1
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024. [PMID: 38817090 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | - William J Doyle
- Department of Biological Sciences, Boise State University, ID, USA
| | - Kristina Hill
- Department of Biological Sciences, Boise State University, ID, USA
| | | |
Collapse
|
2
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
4
|
Correale J, Marrodan M. Multiple sclerosis and obesity: The role of adipokines. Front Immunol 2022; 13:1038393. [PMID: 36457996 PMCID: PMC9705772 DOI: 10.3389/fimmu.2022.1038393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2023] Open
Abstract
Multiple Sclerosis (MS), a chronic inflammatory disease of the central nervous system that leads to demyelination and neurodegeneration has been associated with various environmental and lifestyle factors. Population-based studies have provided evidence showing the prevalence of MS is increasing worldwide. Because a similar trend has been observed for obesity and metabolic syndrome, interest has grown in possible underlying biological mechanisms shared by both conditions. Adipokines, a family of soluble factors produced by adipose tissue that participate in a wide range of biological functions, contribute to a low state of chronic inflammation observed in obesity, and influence immune function, metabolism, and nutritional state. In this review, we aim to describe epidemiological and biological factors common to MS and obesity, as well as provide an update on current knowledge of how different pro- and anti-inflammatory adipokines participate as immune response mediators in MS, as well as in the animal model for MS, namely, experimental autoimmune encephalomyelitis (EAE). Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination, and neurodegeneration. Although its pathogenesis is not yet fully understood, there is considerable evidence to suggest MS arises from complex interactions between individual genetic susceptibility and external environmental factors. In recent decades, population-based studies have provided evidence indicating the prevalence of MS is increasing worldwide, in parallel with the rise in obesity and metabolic syndrome. This synchronous increment in the incidence of both MS and obesity has led to a search for potential biological mechanisms linking both conditions. Notably, a large number of studies have established significant correlation between obesity and higher prevalence, or worse prognosis, of several immune-mediated conditions. Fat tissue has been found to produce a variety of soluble factors named adipokines. These mediators, secreted by both adipocytes as well as diverse immune cells, participate in a wide range of biological functions, further strengthening the concept of a link between immune function, metabolism, and nutritional state. Because obesity causes overproduction of pro-inflammatory adipokines (namely leptin, resistin and visfatin) and reduction of anti-inflammatory adipokines (adiponectin and apelin), adipose tissue dysregulation would appear to contribute to a state of chronic, low-grade inflammation favoring the development of disease. In this review, we present a summary of current knowledge related to the pathological effects of different adipokines, prevalent in obese MS patients.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
5
|
Makkawi S, Aljabri A, Bin Lajdam G, Albakistani A, Aljohani A, Labban S, Felemban R. Effect of Seasonal Variation on Relapse Rate in Patients With Relapsing-Remitting Multiple Sclerosis in Saudi Arabia. Front Neurol 2022; 13:862120. [PMID: 35359633 PMCID: PMC8964008 DOI: 10.3389/fneur.2022.862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is becoming a global subject of study in which some demographic variations are thought to be correlated with its activity. Relapsing-remitting multiple sclerosis (RRMS) is the most common demyelinating disorder, characterized by periods of exacerbating attacks, followed by partial or complete remission. Several factors might play a role in disease progression and relapse frequency, such as vitamin D, ultraviolet B radiation, estrogen levels, smoking, obesity, and unhealthy lifestyles. In this study, we identified the relationship between seasonal variation and relapse rate and correlated the latter with sex, age, and vitamin D levels in patients with RRMS in Jeddah, Saudi Arabia. We retrospectively collected data from 182 RRMS patients between 2016 and 2021. A total of 219 relapses were documented in 106 patients (58.2 %). The relapse per patient ratio showed a sinusoidal pattern, peaking in January at a rate of 0.49 and troughed in June at a rate of 0.18. There was no difference in relapse rates between men and women (p =0.280). There was a significant negative correlation between vitamin D levels and relapse rate (r = −0.312, p =0.024). Therefore, the relapse rate was higher during the winter and was correlated with low vitamin D levels. However, relapses are likely multifactorial, and more population-based studies are needed to understand the role of environmental variables in MS exacerbation. A better understanding of this relationship will allow for improved treatment and possibly better prevention of relapse.
