1
|
Murphy SP, Sultana S, Zern EK, Tower-Rader A, Churchill JL, Stefanescu Schmidt AC, Huang S, Learn CP, Churchill TW, DeFaria Yeh D, Yucel E. Multimodality Imaging Evaluation of Diseases of the Pulmonic Valve and Right Ventricular Outflow Tract for the Adult Cardiologist. Circ Cardiovasc Imaging 2025; 18:e017126. [PMID: 39801475 PMCID: PMC11835535 DOI: 10.1161/circimaging.124.017126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Disorders of the pulmonic valve (PV) receive considerably less attention than other forms of valvular heart disease. Due to the dramatically improved survival of children with congenital heart disease over the last 5 decades, there has been a steady increase in the prevalence of adults with congenital heart disease, which necessitates that clinicians become familiar with the anatomy and the evaluation of right ventricular outflow tract and PV anomalies. A multimodality imaging approach using echocardiography, cardiac computed tomography, and magnetic resonance imaging is essential for a comprehensive evaluation of the anatomy and function of the right ventricular outflow tract, PV, and supravalvular region. As clinical presentation is often insidious with nonspecific symptoms, yet morbidity and mortality associated with severe untreated PV disease are significant, a high index of suspicion coupled with appropriate use of imaging techniques is critical in facilitating timely diagnosis and treatment. In this review, we aim to present a comprehensive approach to the diagnosis of PV disease and associated right ventricular outflow tract or supravalvular pulmonary stenosis, including optimal use of multimodality imaging to facilitate timely diagnosis, optimize therapeutic strategies, enhance postprocedural surveillance, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seán P Murphy
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
- Division of Radiology (S.P.M., S.S., A.T.-R.), Massachusetts General Hospital, Boston
| | - Sadia Sultana
- Division of Radiology (S.P.M., S.S., A.T.-R.), Massachusetts General Hospital, Boston
| | - Emily K Zern
- Division of Cardiology, Los Angeles General Medical Center, CA (E.K.Z.)
| | - Albree Tower-Rader
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
- Division of Radiology (S.P.M., S.S., A.T.-R.), Massachusetts General Hospital, Boston
| | | | - Ada C Stefanescu Schmidt
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| | - Sihong Huang
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| | - Christopher P Learn
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| | - Timothy W Churchill
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| | - Doreen DeFaria Yeh
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| | - Evin Yucel
- Division of Cardiology (S.P.M., A.T.-R., A.C.S.S., S.H., C.P.L., T.W.C., D.F.Y., E.Y.), Massachusetts General Hospital, Boston
| |
Collapse
|
2
|
Yuan X, Kang H, Qin Y, Li H, Li L, Li Y, Wang M, Li N, Deng Y, Li X, Yu P, Wang Y, Liu Z. Biomarkers for congenital ventricular outflow tract malformations based on maternal serum lipid metabolomics analysis. BMC Pregnancy Childbirth 2024; 24:547. [PMID: 39164614 PMCID: PMC11334326 DOI: 10.1186/s12884-024-06738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The congenital ventricular outflow tract malformations (CVOTMs) is a major congenital heart diseases (CHDs) subtype, and its pathogenesis is complex and unclear. Lipid metabolic plays a crucial role in embryonic cardiovascular development. However, due to the limited types of detectable metabolites in previous studies, findings on lipid metabolic and CHDs are still inconsistent, and the possible mechanism of CHDs remains unclear. METHODS The nest case-control study obtained subjects from the multicenter China Teratology Birth Cohort (CTBC), and maternal serum from the pregnant women enrolled during the first trimester was utilized. The subjects were divided into a discovery set and a validation set. The metabolomics of CVOTMs and normal fetuses were analyzed by targeted lipid metabolomics. Differential comparison, random forest and lasso regression were used to screen metabolic biomarkers. RESULTS The lipid metabolites were distributed differentially between the cases and controls. Setting the selection criteria of P value < 0.05, and fold change (FC) > 1.2 or < 0.833, we screened 70 differential metabolites. Within the prediction model by random forest and lasso regression, DG (14:0_18:0), DG (20:0_18:0), Cer (d18:2/20:0), Cer (d18:1/20:0) and LPC (0:0/18:1) showed good prediction effects in discovery and validation sets. Differential metabolites were mainly concentrated in glycerolipid and glycerophospholipids metabolism, insulin resistance and lipid & atherosclerosis pathways, which may be related to the occurrence and development of CVOTMs. CONCLUSION Findings in this study provide a new metabolite data source for the research on CHDs. The differential metabolites and involved metabolic pathways may suggest new ideas for further mechanistic exploration of CHDs, and the selected biomarkers may provide some new clues for detection of COVTMs.
Collapse
Affiliation(s)
- Xuelian Yuan
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuqin Qin
- Department of Obstetrics and Gynecology, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Haibo Li
- Department of Obstetrics and Gynecology, Fujian provincial Maternal and Child Healthcare Hospital, Fuzhou, Fujian, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Nana Li
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaohong Li
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ping Yu
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Zhen Liu
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Josowitz R, Rogers LS. Double outlet right ventricle - the 50% rule has always been about the conus. Curr Opin Cardiol 2024; 39:348-355. [PMID: 38391276 DOI: 10.1097/hco.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW There has been much variability in the definition of double outlet right ventricle (DORV) spanning the last century. Historically, emphasis has been placed on the assignment of the great arteries to the right ventricle as a definition of DORV. In this review, we aim to underscore the importance of conal muscle, rather than rules surrounding assignment of great arteries to ventricles. We will be outlining the variability in patient anatomy that results from variations in conal muscle development in DORV, which may not fit perfectly into predefined constructs. This anatomic variability directly determines physiology and surgical repair options. RECENT FINDINGS There is a growing appreciation of the utility of cross-sectional imaging in complex DORV, and the generation of patient-specific 3D models with virtual reality simulations for surgical planning. These models improve the prediction of candidacy for biventricular repair and allow the mapping of complex baffle pathways preoperatively. SUMMARY DORV is not a disease entity in itself, but rather a vast spectrum of disorders associated with maldevelopment of conal muscle and often abnormal expansion of one the great vessels. Patient-specific 3D models will be crucial for improved surgical planning and patient outcomes.
Collapse
Affiliation(s)
- Rebecca Josowitz
- The Cardiac Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
4
|
Waheed‐Ullah Q, Wilsdon A, Abbad A, Rochette S, Bu'Lock F, Hitz M, Dombrowsky G, Cuello F, Brook JD, Loughna S. Effect of deletion of the protein kinase PRKD1 on development of the mouse embryonic heart. J Anat 2024; 245:70-83. [PMID: 38419169 PMCID: PMC11161829 DOI: 10.1111/joa.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly, with an overall incidence of approximately 1% in the United Kingdom. Exome sequencing in large CHD cohorts has been performed to provide insights into the genetic aetiology of CHD. This includes a study of 1891 probands by our group in collaboration with others, which identified three novel genes-CDK13, PRKD1, and CHD4, in patients with syndromic CHD. PRKD1 encodes a serine/threonine protein kinase, which is important in a variety of fundamental cellular functions. Individuals with a heterozygous mutation in PRKD1 may have facial dysmorphism, ectodermal dysplasia and may have CHDs such as pulmonary stenosis, atrioventricular septal defects, coarctation of the aorta and bicuspid aortic valve. To obtain a greater appreciation for the role that this essential protein kinase plays in cardiogenesis and CHD, we have analysed a Prkd1 transgenic mouse model (Prkd1em1) carrying deletion of exon 2, causing loss of function. High-resolution episcopic microscopy affords detailed morphological 3D analysis of the developing heart and provides evidence for an essential role of Prkd1 in both normal cardiac development and CHD. We show that homozygous deletion of Prkd1 is associated with complex forms of CHD such as atrioventricular septal defects, and bicuspid aortic and pulmonary valves, and is lethal. Even in heterozygotes, cardiac differences occur. However, given that 97% of Prkd1 heterozygous mice display normal heart development, it is likely that one normal allele is sufficient, with the defects seen most likely to represent sporadic events. Moreover, mRNA and protein expression levels were investigated by RT-qPCR and western immunoblotting, respectively. A significant reduction in Prkd1 mRNA levels was seen in homozygotes, but not heterozygotes, compared to WT littermates. While a trend towards lower PRKD1 protein expression was seen in the heterozygotes, the difference was only significant in the homozygotes. There was no compensation by the related Prkd2 and Prkd3 at transcript level, as evidenced by RT-qPCR. Overall, we demonstrate a vital role of Prkd1 in heart development and the aetiology of CHD.
