliation(s)
- Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Haimel
- NIHR Bioresource - Rare Diseases, University of Cambridge, Cambridge, Cambridgeshire, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Marta Bleda
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Elizabeth Colglazier
- Department of Nursing, University of California San Francisco, San Francisco, California, USA
| | - John D Coulson
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marusa Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Jeffrey R Fineman
- Department of Pediatrics and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | | | - Emily L Griffin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Charaka Hadinnapola
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | | | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | | | - Lawrence Nogee
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lewis H Romer
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Anesthesiology and Critical Care Medicine, Cell Biology, Biomedical Engineering, and the Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samo Vesel
- Department of Cardiology, University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia.,Department of Paediatrics, Teaching Hospital Celje, Celje, Slovenia
| | | | - Stefan Gräf
- NIHR Bioresource - Rare Diseases, University of Cambridge, Cambridge, Cambridgeshire, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Nicholas W Morrell
- NIHR Bioresource - Rare Diseases, University of Cambridge, Cambridge, Cambridgeshire, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA .,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Gelinas SM, Benson CE, Khan MA, Berger RMF, Trembath RC, Machado RD, Southgate L. Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1328. [PMID: 33187088 PMCID: PMC7696319 DOI: 10.3390/genes11111328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance.
Collapse
Affiliation(s)
- Simone M. Gelinas
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK; (S.M.G.); (C.E.B.); (M.A.K.)
| | - Clare E. Benson
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK; (S.M.G.); (C.E.B.); (M.A.K.)
| | - Mohammed A. Khan
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK; (S.M.G.); (C.E.B.); (M.A.K.)
| | - Rolf M. F. Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children’s Hospital, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| | - Richard C. Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK;
| | - Rajiv D. Machado
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK; (S.M.G.); (C.E.B.); (M.A.K.)
- Institute of Medical and Biomedical Education, St George’s University of London, London SW17 0RE, UK
| | - Laura Southgate
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK; (S.M.G.); (C.E.B.); (M.A.K.)
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK;
| |
Collapse
|
9
|
Anthi A, Stagaki E, Rallidis L, Konstantonis D, Evangelopoulos ME, Voumvourakis K, Armaganidis A, Orfanos SE. Is pulmonary arterial hypertension associated with interferon-β therapy for multiple sclerosis reversible? A case study to explore the complexity. ERJ Open Res 2020; 6:00328-2019. [PMID: 32201683 PMCID: PMC7073410 DOI: 10.1183/23120541.00328-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/06/2020] [Indexed: 11/05/2022] Open
Abstract
The possible causal relationship between interferon-β exposure and pulmonary arterial hypertension development requires close follow-up of patients on treatment with interferon-β http://bit.ly/2OPGSVP.
Collapse
Affiliation(s)
- Anastasia Anthi
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece.,2nd Dept of Critical Care, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Eleni Stagaki
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece
| | - Loukianos Rallidis
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece.,2nd Dept of Cardiology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Dimitrios Konstantonis
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece.,2nd Dept of Critical Care, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, Dept of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Konstantinos Voumvourakis
- 2nd Dept of Neurology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Apostolos Armaganidis
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece.,2nd Dept of Critical Care, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- Pulmonary Hypertension Clinic, "Attikon" Hospital, Athens, Greece.,2nd Dept of Critical Care, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| |
Collapse
|