Collapse
Affiliation(s)
- Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,Department of Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Ammar Aljabri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ghassan Bin Lajdam
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ammar Albakistani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Aljohani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Suhail Labban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Razaz Felemban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Tur C, Dubessy AL, Otero-Romero S, Amato MP, Derfuss T, Di Pauli F, Iacobaeus E, Mycko M, Abboud H, Achiron A, Bellinvia A, Boyko A, Casanova JL, Clifford D, Dobson R, Farez MF, Filippi M, Fitzgerald KC, Fonderico M, Gouider R, Hacohen Y, Hellwig K, Hemmer B, Kappos L, Ladeira F, Lebrun-Frénay C, Louapre C, Magyari M, Mehling M, Oreja-Guevara C, Pandit L, Papeix C, Piehl F, Portaccio E, Ruiz-Camps I, Selmaj K, Simpson-Yap S, Siva A, Sorensen PS, Sormani MP, Trojano M, Vaknin-Dembinsky A, Vukusic S, Weinshenker B, Wiendl H, Winkelmann A, Zuluaga Rodas MI, Tintoré M, Stankoff B. The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021. Mult Scler 2022; 28:1424-1456. [PMID: 35196927 DOI: 10.1177/13524585211069068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research.
Collapse
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anne-Laure Dubessy
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| | - Susana Otero-Romero
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Franziska Di Pauli
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ellen Iacobaeus
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marcin Mycko
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Cleveland, OH, USA
| | - Anat Achiron
- Sheba Medical Center at Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angelo Bellinvia
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia/Institute of Clinical Neurology and Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - David Clifford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK/Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Mauricio F Farez
- Center for Research on Neuroimmunological Diseases, FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Kathryn C Fitzgerald
- Department of Neurology and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mattia Fonderico
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Riadh Gouider
- Department of Neurology, Razi Hospital, Tunis, Tunisia
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Filipa Ladeira
- Neurology Department, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Christine Lebrun-Frénay
- CRCSEP Côte d'Azur, CHU de Nice Pasteur 2, UR2CA-URRIS, Université Nice Côte d'Azur, Nice, France
| | - Céline Louapre
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias Mehling
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Idissc, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Caroline Papeix
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Fredrik Piehl
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Isabel Ruiz-Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Krzysztof Selmaj
- Collegium Medicum, Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland/Center of Neurology, Lodz, Poland
| | - Steve Simpson-Yap
- Clinical Outcomes Research Unit, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Aksel Siva
- Department of Neurology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Per Soelberg Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Adi Vaknin-Dembinsky
- Hadassah-Hebrew University Medical Center, Department of Neurology, The Agnes-Ginges Center for Neurogenetics Jerusalem, Jerusalem, Israel
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France/Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France/Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Münster, Germany
| | | | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bruno Stankoff
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| |
Collapse
|
7
|
Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine Attenuates Experimental Multiple Sclerosis Through Activation of Aryl Hydrocarbon Receptor. Front Pharmacol 2021; 11:619265. [PMID: 33569008 PMCID: PMC7868334 DOI: 10.3389/fphar.2020.619265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tryptamine is a naturally occurring monoamine alkaloid which has been shown to act as an aryl hydrocarbon receptor (AHR) agonist. It is produced in large quantities from the catabolism of the essential amino acid tryptophan by commensal microorganisms within the gastrointestinal (GI) tract of homeothermic organisms. Previous studies have established microbiota derived AHR ligands as potent regulators of neuroinflammation, further defining the role the gut-brain axis plays in the complex etiology in multiple sclerosis (MS) progression. In the current study, we tested the ability of tryptamine to ameliorate symptoms of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We found that tryptamine administration attenuated clinical signs of paralysis in EAE mice, decreased the number of infiltrating CD4+ T cells in the CNS, Th17 cells, and RORγ T cells while increasing FoxP3+Tregs. To test if tryptamine acts through AHR, myelin oligodendrocyte glycoprotein (MOG)-sensitized T cells from wild-type or Lck-Cre AHRflox/flox mice that lacked AHR expression in T cells, and cultured with tryptamine, were transferred into wild-type mice to induce passive EAE. It was noted that in these experiments, while cells from wild-type mice treated with tryptamine caused marked decrease in paralysis and attenuated neuroinflammation in passive EAE, similar cells from Lck-Cre AHRflox/flox mice treated with tryptamine, induced significant paralysis symptoms and heightened neuroinflammation. Tryptamine treatment also caused alterations in the gut microbiota and promoted butyrate production. Together, the current study demonstrates for the first time that tryptamine administration attenuates EAE by activating AHR and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mike Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