Collapse
Affiliation(s)
- Qazi Waheed‐Ullah
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Anna Wilsdon
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Aseel Abbad
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Sophie Rochette
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Frances Bu'Lock
- East Midlands Congenital Heart CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Marc‐Phillip Hitz
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Gregor Dombrowsky
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research CenterUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/LübeckUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - J. David Brook
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
5
|
Pankewitz LR, Hustad KG, Govil S, Perry JC, Hegde S, Tang R, Omens JH, Young AA, McCulloch AD, Arevalo HJ. A universal biventricular coordinate system incorporating valve annuli: Validation in congenital heart disease. Med Image Anal 2024; 93:103091. [PMID: 38301348 PMCID: PMC11227738 DOI: 10.1016/j.media.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Universal coordinate systems have been proposed to facilitate anatomic registration between three-dimensional images, data and models of the ventricles of the heart. However, current universal ventricular coordinate systems do not account for the outflow tracts and valve annuli where the anatomy is complex. Here we propose an extension to the 'Cobiveco' biventricular coordinate system that also accounts for the intervalvular bridges of the base and provides a tool for anatomically consistent registration between widely varying biventricular shapes. CobivecoX uses a novel algorithm to separate intervalvular bridges and assign new coordinates, including an inflow-outflow coordinate, to describe local positions in these regions uniquely and consistently. Anatomic consistency of registration was validated using curated three-dimensional biventricular shape models derived from cardiac MRI measurements in normal hearts and hearts from patients with congenital heart diseases. This new method allows the advantages of universal cardiac coordinates to be used for three-dimensional ventricular imaging data and models that include the left and right ventricular outflow tracts and valve annuli.
Collapse
Affiliation(s)
- Lisa R Pankewitz
- Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway; Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Kristian G Hustad
- Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Sachin Govil
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - James C Perry
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sanjeet Hegde
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Renxiang Tang
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alistair A Young
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
6
|
Lopez L, Saurers DL, Barker PCA, Cohen MS, Colan SD, Dwyer J, Forsha D, Friedberg MK, Lai WW, Printz BF, Sachdeva R, Soni-Patel NR, Truong DT, Young LT, Altman CA. Guidelines for Performing a Comprehensive Pediatric Transthoracic Echocardiogram: Recommendations From the American Society of Echocardiography. J Am Soc Echocardiogr 2024; 37:119-170. [PMID: 38309834 DOI: 10.1016/j.echo.2023.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Echocardiography is a fundamental component of pediatric cardiology, and appropriate indications have been established for its use in the setting of suspected, congenital, or acquired heart disease in children. Since the publication of guidelines for pediatric transthoracic echocardiography in 2006 and 2010, advances in knowledge and technology have expanded the scope of practice beyond the use of traditional modalities such as two-dimensional, M-mode, and Doppler echocardiography to evaluate the cardiac segmental structures and their function. Adjunct modalities such as contrast, three-dimensional, and speckle-tracking echocardiography are now used routinely at many pediatric centers. Guidelines and recommendations for the use of traditional and newer adjunct modalities in children are described in detail in this document. In addition, suggested protocols related to standard operations, infection control, sedation, and quality assurance and improvement are included to provide an organizational structure for centers performing pediatric transthoracic echocardiograms.
Collapse
Affiliation(s)
- Leo Lopez
- Department of Pediatrics Cardiology, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, California.
| | - Daniel L Saurers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Piers C A Barker
- Duke Children's Hospital & Health Center, Duke University, Durham, North Carolina
| | - Meryl S Cohen
- Cardiac Center and Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeanine Dwyer
- Pediatric Heart Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Daniel Forsha
- Ward Family Heart Center, Children's Mercy Kansas City Hospital, Kansas City, Missouri
| | - Mark K Friedberg
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Wyman W Lai
- Division of Pediatric Cardiology, University of California School of Medicine, Irvine, California; Department of Pediatrics, Children's Hospital of Orange County, Orange, California
| | - Beth F Printz
- Rady Children's Hospital San Diego and University of California, San Diego, San Diego, California
| | - Ritu Sachdeva
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Neha R Soni-Patel
- Pediatric & Adult Congenital Heart Center, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Dongngan T Truong
- University of Utah and Division of Pediatric Cardiology, Primary Children's Hospital, Salt Lake City, Utah
| | - Luciana T Young
- Seattle Children's Hospital and Pediatric Cardiology, University of Washington School of Medicine, Seattle, Washington
| | - Carolyn A Altman
- Baylor College of Medicine and Texas Children's Heart Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
7
|
Haq IU, Shabtaie SA, Tan NY, Lachman N, Asirvatham SJ. Anatomy of the Ventricular Outflow Tracts: An Electrophysiology Perspective. Clin Anat 2024; 37:43-53. [PMID: 37337379 DOI: 10.1002/ca.24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Outflow tract ventricular arrhythmias are the most common type of idiopathic ventricular arrhythmia. A systematic understanding of the outflow tract anatomy improves procedural efficacy and enables electrophysiologists to anticipate and prevent complications. This review emphasizes the three-dimensional spatial relationships between the ventricular outflow tracts using seven anatomical principles. In turn, each principle is elaborated on from a clinical perspective relevant for the practicing electrophysiologist. The developmental anatomy of the outflow tracts is also discussed and reinforced with a clinical case.
Collapse
Affiliation(s)
- Ikram U Haq
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Samuel A Shabtaie
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nirusha Lachman
- Department of Anatomy, Mayo Clinic, Rochester, Minnesota, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Houyel L. Human Genetics of d-Transposition of Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:671-681. [PMID: 38884741 DOI: 10.1007/978-3-031-44087-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although several genes underlying occurrence of transposition of the great arteries have been found in the mouse, human genetics of the most frequent cyanotic congenital heart defect diagnosed in neonates is still largely unknown. Development of the outflow tract is a complex process which involves the major genes of cardiac development, acting on myocardial cells from the anterior second heart field, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. A precise description of the anatomic phenotypes is mandatory to achieve a better comprehension of the complex mechanisms responsible for transposition of the great arteries.
Collapse
Affiliation(s)
- Lucile Houyel
- Department of Congenital and Pediatric Cardiology, Necker-Enfants Malades Hospital-M3C, APHP, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Lioncino M, Calcagni G, Badolato F, Antonelli G, Leonardi B, de Zorzi A, Secinaro A, Brancaccio G, Albanese S, Carotti A, Drago F, Rinelli G. Double-Outlet Left Ventricle: Case Series and Systematic Review of the Literature. Diagnostics (Basel) 2023; 13:3175. [PMID: 37891996 PMCID: PMC10605834 DOI: 10.3390/diagnostics13203175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Double-outlet left ventricle (DOLV) is an abnormal ventriculo-arterial connection characterized by the origin of both great arteries from the morphological left ventricle. The aim of our paper is to describe the morphological and imaging features of DOLV and to assess the prevalence of the associated malformations and their surgical outcomes. METHODS From 2011 to 2022, we retrospectively reviewed the electronic case records of patients diagnosed with DOLV at the Bambino Gesu Children's Hospital. A systematic search was developed in MEDLINE, Web of Science, and EMBASE databases to identify reports assessing the morphology and outcomes of DOLV between 1975 and 2023. RESULTS: Over a median follow-up of 9.9 years (IQR 7.8-11.7 y), four cases of DOLV were identified at our institution. Two patients were diagnosed with (S,D,D) DOLV subaortic VSD and pulmonary stenosis (PS): one patient had (S,D,D) DOLV with doubly committed VSD and hypoplastic right ventricle, and another patient had (S,D,L) DOLV with subaortic VSD and PS (malposition type). Pulmonary stenosis was the most commonly associated lesion (75%). LITERATURE REVIEW: After systematic evaluation, a total of 12 reports fulfilled the eligibility criteria and were included in our analysis. PS or right ventricular outflow tract obstruction was the most commonly associated lesion (69%, 95% CI 62-76%). The most common locations of VSD were subaortic (pooled prevalence: 75%, 95% CI 68-81), subpulmonary (15%, 95% CI 10-21), and doubly committed (7%, 95% CI 4-12). The position of the great arteries showed that d-transposition of the aorta was present in 128 cases (59% 95% CI 42-74), and l-transposition was present in 77 cases (35%, 95% CI 29-43).
Collapse
Affiliation(s)
- Michele Lioncino
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Giulio Calcagni
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Fausto Badolato
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Giovanni Antonelli
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Benedetta Leonardi
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Andrea de Zorzi
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Aurelio Secinaro
- Advanced Cardiothoracic Imaging Unit, Bambino Gesù Children’s Hospital, IRCSS, 00165 Rome, Italy;
| | - Gianluca Brancaccio
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.B.); (S.A.); (A.C.)
| | - Sonia Albanese
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.B.); (S.A.); (A.C.)
| | - Adriano Carotti
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.B.); (S.A.); (A.C.)
| | - Fabrizio Drago
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| | - Gabriele Rinelli
- Pediatric Cardiology and Cardiac Arrhythmias and Syncope Unit, Bambino Gesù Children’s Hospital, IRCSS, 00146 Rome, Italy; (G.C.); (G.A.); (B.L.); (A.d.Z.); (F.D.); (G.R.)
| |
Collapse
|
10
|
Lin L, Pinto A, Wang L, Fukatsu K, Yin Y, Bamforth SD, Bronner ME, Evans SM, Nie S, Anderson RH, Terskikh AV, Grossfeld PD. ETS1 loss in mice impairs cardiac outflow tract septation via a cell migration defect autonomous to the neural crest. Hum Mol Genet 2022; 31:4217-4227. [PMID: 35899771 PMCID: PMC10148727 DOI: 10.1093/hmg/ddac174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions. Together, our studies demonstrate a critical role for ETS1 for cell migration in cardiac NC cells that are required for proper formation of the proximal outflow tracts. These data provide further insights into the molecular and cellular basis for development of the outflow tracts, and how perturbation of NC cells can lead to DORV.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Antonella Pinto
- Department of Biology, Sanford-Burnham-Prebys Institute of Medical Discovery, La Jolla, CA 92037, USA
| | - Lu Wang
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Kazumi Fukatsu
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Yan Yin
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Simon D Bamforth
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marianne E Bronner
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sylvia M Evans
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92093, USA
| | - Shuyi Nie
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexey V Terskikh
- Department of Biology, Sanford-Burnham-Prebys Institute of Medical Discovery, La Jolla, CA 92037, USA
| | - Paul D Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
11
|
Yacoub MH, Nagy M, Hosny H, Afifi A, Shehata N, Mahgoub A, El Sawy A, Sabry M, Abdullah H, Romeih S, Elafifi A. Right ventricular structure and function after novel repair of common arterial trunk. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 10:100416. [PMID: 39713597 PMCID: PMC11657794 DOI: 10.1016/j.ijcchd.2022.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives In an attempt to enhance applicability and outcomes of corrections of common arterial trunk, we have recently described a novel method of correction based on the concept of morphodynamism, and preserving the structure of the right ventricle. The intermediate influence of this operation on right ventricular (RV) structure and function have not been described. Methods and results Thirty eight Patients (age: 1-12 months) underwent the novel repair. There were 2 early and 4 late deaths. All patients underwent early CT scans, 12 had repeat CT and 8 had MRI after 1 year or more from the operation. Detailed computerized analysis of the RV size, shape, pattern of contraction and function was performed. The shape and size were preserved, at the second investigation, with no evidence of dilatation of the neo-RV outflow, which appeared to contribute to overall function of the RV. The directional pattern of contraction showed enhanced longitudinal and radial contributions with minimal twisting. The movement of the RV free wall and septum were almost equal, with normal shape of the septum. The instantaneous pattern of contraction followed a consistent peristalsis sequence with significant contraction of both the body and the neo-outflow. The pulmonary regurgitant fraction, at follow up, varied from 22% to 42% (30 ± 6%) with preserved RV to pulmonary artery ventriculo-arterial coupling. Conclusion The size, shape and pattern of contraction of the RV following the novel common arterial trunk repair appears to be well preserved in the intermediate term.
Collapse
Affiliation(s)
- Magdi H. Yacoub
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mohamed Nagy
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Hatem Hosny
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
| | - Ahmed Afifi
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
- Cardiac Surgery Department, National Heart Institute, Giza, Egypt
| | - Nairouz Shehata
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Ahmed Mahgoub
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
- Cardiac Surgery Department, National Heart Institute, Giza, Egypt
| | - Amr El Sawy
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Malak Sabry
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Hedaia Abdullah
- Pediatric Intensive Care Unit, Aswan Heart Centre, Aswan, Egypt
| | - Soha Romeih
- Radiology Department, Aswan Heart Centre, Aswan, Egypt
- Cardiology Department, Tanta University, Egypt
| | | |
Collapse
|
12
|
Yang D, Gomez-Garcia J, Funakoshi S, Tran T, Fernandes I, Bader GD, Laflamme MA, Keller GM. Modeling human multi-lineage heart field development with pluripotent stem cells. Cell Stem Cell 2022; 29:1382-1401.e8. [PMID: 36055193 DOI: 10.1016/j.stem.2022.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 12/27/2022]
Abstract
The cardiomyocyte (CM) subtypes in the mammalian heart derive from distinct lineages known as the first heart field (FHF), the anterior second heart field (aSHF), and the posterior second heart field (pSHF) lineages that are specified during gastrulation. We modeled human heart field development from human pluripotent stem cells (hPSCs) by using single-cell RNA-sequencing to delineate lineage specification and progression. Analyses of hPSC-derived and mouse mesoderm transcriptomes enabled the identification of distinct human FHF, aSHF, and pSHF mesoderm subpopulations. Through staged manipulation of signaling pathways identified from transcriptomics, we generated myocyte populations that display molecular characteristics of key CM subtypes. The developmental trajectory of the human cardiac lineages recapitulated that of the mouse, demonstrating conserved cardiovascular programs. These findings establish a comprehensive landscape of human embryonic cardiogenesis that provides access to a broad spectrum of cardiomyocytes for modeling congenital heart diseases and chamber-specific cardiomyopathies as well as for developing new therapies to treat them.
Collapse
Affiliation(s)
- Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Juliana Gomez-Garcia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
13
|
Farruggio S, Caruso E. Anomalous right ventricular muscle bands obstructing a large apical muscular ventricular septal defect: From fetal to post-natal three-dimensional assessment. Echocardiography 2022; 39:531-535. [PMID: 35132691 DOI: 10.1111/echo.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022] Open
Abstract
Anomalous right ventricle muscle bands and apical ventricular septal defect are two anomalies sometimes associated. We report a fetal diagnosis of a large apical ventricular septal defect, right intraventricular obstruction caused by anomalous muscle bands; consequently, the high right intraventricular pressure resulted in a right-to-left bulging of ventricular septum and moderate tricuspid regurgitation. Postnatal echocardiogram confirmed the fetal diagnosis and defined accurately the right ventricular anatomy through the three-dimensional echocardiographic assessment.