8
|
Siddiqui AF, Alsabaani AA, Abouelyazid AY, Wassel YI. Risk factors of multiple sclerosis in Aseer region, Kingdom of Saudi Arabia A case-control study. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2021; 26:69-76. [PMID: 33530046 PMCID: PMC8015505 DOI: 10.17712/nsj.2021.1.20200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022]
Abstract
OBJECTIVES To investigate socio-demographic and environmental risk factors of multiple sclerosis (MS) in Aseer region, Kingdom of Saudi Arabia (KSA). METHODS This was a retrospective, record, and interview based matched case control study completed in the neurology clinics at tertiary hospitals in Aseer, KSA. It included 82 MS cases and 82 controls. The study used a structured questionnaire to collect information on key socio-demographic and environmental exposures. The main outcome measure was a statistically significant relationship of key socio-demographic and environmental risk factors with MS. RESULTS A total of 82 registered patients, 50 were females, resulting in a female to male ratio of 1.56:1. Various risk factors were found to have a statistically significant association with MS which included female (OR=3.01, 95% CI [1.59:5.69]; p<0.001), family history of MS (OR=2.1, 95%CI [2.4:1.7] p=0.04), low exposure to sunlight (OR=2.02, 95%CI [2.53: 9.9] p<0.001), only fed breast milk in childhood (OR=0.46, 95%CI [0.55:0.39]; p<0.001), parental consanguinity (OR=2.17 95%CI [4.11:1.14] p=0.017), history of chickenpox (OR=15.59 95% CI [68.7:3.55]; p<0.01). On using multiple logistic regression, chicken pox infection (AOR=0.045, 95%CI [0.015-0.135]; p=0.001)and low sun-exposure (AOR=.271, 95%CI [.121-.609]; p<0.05) were deduced as the predictors of MS in this region. CONCLUSION This study offers unique insights into the risk factors of MS. Low sun exposure and childhood chickenpox are significantly related to the development of MS in the Aseer region.
Collapse
Affiliation(s)
- Aesha F. Siddiqui
- From the Department of Family and Community Medicine (Siddiqui), from the Department of Family and Community Medicine (Alsabaani), King Khalid University, Abha; from the Department of Preventive Medicine (Abouelyazid), from the Department of Neurology (Wassel), Armed Forced Hospital Southern Region, Khamis Mushayt, Kingdom of Saudi Arabia; and from the Department of Public Health (Abouelyazid, Wassel), Faculty of Medicine, Mansoura University, Egypt
| | - Abdullah A. Alsabaani
- From the Department of Family and Community Medicine (Siddiqui), from the Department of Family and Community Medicine (Alsabaani), King Khalid University, Abha; from the Department of Preventive Medicine (Abouelyazid), from the Department of Neurology (Wassel), Armed Forced Hospital Southern Region, Khamis Mushayt, Kingdom of Saudi Arabia; and from the Department of Public Health (Abouelyazid, Wassel), Faculty of Medicine, Mansoura University, Egypt
| | - Ahmed Y. Abouelyazid
- From the Department of Family and Community Medicine (Siddiqui), from the Department of Family and Community Medicine (Alsabaani), King Khalid University, Abha; from the Department of Preventive Medicine (Abouelyazid), from the Department of Neurology (Wassel), Armed Forced Hospital Southern Region, Khamis Mushayt, Kingdom of Saudi Arabia; and from the Department of Public Health (Abouelyazid, Wassel), Faculty of Medicine, Mansoura University, Egypt
| | - Yasser I. Wassel
- From the Department of Family and Community Medicine (Siddiqui), from the Department of Family and Community Medicine (Alsabaani), King Khalid University, Abha; from the Department of Preventive Medicine (Abouelyazid), from the Department of Neurology (Wassel), Armed Forced Hospital Southern Region, Khamis Mushayt, Kingdom of Saudi Arabia; and from the Department of Public Health (Abouelyazid, Wassel), Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
9
|
"Begging the Question"-Does Toxocara Infection/Exposure Associate with Multiple Sclerosis-Risk? Pathogens 2020; 9:pathogens9110938. [PMID: 33187271 PMCID: PMC7696196 DOI: 10.3390/pathogens9110938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Although the cause of multiple sclerosis (MS) is unclear, infectious agents, including some parasitic roundworms (nematodes), have been proposed as possible risk factors or contributors. Here, we conducted a systematic review and meta-analysis of published observational studies to evaluate whether there is a possible association between infection with, or exposure to, one or more members of the genus Toxocara (phylum Nematoda; superfamily Ascaridoidea) and MS. We undertook a search of public literature databases to identify relevant studies and then used a random-effects meta-analysis model to generate the pooled odds ratio (OR) and 95% confidence intervals (CIs). This search identified six of a total of 1371 articles that were relevant to the topic; these published studies involved totals of 473 MS patients and 647 control subjects. Anti-Toxocara IgG serum antibodies were detected in 62 MS patients and 37 controls, resulting in respective seroprevalences of 13.1% (95% CI: 8.2-20.3) and 4.8% (95% CI: 2.5-9.2), indicating an association (pooled OR, 3.01; 95% CI: 1.46-6.21). Because of the publication bias identified (six eligible studies), well-designed and -controlled studies are required in the future to rigorously test the hypothesis that Toxocara infection/exposure has an association with MS.