Collapse
Affiliation(s)
- Silvia Farruggio
- San Vincenzo Hospital, Taormina (ME), Mediterranean Pediatric Cardiology Center "Bambino Gesù,", Italy
| | - Elio Caruso
- San Vincenzo Hospital, Taormina (ME), Mediterranean Pediatric Cardiology Center "Bambino Gesù,", Italy
| |
Collapse
|
14
|
Henderson DJ, Eley L, Turner JE, Chaudhry B. Development of the Human Arterial Valves: Understanding Bicuspid Aortic Valve. Front Cardiovasc Med 2022; 8:802930. [PMID: 35155611 PMCID: PMC8829322 DOI: 10.3389/fcvm.2021.802930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormalities in the arterial valves are some of the commonest congenital malformations, with bicuspid aortic valve (BAV) occurring in as many as 2% of the population. Despite this, most of what we understand about the development of the arterial (semilunar; aortic and pulmonary) valves is extrapolated from investigations of the atrioventricular valves in animal models, with surprisingly little specifically known about how the arterial valves develop in mouse, and even less in human. In this review, we summarise what is known about the development of the human arterial valve leaflets, comparing this to the mouse where appropriate.
Collapse
Affiliation(s)
- Deborah J. Henderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
15
|
Farrar EJ, Hiriart E, Mahmut A, Jagla B, Peal DS, Milan DJ, Butcher JT, Puceat M. OCT4-mediated inflammation induces cell reprogramming at the origin of cardiac valve development and calcification. SCIENCE ADVANCES 2021; 7:eabf7910. [PMID: 34739324 PMCID: PMC8570594 DOI: 10.1126/sciadv.abf7910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell plasticity plays a key role in embryos by maintaining the differentiation potential of progenitors. Whether postnatal somatic cells revert to an embryonic-like naïve state regaining plasticity and redifferentiate into a cell type leading to a disease remains intriguing. Using genetic lineage tracing and single-cell RNA sequencing, we reveal that Oct4 is induced by nuclear factor κB (NFκB) at embyronic day 9.5 in a subset of mouse endocardial cells originating from the anterior heart forming field at the onset of endocardial-to-mesenchymal transition. These cells acquired a chondro-osteogenic fate. OCT4 in adult valvular aortic cells leads to calcification of mouse and human valves. These calcifying cells originate from the Oct4 embryonic lineage. Genetic deletion of Pou5f1 (Pit-Oct-Unc, OCT4) in the endocardial cell lineage prevents aortic stenosis and calcification of ApoE−/− mouse valve. We established previously unidentified self-cell reprogramming NFκB- and OCT4-mediated inflammatory pathway triggering a dose-dependent mechanism of valve calcification.
Collapse
Affiliation(s)
- Emily J. Farrar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Emilye Hiriart
- INSERM U1251, Aix-Marseille University, MMG, Marseille, France
| | - Ablajan Mahmut
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Jagla
- Pasteur Institute, Cytometry and Biomarkers Unit of Technology and Service, C2RT, & Hub de Bioinformatique et Biostatistique–Département Biologie Computationnelle, Paris, France
| | - David S. Peal
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - David J. Milan
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan T. Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Corresponding author. (M.P.); (J.B.)
| | - Michel Puceat
- INSERM U1251, Aix-Marseille University, MMG, Marseille, France
- Corresponding author. (M.P.); (J.B.)
| |
Collapse
|
16
|
Yacoub MH, Hosny H, Afifi A, Nagy M, Mahgoub A, Simry W, AbouZeina MG, Doss R, El Sawy A, Shehata N, Elafifi A, Abdullah H, Romeih S. Novel concepts and early results of repairing common arterial trunk. Eur J Cardiothorac Surg 2021; 61:562-571. [PMID: 34347066 PMCID: PMC8922708 DOI: 10.1093/ejcts/ezab336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Common Arterial Trunk (CAT) continues to have a very poor prognosis globally. To address that, we have developed a novel technique targeting key concepts for the correction of all components of the anomaly, using autologous arterial tissue. This aims to enhance results, availability worldwide, and importantly to avoid the need for repeated reoperations. METHODS From January 2019 to 4 January 2021, all patients with isolated CAT had repair of the defect using autologous arterial trunk tissue with direct right ventricle (RV) to pulmonary artery (PA) connection. Clinical outcomes, follow-up which included multi-slice computed tomography 3D segmentation and 4D cardiovascular magnetic resonance flow, are presented. RESULTS Twenty patients were included in the study (median age 4.5 months). There were 2 hospital deaths due to systemic infection and pulmonary hypertensive crisis, respectively. Following discharge all patients remained asymptomatic with no signs of heart failure and improved pattern of growth (median follow-up: 8 months). Early postoperative 3D segmentation showed a conical shaped neo-right ventricular outflow chamber connecting the body of the RV to the main PA through a valveless ostium, and normal crossing of PA and neo-aorta. 4D cardiovascular magnetic resonance pattern of flow showed normal rapid laminar flow through the atrioventricular valves followed by a vortex towards the outflow tracts. There was laminar flow through the neo-aorta and neo-PA with velocity not exceeding 2.5 m/s. The PA regurgitant fraction was 25 ± 5% and was limited to early diastole. CONCLUSIONS The initial results of utilizing the key concepts, using autologous arterial tissue for the repair of CAT, are encouraging, both clinically and by multimodality imaging.
Collapse
Affiliation(s)
- Magdi H Yacoub
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Hatem Hosny
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
| | - Ahmed Afifi
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt.,Cardiac Surgery Department, National Heart Institute, Giza, Egypt
| | - Mohamed Nagy
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Ahmed Mahgoub
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt
| | - Walid Simry
- Cardiac Surgery Department, Aswan Heart Centre, Aswan, Egypt.,Cardiac Surgery Department, National Heart Institute, Giza, Egypt
| | | | - Ramy Doss
- Internal Medicine Department, Baylor University Medical Center, Dallas, TX, USA
| | - Amr El Sawy
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | - Nairouz Shehata
- Biomedical Engineering and Innovation Laboratory, Aswan Heart Centre, Aswan, Egypt
| | | | - Hedaia Abdullah
- Pediatric Intensive Care unit, Aswan Heart Centre, Aswan, Egypt
| | - Soha Romeih
- Radiology Department, Aswan Heart Centre, Aswan, Egypt.,Cardiology Department, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Alhawri K, Alakhfash A, Alqwaee A, HassabElnabi M, Ahmed F, Alhawri M, Nasser B, Alhoobani M, Mazzesi G, Alsaeedi A, Almesned A. Anomalous right pulmonary artery from aorta, surgical approach case report and literature review. J Card Surg 2021; 36:2890-2900. [PMID: 34047395 PMCID: PMC8361962 DOI: 10.1111/jocs.15618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Anomalous origin of one pulmonary artery from the aorta is a rare congenital anomaly affecting the right pulmonary artery more than the left. These patients are at risk for the early development of significant pulmonary hypertension. Early surgical treatment has been proven safe with excellent results. The surgical approach and technique is challenging and should be decided ahead before the patient to surgery. Different techniques were described including direct reimplantation, conduit interposition, aortic ring flap. AIM We present a neonate with anomalous origin of the right pulmonary artery from the aorta and discuss the surgical technique and complications in the literature.
Collapse
Affiliation(s)
- Khaled Alhawri
- Prince Sultan Cardiac Center-Qassim, Buraydah, Saudi Arabia.,Department of General and Specialized Surgery 'Paride Stefanini' Dottorato di Ricerca, La Sapienza, University of Rome, Rome, Italy
| | - Ali Alakhfash
- Prince Sultan Cardiac Center-Qassim, Buraydah, Saudi Arabia.,Department of General and Specialized Surgery 'Paride Stefanini' Dottorato di Ricerca, La Sapienza, University of Rome, Rome, Italy
| | | | | | - Fazel Ahmed
- Prince Sultan Cardiac Center-Qassim, Buraydah, Saudi Arabia
| | - Mohammed Alhawri
- International University of Malaya Wales, Kuala Lumpur, Malaysia
| | - Bana Nasser
- Prince Sultan Cardiac Center-Qassim, Buraydah, Saudi Arabia
| | | | - Giusseppe Mazzesi
- Department of General and Specialized Surgery 'Paride Stefanini' Dottorato di Ricerca, La Sapienza, University of Rome, Rome, Italy
| | | | | |
Collapse
|
19
|
Kim YY, Geisinger MT, Bhamare T, Wasserman M, Min J, Goldmuntz E. Natural history of the aortic root in Tetralogy of Fallot after repair. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2021. [DOI: 10.1016/j.ijcchd.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021; 13:93. [PMID: 33902696 PMCID: PMC8077695 DOI: 10.1186/s13148-021-01077-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is a common structural birth defect worldwide, and defects typically occur in the walls and valves of the heart or enlarged blood vessels. Chromosomal abnormalities and genetic mutations only account for a small portion of the pathogenic mechanisms of CHD, and the etiology of most cases remains unknown. The role of epigenetics in various diseases, including CHD, has attracted increased attention. The contributions of DNA methylation, one of the most important epigenetic modifications, to CHD have not been illuminated. Increasing evidence suggests that aberrant DNA methylation is related to CHD. Here, we briefly introduce DNA methylation and CHD and then review the DNA methylation profiles during cardiac development and in CHD, abnormalities in maternal genome-wide DNA methylation patterns are also described. Whole genome methylation profile and important differentially methylated genes identified in recent years are summarized and clustered according to the sample type and methodologies. Finally, we discuss the novel technology for and prospects of CHD-related DNA methylation.
Collapse
|
21
|
Congenitally Malformed Hearts: Aspects of Teaching and Research Involving Medical Students. J Cardiovasc Dev Dis 2021; 8:jcdd8040034. [PMID: 33800587 PMCID: PMC8065960 DOI: 10.3390/jcdd8040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
To appreciate congenital heart disease fully, a detailed understanding of the anatomical presentation, as well as the physiology, is required. This is often introduced at an advanced stage of training. Professor Anderson has been influential in the Clinical Anatomy Intercalated BSc programme at the University of Birmingham, in particular in his teaching on Sequential Segmental Analysis. This article describes the experiences of the latest cohort of students on this programme, who undertook varying research projects using the Birmingham Cardiac Archive, with the guidance of Professor Anderson. The projects outlined include various aspects of isomerism, encompassing both the cardiac and abdominal manifestations, as well as details of congenitally corrected transposition of the great arteries and prenatally diagnosed right aortic arch and double arch. These studies all aimed to increase the knowledge base of their respective cardiac malformations and provide a basis for further research.
Collapse
|
22
|
He X, Zhang Z, Zheng J, Zhu Z. One patient with an anomalous origin of the left pulmonary artery directly from the right ventricle: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 4:1-4. [PMID: 34377892 PMCID: PMC8335950 DOI: 10.1093/ehjcr/ytaa293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 08/04/2020] [Indexed: 12/04/2022]
Abstract
Background The anomalous origin of one pulmonary artery is a rare malformation, which so far has
mainly been found as an anomalous origin from a different site of the aorta, accounting
for 0.12% of all congenital heart diseases. This case report introduced a very rare case
of the anomalous origin of one pulmonary artery which had never reported in the
clinic. Case summary A 2-year-old boy with a 6-month history of shortness of breath and recurrent
respiratory infection, was diagnosed left pulmonary artery (LPA) directly arising from
the right ventricle by transthoracic echocardiography and multidetector computed
tomography without a deletion in the region of 22q11. Eventually, the LPA was further
conformed that arised from the right ventricle during the operation, and was corrected
with a well clinical outcome. Discussion The surgical technique for repair of this anomalous LPA was not difficult in our case.
However, the embryonic development of the present case still could not be completely
explained by the current embryologic postulates since it was a new malformation that
never reported. Due to its rarity, there is still much to learn about the origin and
development of the pulmonary arteries that possibly develop prenatally.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhifang Zhang
- Department of Echocardiography, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
23
|
van den Hoff MJB, Wessels A. Muscularization of the Mesenchymal Outlet Septum during Cardiac Development. J Cardiovasc Dev Dis 2020; 7:jcdd7040051. [PMID: 33158304 PMCID: PMC7711588 DOI: 10.3390/jcdd7040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. Myocardialization is defined as the process in which existing cardiomyocytes migrate into flanking mesenchyme. Studies using genetically modified mice, as well as experimental approaches using in vitro models, demonstrate that Wnt and TGFβ signaling play an essential role in the regulation of myocardialization. They also show the significance of the interaction between cardiomyocytes, endocardial derived cells, neural crest cells, and the extracellular matrix. Interestingly, Wnt-mediated non-canonical planar cell polarity signaling was found to be a crucial regulator of myocardialization in the outlet septum and Wnt-mediated canonical β-catenin signaling is an essential regulator of the expansion of mesenchymal cells populating the outflow tract cushions.
Collapse
Affiliation(s)
- Maurice J. B. van den Hoff
- Department of Medical Biology, AmsterdamUMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +1-3120-5665-405
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
24
|
Ferrazzi P, Spirito P, Binaco I, Zyrianov A, Poggio D, Vaccari G, Grillo M, Pezzoli L, Scatigno A, Dorobantu L, Mortara A, Bruzzi P, Boni L, Iascone M. Congenital Muscular Mitral-Aortic Discontinuity Identified in Patients With Obstructive Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2020; 76:2238-2247. [DOI: 10.1016/j.jacc.2020.09.534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
|
25
|
Boezio GL, Bensimon-Brito A, Piesker J, Guenther S, Helker CS, Stainier DY. Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLife 2020; 9:57603. [PMID: 32990594 PMCID: PMC7524555 DOI: 10.7554/elife.57603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-β signaling. To better understand the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.
Collapse
Affiliation(s)
- Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
26
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
27
|
BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis. Sci Rep 2020; 10:14167. [PMID: 32843646 PMCID: PMC7447802 DOI: 10.1038/s41598-020-70806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.
Collapse
|
28
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
29
|
Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2020; 41:403-429. [PMID: 32405705 DOI: 10.1007/s10571-020-00863-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Outflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e., neural crest cells and secondary heart field cells that migrate in opposite directions at the same stage of development. These cells directly govern aortic arch patterning and development, ascending aorta dilatation, semi-valvular and coronary artery development, aortopulmonary septation abnormalities, persistence of the ductus arteriosus, trunk and proximal pulmonary arteries, sub-valvular conal ventricular septal/rotational defects, and non-compaction of the left ventricle. In some cases, depending on the functional defects of these cells, additional malformations are found in the expected spatial migratory area of the cells, namely in the pharyngeal arch derivatives and cervico-facial structures. Associated non-cardiovascular anomalies are often underestimated, since the multipotency and functional alteration of these cells can result in the modification of multiple neural, epidermal, and cervical structures at different levels. In most cases, patients do not display the full phenotype of abnormalities, but congenital cardiac defects involving the ventricular outflow tract, ascending aorta, aortic arch and supra-aortic trunks should be considered as markers for possible impaired function of these cells. Neural crest cells should not be considered as a unique cell population but on the basis of their cervical rhombomere origins R3-R5 or R6-R7-R8 and specific migration patterns: R3-R4 towards arch II, R5-R6 arch III and R7-R8 arch IV and VI. A better understanding of their development may lead to the discovery of unknown associated abnormalities, thereby enabling potential improvements to be made to the therapeutic approach.