Collapse
|
10
|
Toxoplasma gondii and multiple sclerosis: a population-based case-control study. Sci Rep 2020; 10:18855. [PMID: 33139781 PMCID: PMC7606604 DOI: 10.1038/s41598-020-75830-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
According to the hygiene hypothesis, parasites could have a protective role in the development of Multiple Sclerosis (MS). Our aim was to assess the association between presence of anti-Toxoplasma gondii antibodies and MS. MS patients were randomly selected from a population-based incident cohort of MS patients in the city of Catania. Age and sex-matched controls were randomly selected from the general population. Clinical and sociodemographic variables were recorded with a structured questionnaire and a blood sample was taken for serological analysis. Specific T. gondii IgG have been detected with a commercial kit. Adjusted Odds Ratios (ORs) were estimated using unconditional logistic regression. 129 MS subjects (66.7% women with a mean age 44.7 ± 11.0 years) and 287 controls (67.3% women with a mean age 48.1 ± 15.6 years) have been enrolled in the study. Anti-T. gondii antibodies were found in 38 cases (29.5%) and 130 controls (45.4%) giving an adjusted OR of 0.56 (95%CI 0.34–0.93). History of mononucleosis and high educational level were significantly associated with MS (adjOR 2.22 and 1.70 respectively) while an inverse association was found between high educational level and T. gondii seropositivity (adjOR 0.42). Our results further support the protective role of parasitic infections in MS.
Collapse
|
11
|
Assessment of Biochemical and Densitometric Markers of Calcium-Phosphate Metabolism in the Groups of Patients with Multiple Sclerosis Selected due to the Serum Level of Vitamin D 3. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9329123. [PMID: 30211230 PMCID: PMC6126066 DOI: 10.1155/2018/9329123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022]
Abstract
Background In addition to the widely known effect of vitamin D3 (vitD3) on the skeleton, its role in the regulation of the immune response was also confirmed. Aim The assessment of biochemical and densitometric markers of calcium-phosphate metabolism in the groups of patients with relapsing-remitting multiple sclerosis (RRMS) selected due to the serum level of vitamin D3. Methods The concentrations of biochemical markers and indices of lumbar spine bone densitometry (DXA) were determined in 82 patients divided into vitamin D3 deficiency (VitDd), insufficiency (VitDi), and normal vitamin D3 level (VitDn) subgroups. Results The highest level of the parathyroid hormone (PTH) and the highest prevalence of hypophosphatemia and osteopenia were demonstrated in VitDd group compared to VitDi and VitDn. However, in VitDd, VitDi, and VitDn subgroups no significant differences were observed in the levels of alkaline phosphatase (ALP) and ionized calcium (Ca2+) and in DXA indices. A negative correlation was observed between the level of vitamin D3 and the Expanded Disability Status Scale (EDSS) in the whole MS group. The subgroups were significantly different with respect to the EDSS scores and the frequency of complaints related to walking according to the EQ-5D. Conclusions It is necessary to assess calcium-phosphate metabolism and supplementation of vitamin D3 in RRMS patients. The higher the clinical stage of the disease assessed with the EDSS, the lower the level of vitamin D3 in blood serum. Subjectively reported complaints related to difficulties with walking were reflected in the EDSS in VitDd patients.
Collapse
|
12
|
Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms. Int J Mol Sci 2017; 18:ijms18102141. [PMID: 29027962 PMCID: PMC5666823 DOI: 10.3390/ijms18102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
The evolutionary response to endemic infections with parasitic worms (helminth) was the development of a distinct regulatory immune profile arising from the need to encapsulate the helminths while simultaneously repairing tissue damage. According to the old friend's hypothesis, the diminished exposure to these parasites in the developed world has resulted in a dysregulated immune response that contributes to the increased incidence of immune mediated diseases such as Multiple Sclerosis (MS). Indeed, the global distribution of MS shows an inverse correlation to the prevalence of helminth infection. On this basis, the possibility of treating MS with helminth infection has been explored in animal models and phase 1 and 2 human clinical trials. However, the possibility also exists that the individual immune modulatory molecules secreted by helminth parasites may offer a more defined therapeutic strategy.
Collapse
|