Collapse
|
30
|
Abstract
Knowledge of physiologic hemodynamics is a fundamental requirement to establish pathological findings. However, little is known about the normal flow fields in the pulmonary arteries, especially for children. The purpose of this study is to characterize flow patterns in the pulmonary artery bifurcation of healthy pediatric subjects using direct numerical simulations. A realistic geometry is obtained via statistical shape modeling, by averaging five subject-specific digital models extracted from cardiovascular magnetic resonance datasets of healthy volunteers. Boundary conditions are assigned to mimic physiological conditions at rest, corresponding to a peak Reynolds number equal to 3400 and a Womersley number equal to 15. Results show that the normal bifurcation is highly hemodynamically efficient, as measured by an energy dissipation index. The curvature of the pulmonary arteries is sufficiently small to prevent flow separation along the inner walls, and no signs of a turbulent-like state are found. In line with previous imaging studies, a helical structure protruding into the right pulmonary artery is detected, and its formation mechanism is elucidated in the paper. These findings might help to identify abnormal flow features in patients with altered anatomic and physiologic states, particularly those with repaired congenital heart disease.
Collapse
|
31
|
Marathe SP, Talwar S. The science and art of aortic and/or pulmonary root translocation. Ann Pediatr Cardiol 2019; 13:56-66. [PMID: 32030036 PMCID: PMC6979018 DOI: 10.4103/apc.apc_3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023] Open
Abstract
This review aims to present and compare different surgical techniques of root translocation of the great arteries except the Ross procedure. The historical aspects, technical considerations, and results are briefly elucidated.
Collapse
Affiliation(s)
- Supreet P Marathe
- Department of Pediatric Cardiac Surgery, Queensland Pediatric Cardiac Service, Queensland Children's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Sachin Talwar
- Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
High-Resolution Episcopic Microscopy (HREM): Looking Back on 13 Years of Successful Generation of Digital Volume Data of Organic Material for 3D Visualisation and 3D Display. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-resolution episcopic microscopy (HREM) is an imaging technique that permits the simple and rapid generation of three-dimensional (3D) digital volume data of histologically embedded and physically sectioned specimens. The data can be immediately used for high-detail 3D analysis of a broad variety of organic materials with all modern methods of 3D visualisation and display. Since its first description in 2006, HREM has been adopted as a method for exploring organic specimens in many fields of science, and it has recruited a slowly but steadily growing user community. This review aims to briefly introduce the basic principles of HREM data generation and to provide an overview of scientific publications that have been published in the last 13 years involving HREM imaging. The studies to which we refer describe technical details and specimen-specific protocols, and provide examples of the successful use of HREM in biological, biomedical and medical research. Finally, the limitations, potentials and anticipated further improvements are briefly outlined.
Collapse
|
33
|
Amofa D, Mori S, Toh H, Ta HT, Du Plessis M, Davis N, Izawa Y, Spicer DE, Anderson RH, Tretter JT. The rotational position of the aortic root related to its underlying ventricular support. Clin Anat 2019; 32:1107-1117. [PMID: 31444826 DOI: 10.1002/ca.23462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Dorothy Amofa
- Department of Anatomical SciencesSt. George's University School of Medicine St. George's Grenada West Indies
| | - Shumpei Mori
- Division of Cardiovascular MedicineKobe University Graduate School of Medicine Kobe Japan
| | - Hiroyuki Toh
- Division of Cardiovascular MedicineKobe University Graduate School of Medicine Kobe Japan
| | - Hieu T. Ta
- The Heart InstituteCincinnati Children's Hospital Medical Center Cincinnati Ohio
| | - Maira Du Plessis
- Department of Anatomical SciencesSt. George's University School of Medicine St. George's Grenada West Indies
| | - Nelson Davis
- Department of Anatomical SciencesSt. George's University School of Medicine St. George's Grenada West Indies
| | - Yu Izawa
- Division of Cardiovascular MedicineKobe University Graduate School of Medicine Kobe Japan
| | - Diane E. Spicer
- Department of Pediatric CardiologyUniversity of Florida Gainesville Florida
| | - Robert H. Anderson
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| | - Justin T. Tretter
- The Heart InstituteCincinnati Children's Hospital Medical Center Cincinnati Ohio
- Department of PediatricsUniversity of Cincinnati College of Medicine Cincinnati Ohio
| |
Collapse
|
34
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
35
|
Mozzini C, Girelli D, Cominacini L, Soresi M. An Exploratory Look at Bicuspid Aortic Valve (Bav) Aortopathy: Focus on Molecular and Cellular Mechanisms. Curr Probl Cardiol 2019; 46:100425. [PMID: 31097209 DOI: 10.1016/j.cpcardiol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart malformation. BAV patients are at increased risk for aortic valve disease (stenosis/regurgitation), infective endocarditis, thrombi formation and, in particular, aortic dilatation, aneurysm and dissection. This review aims at exploring the possible interplay among genetics, extracellular matrix remodeling, abnormal signaling pathways, oxidative stress and inflammation in contributing to BAV-associated aortopathy (BAV-A-A). Novel circulating biomarkers have been proposed as diagnostic tools able to improve risk stratification in BAV-A-A. However, to date, the precise molecular and cellular mechanisms that lead to BAV-A-A remain unknown. Genetic, hemodynamic and cardiovascular risk factors have been implicated in the development and progression of BAV-A-A. Oxidative stress may also play a role, similarly to what observed in atherosclerosis and vulnerable plaque formation. The identification of common pathways between these 2 conditions may provide a platform for future therapeutic solutions.
Collapse
|
36
|
Anderson RH. Has the Congenitally Malformed Heart Changed Its Face? Journey From Understanding Morphology to Surgical Cure in Congenital Heart Disease. Circ Res 2019; 120:901-903. [PMID: 28302737 DOI: 10.1161/circresaha.116.310229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert H Anderson
- From the Institute of Genetic Medicine, University of Newcastle, United Kingdom.
| |
Collapse
|
37
|
Mori S, Tretter JT, Spicer DE, Bolender DL, Anderson RH. What is the real cardiac anatomy? Clin Anat 2019; 32:288-309. [PMID: 30675928 PMCID: PMC6849845 DOI: 10.1002/ca.23340] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022]
Abstract
The heart is a remarkably complex organ. Teaching its details to medical students and clinical trainees can be very difficult. Despite the complexity, accurate recognition of these details is a pre‐requisite for the subsequent understanding of clinical cardiologists and cardiac surgeons. A recent publication promoted the benefits of virtual reconstructions in facilitating the initial understanding achieved by medical students. If such teaching is to achieve its greatest value, the datasets used to provide the virtual images should themselves be anatomically accurate. They should also take note of a basic rule of human anatomy, namely that components of all organs should be described as they are normally situated within the body. It is almost universal at present for textbooks of anatomy to illustrate the heart as if removed from the body and positioned on its apex, the so‐called Valentine situation. In the years prior to the emergence of interventional techniques to treat cardiac diseases, this approach was of limited significance. Nowadays, therapeutic interventions are commonplace worldwide. Advances in three‐dimensional imaging technology, furthermore, now mean that the separate components of the heart can readily be segmented, and then shown in attitudinally appropriate fashion. In this review, we demonstrate how such virtual dissection of computed tomographic datasets in attitudinally appropriate fashion reveals the true details of cardiac anatomy. The virtual approach to teaching the arrangement of the cardiac components has much to commend it. If it is to be used, nonetheless, the anatomical details on which the reconstructions are based must be accurate. Clin. Anat. 32:288–309, 2019. © 2019 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.
Collapse
Affiliation(s)
- Shumpei Mori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diane E Spicer
- Department of Pediatric Cardiology, University of Florida, Gainesville, Florida
| | - David L Bolender
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
38
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
39
|
Lazzarini R, Gómez-Quiroz LE, González-Márquez H, Villavicencio-Guzmán L, Salazar-García M, Sánchez-Gómez C. The proximal segment of the embryonic outflow (conus) does not participate in aortic vestibule development. PLoS One 2018; 13:e0209930. [PMID: 30596770 PMCID: PMC6312233 DOI: 10.1371/journal.pone.0209930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE There is no consensus on the embryonic components or morphogenetic processes involved in mature ventricular outflow tract development. Our goal was to use in vivo labelling to investigate the prospective fate of the myocardium of each conal wall. The conal and atrioventricular cushion mesenchyme changes during transformation into mature structures and their role in apoptosis were also investigated. METHODS Plastic labels were placed at the cephalic and caudal conal limits of chicken embryo hearts (stage 22HH) and traced up to stage 36HH. Histological analyses, scanning electron microscopy and apoptotic detection using Lysotracker-Red were performed. The conal longitudinal length and medial displacement were registered. Muscle myosin was identified by immunofluorescence. RESULTS Labels positioned in the myocardium of each conal wall moved to the right ventricle (RV), shifting from the arterial subvalvular myocardial zone to the apex. No labels were found in the aortic vestibule. At stage 22HH, the conus was a tubular structure composed of myocardium and endocardium with scarce mesenchyme. The dorso-left conal myocardial wall gradually lost continuity and the free ends separated, while the myocardium was distributed to the RV free wall (24HH-28HH). At stage 22HH, conal crests were not observed, but they were apparent at the dorsal zone of the conus at stage 26HH; towards stage 30HH, they fused to form the supraventricular crest, and the pulmonary infundibulum was evident. The ventro-superior cushion of the AV canal was reorganized into the fibrous and muscular structures lined the aortic vestibule. CONCLUSIONS The posterior conus is an erroneous concept. The conal myocardium is reorganized in the free wall of the RV. Internally, the conal lumen is transformed into the pulmonary infundibulum. The aortic vestibule is formed from the ventro-superior cushion of the AV canal. Thus, the ventricular outflow tracts have different embryonic origins.
Collapse
Affiliation(s)
- Roberto Lazzarini
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Luis Enrique Gómez-Quiroz
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Humberto González-Márquez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Laura Villavicencio-Guzmán
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| | - Concepción Sánchez-Gómez
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| |
Collapse
|
40
|
Chikkabyrappa S, Mahadevaiah G, Buddhe S, Alsaied T, Tretter J. Common Arterial Trunk: Physiology, Imaging, and Management. Semin Cardiothorac Vasc Anesth 2018; 23:225-236. [PMID: 30596352 DOI: 10.1177/1089253218821382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Common arterial trunk (CAT), or truncus arteriosus, is a rare form of cyanotic congenital heart disease and is highly associated with DiGeorge syndrome (microdeletion 22q11.2). Prenatal diagnosis is highly feasible, allowing proper delivery planning and postnatal management. The clinical presentation is highly variable depending on the anatomical variation; however, most commonly presenting with mild cyanosis and significant tachypnea, although these patients can often go undetected in the immediate newborn period. Transthoracic echocardiography is adequate for diagnosis and detailed anatomical delineation in the majority. Additional imaging modalities such as cardiac catheterization, computed tomography angiography, or cardiac magnetic resonance imaging can be helpful in those with more complex pulmonary artery (PA) or aortic anatomy, or in the older repaired. The surgical management of CAT is complete repair in the neonatal period with resection of branch PAs from the CAT with placement of a right ventricular (RV)-to-PA conduit and patch closure of the ventricular septal defect. Overall surgical outcomes are excellent in most centers, with the expectation that the child will eventually outgrow the RV-to-PA conduit and require reoperation. Other potential reoperations or postsurgical interventions in addition to the RV-to-PA conduit may involve the truncal valve or branch PAs.
Collapse
Affiliation(s)
| | | | - Sujatha Buddhe
- 1 Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Tarek Alsaied
- 3 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Justin Tretter
- 3 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
41
|
Yang YP, Li HR, Cao XM, Qiao CJ, Ya J. Septation of the Intrapericardial Arterial Trunks in the Early Human Embryonic Heart. Chin Med J (Engl) 2018; 131:1457-1464. [PMID: 29893363 PMCID: PMC6006820 DOI: 10.4103/0366-6999.233956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Outflow tract (OFT) septation defects are a common cause of congenital heart disease. Numerous studies have focused on the septation mechanism of the OFT, but have reported inconsistent conclusions. This study, therefore, aimed to investigate the septation of the aortic sac and the OFT in the early embryonic human heart. Methods: Serial sections of 27 human embryonic hearts from Carnegie stage (CS) 10 to CS19 were immunohistochemically stained with antibodies against α-smooth muscle actin (α-SMA) and myosin heavy chain. Results: At CS10–CS11, the OFT wall was an exclusively myocardial structure that was continuous with the aortic sac at the margin of the pericardial cavity. From CS13 onward, the OFT was divided into nonmyocardial and myocardial portions. The cushion formed gradually, and its distal border with the OFT myocardium was consistently maintained. The aortic sac between the fourth and sixth aortic arch arteries was degenerated. At CS16, the α-SMA-positive aortopulmonary septum formed and fused with the two OFT cushions, thus septating the nonmyocardial portion of the OFT into two arteries. At this stage, the cushions were not fused. At CS19, the bilateral cushions were fused to septate the myocardial portion of the OFT. Conclusions: Data suggest that the OFT cushion is formed before the aortopulmonary septum is formed. Thus, the OFT cushion is not derived from the aortopulmonary septum. In addition, the nonmyocardial part of the OFT is septated into the aorta and pulmonary trunk by the aortopulmonary septum, while the main part of the cushion fuses and septates the myocardial portion of the OFT.
Collapse
|
42
|
Mori S, Tretter JT, Toba T, Izawa Y, Tahara N, Nishii T, Shimoyama S, Tanaka H, Shinke T, Hirata KI, Spicer DE, Saremi F, Anderson RH. Relationship between the membranous septum and the virtual basal ring of the aortic root in candidates for transcatheter implantation of the aortic valve. Clin Anat 2018. [DOI: 10.1002/ca.23071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shumpei Mori
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Justin T. Tretter
- The Heart Institute, Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yu Izawa
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Natsuko Tahara
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Tatsuya Nishii
- Department of Radiology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Shinsuke Shimoyama
- Department of Radiology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hidekazu Tanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Toshiro Shinke
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Diane E. Spicer
- Division of Pediatric Cardiology; University of Florida; Gainesville Florida
| | - Farhood Saremi
- University of Southern California; Los Angeles California
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University; Newcastle-upon-Tyne United Kingdom
| |
Collapse
|
43
|
Pulmonary Atresia With an Intact Ventricular Septum: Preoperative Physiology, Imaging, and Management. Semin Cardiothorac Vasc Anesth 2018; 22:245-255. [DOI: 10.1177/1089253218756757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare complex cyanotic congenital heart disease with heterogeneous morphological variation. Prenatal diagnosis allows for developing a safe plan for delivery and postnatal management. While transthoracic echocardiography allows for detailed delineation of the cardiac anatomy, additional imaging modalities such as computed tomography, magnetic resonance imaging, and catheterization may be necessary to further outline features of the cardiac anatomy, specifically coronary artery anatomy. The size of the tricuspid valve and right ventricular cavity as well as the presence of right ventricle–dependent coronary circulation help to dichotomize between biventricular repair versus univentricular palliation or heart transplantation, as well as predicting the expected survival. The delineation and understanding of these features help to dictate both medical and surgical management.
Collapse
|
44
|
Tretter JT, Mori S, Saremi F, Chikkabyrappa S, Thomas K, Bu F, Loomba RS, Alsaied T, Spicer DE, Anderson RH. Variations in rotation of the aortic root and membranous septum with implications for transcatheter valve implantation. Heart 2017; 104:999-1005. [DOI: 10.1136/heartjnl-2017-312390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
ObjectiveIt is intuitive to suggest that knowledge of the variation in the anatomy of the aortic root may influence the outcomes of transcatheter implantation of the aortic valve (TAVI). We have now assessed such variation.MethodsWe used 26 specimens of normal hearts and 78 CT data sets of adults with a mean age of 64±15 years to measure the dimensions of the membranous septum and to assess any influence played by rotation of the aortic root, inferring the relationship to the atrioventricular conduction axis.ResultsThe aortic root was positioned centrally in the majority of both cohorts, although with significant variability. For the cadaveric hearts, 14 roots were central (54%), 4 clockwise-rotated (15%) and 8 counterclockwise-rotated (31%). In the adult CT cohort, 44 were central (56%), 21 clockwise-rotated (27%) and 13 counterclockwise-rotated (17%). A mean angle of 15.5° was measured relative to the right fibrous trigone in the adult CT cohort, with a range of −32° to 44.7°. The dimensions of the membranous septum were independent of rotation. Fibrous continuity between the membranous septum and the right fibrous trigone increased with counterclockwise to clockwise rotation, implying variation in the relationship to the atrioventricular conduction axis.ConclusionsThe central fibrous body is wider, providing greater fibrous support, in the setting of clockwise rotation of the aortic root. Individuals with this pattern may be more vulnerable to conduction damage following TAVI. Knowledge of such variation may prove invaluable for risk stratification.
Collapse
|
45
|
Yassine NM, Shahram JT, Body SC. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 2017; 8:687. [PMID: 28993736 PMCID: PMC5622294 DOI: 10.3389/fphys.2017.00687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital valvular defect and is associated with ascending aortic dilation (AAD) in a quarter of patients. AAD has been ascribed both to the hemodynamic consequences of normally functioning and abnormal BAV morphology, and to the effect of rare and common genetic variation upon function of the ascending aortic media. AAD manifests in two overall and sometimes overlapping phenotypes: that of aortic root aneurysm, similar to the AAD of Marfan syndrome; and that of tubular AAD, similar to the AAD seen with tricuspid aortic valves (TAVs). These aortic phenotypes appear to be independent of BAV phenotype, have different embryologic origins and have unique etiologic factors, notably, regarding the role of hemodynamic changes inherent to the BAV phenotype. Further, in contrast to Marfan syndrome, the AAD seen with BAV is infrequently present as a strongly inherited syndromic phenotype; rather, it appears to be a less-penetrant, milder phenotype. Both reduced levels of normally functioning transcriptional proteins and structurally abnormal proteins have been observed in aneurysmal aortic media. We provide evidence that aortic root AAD has a stronger genetic etiology, sometimes related to identified common non-coding fibrillin-1 (FBN1) variants and other aortic wall protein variants in patients with BAV. In patients with BAV having tubular AAD, we propose a stronger hemodynamic influence, but with pathology still based on a functional deficit of the aortic media, of genetic or epigenetic etiology. Although it is an attractive hypothesis to ascribe common mechanisms to BAV and AAD, thus far the genetic etiologies of AAD have not been associated to the genetic etiologies of BAV, notably, not including BAV variants in NOTCH1 and GATA4.
Collapse
Affiliation(s)
- Noor M Yassine
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Jasmine T Shahram
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| |
Collapse
|
46
|
van Vliet PP, Lin L, Boogerd CJ, Martin JF, Andelfinger G, Grossfeld PD, Evans SM. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol 2017; 429:249-259. [PMID: 28669819 PMCID: PMC5580348 DOI: 10.1016/j.ydbio.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/04/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022]
Abstract
Correct cardiac development is essential for fetal and adult life. Disruptions in a variety of signaling pathways result in congenital heart defects, including outflow and inflow tract defects. We previously found that WNT11 regulates outflow tract development. However, tissue specific requirements for WNT11 in this process remain unknown and whether WNT11 is required for inflow tract development has not been addressed. Here we find that germline Wnt11 null mice also show hypoplasia of the dorsal mesenchymal protrusion (DMP), which is required for atrioventricular septation. Ablation of Wnt11 with myocardial cTnTCre recapitulated outflow tract defects observed in germline Wnt11 null mice, but DMP development was unaffected. In contrast, ablation of Wnt11 with Isl1Cre fully recapitulated both outflow tract and DMP defects of Wnt11 germline nulls. DMP hypoplasia in Wnt11 mutants was associated with reduced proliferation within the DMP, but no evident defects in myocardial differentiation of the DMP. Examination of Pitx2-, Axin2-, or Patched-lacZ reporter mice revealed no alterations in reporter expression, suggesting that WNT11 was required downstream of, or in parallel to, these signaling pathways to regulate DMP formation. These studies revealed a previously unappreciated role for WNT11 for DMP formation and distinct tissue-specific requirements for WNT11 in outflow tract and DMP development.
Collapse
Affiliation(s)
| | - Lizhu Lin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA; Department of Pediatrics, School of Medicine, UCSD, La Jolla, USA
| | - Cornelis J Boogerd
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA
| | - James F Martin
- Baylor College of Medicine, Texas Heart Institute, Houston, USA
| | | | - Paul D Grossfeld
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, USA.
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, USA; Department of Medicine, UCSD, La Jolla, USA; Department of Pharmacology, UCSD, La Jolla, USA.
| |
Collapse
|
47
|
Geyer SH, Reissig LF, Hüsemann M, Höfle C, Wilson R, Prin F, Szumska D, Galli A, Adams DJ, White J, Mohun TJ, Weninger WJ. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat 2017; 231:600-614. [PMID: 28776665 PMCID: PMC5603791 DOI: 10.1111/joa.12663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate identification of abnormalities in the mouse embryo depends not only on comparisons with appropriate, developmental stage‐matched controls, but also on an appreciation of the range of anatomical variation that can be expected during normal development. Here we present a morphological, topological and metric analysis of the heart and arteries of mouse embryos harvested on embryonic day (E)14.5, based on digital volume data of whole embryos analysed by high‐resolution episcopic microscopy (HREM). By comparing data from 206 genetically normal embryos, we have analysed the range and frequency of normal anatomical variations in the heart and major arteries across Theiler stages S21–S23. Using this, we have identified abnormalities in these structures among 298 embryos from mutant mouse lines carrying embryonic lethal gene mutations produced for the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme. We present examples of both commonly occurring abnormal phenotypes and novel pathologies that most likely alter haemodynamics in these genetically altered mouse embryos. Our findings offer a reference baseline for identifying accurately abnormalities of the heart and arteries in embryos that have largely completed organogenesis.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Markus Hüsemann
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Cordula Höfle
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liguori GR, Jatene MB, Ho SY, Aiello VD. Morphological variability of the arterial valve in common arterial trunk and the concept of normality. Heart 2016; 103:848-855. [PMID: 27885047 DOI: 10.1136/heartjnl-2016-310505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 11/03/2022] Open
Affiliation(s)
- Gabriel Romero Liguori
- Laboratory of Pathology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Biscegli Jatene
- Pediatric Cardiac Surgery Unit, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Siew Yen Ho
- Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London Faculty of Medicine, London, UK
| | - Vera Demarchi Aiello
- Laboratory of Pathology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Common Arterial Trunk in a 3-Day-Old Alpaca Cria. Case Rep Vet Med 2016; 2016:4609126. [PMID: 29955416 PMCID: PMC6005283 DOI: 10.1155/2016/4609126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 12/02/2022] Open
Abstract
A 3-day-old alpaca cria presented for progressive weakness and dyspnea since birth. Complete bloodwork, thoracic radiographs, and endoscopic examination of the nasal passages and distal trachea revealed no significant findings. Echocardiogram and contrast study revealed a single artery overriding a large ventricular septal defect (VSD). A small atrial septal defect or patent foramen ovale was also noted. Color flow Doppler and an agitated saline contrast study revealed bidirectional but primarily right to left flow through the VSD and bidirectional shunting through the atrial defect. Differential diagnosis based on echocardiographic findings included common arterial trunk, Tetralogy of Fallot, and pulmonary atresia with a VSD. Postmortem examination revealed a large common arterial trunk with a quadricuspid valve overriding a VSD. Additionally, defect in the atrial septum was determined to be a patent foramen ovale. A single pulmonary trunk arose from the common arterial trunk and bifurcated to the left and right pulmonary artery, consistent with a Collet and Edwards' type I common arterial trunk with aortic predominance. Although uncommon, congenital cardiac defects should be considered in animals presenting with clinical signs of hypoxemia, dyspnea, or failure to thrive.
Collapse
|