1
|
Hayashi H, Contento J, Matsushita H, Mass P, Cleveland V, Aslan S, Dave A, Santos RD, Zhu A, Reid E, Watanabe T, Lee N, Dunn T, Siddiqi U, Nurminsky K, Nguyen V, Kawaji K, Huddle J, Pocivavsek L, Johnson J, Fuge M, Loke YH, Krieger A, Olivieri L, Hibino N. Patient-specific tissue engineered vascular graft for aortic arch reconstruction. JTCVS OPEN 2024; 18:209-220. [PMID: 38690440 PMCID: PMC11056495 DOI: 10.1016/j.xjon.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 05/02/2024]
Abstract
Objectives The complexity of aortic arch reconstruction due to diverse 3-dimensional geometrical abnormalities is a major challenge. This study introduces 3-dimensional printed tissue-engineered vascular grafts, which can fit patient-specific dimensions, optimize hemodynamics, exhibit antithrombotic and anti-infective properties, and accommodate growth. Methods We procured cardiac magnetic resonance imaging with 4-dimensional flow for native porcine anatomy (n = 10), from which we designed tissue-engineered vascular grafts for the distal aortic arch, 4 weeks before surgery. An optimal shape of the curved vascular graft was designed using computer-aided design informed by computational fluid dynamics analysis. Grafts were manufactured and implanted into the distal aortic arch of porcine models, and postoperative cardiac magnetic resonance imaging data were collected. Pre- and postimplant hemodynamic data and histology were analyzed. Results Postoperative magnetic resonance imaging of all pigs with 1:1 ratio of polycaprolactone and poly-L-lactide-co-ε-caprolactone demonstrated no specific dilatation or stenosis of the graft, revealing a positive growth trend in the graft area from the day after surgery to 3 months later, with maintaining a similar shape. The peak wall shear stress of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft portion did not change significantly between the day after surgery and 3 months later. Immunohistochemistry showed endothelization and smooth muscle layer formation without calcification of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft. Conclusions Our patient-specific polycaprolactone/poly-L-lactide-co-ε-caprolactone tissue-engineered vascular grafts demonstrated optimal anatomical fit maintaining ideal hemodynamics and neotissue formation in a porcine model. This study provides a proof of concept of patient-specific tissue-engineered vascular grafts for aortic arch reconstruction.
Collapse
Affiliation(s)
- Hidenori Hayashi
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | | | - Hiroshi Matsushita
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Paige Mass
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Vincent Cleveland
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Seda Aslan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Md
| | - Amartya Dave
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Raquel dos Santos
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Angie Zhu
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Emmett Reid
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Tatsuya Watanabe
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Nora Lee
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Tyler Dunn
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Umar Siddiqi
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Katherine Nurminsky
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Vivian Nguyen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Ill
| | - Keigo Kawaji
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Ill
| | | | - Luka Pocivavsek
- Division of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | | | - Mark Fuge
- Department of Mechanical Engineering, University of Maryland, College Park, Md
| | - Yue-Hin Loke
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Md
| | - Laura Olivieri
- Department of Pediatric Cardiology, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
- Department of Cardiovascular Surgery, Advocate Children's Hospital, Oak Lawn, Ill
| |
Collapse
|
2
|
Contento J, Mass P, Cleveland V, Aslan S, Matsushita H, Hayashi H, Nguyen V, Kawaji K, Loke YH, Nelson K, Johnson J, Krieger A, Olivieri L, Hibino N. Location matters: Offset in tissue-engineered vascular graft implantation location affects wall shear stress in porcine models. JTCVS OPEN 2022; 12:355-363. [PMID: 36590712 PMCID: PMC9801286 DOI: 10.1016/j.xjon.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023]
Abstract
Objective Although surgical simulation using computational fluid dynamics has advanced, little is known about the accuracy of cardiac surgical procedures after patient-specific design. We evaluated the effects of discrepancies in location for patient-specific simulation and actual implantation on hemodynamic performance of patient-specific tissue-engineered vascular grafts (TEVGs) in porcine models. Methods Magnetic resonance angiography and 4-dimensional (4D) flow data were acquired in porcine models (n = 11) to create individualized TEVGs. Graft shapes were optimized and manufactured by electrospinning bioresorbable material onto a metal mandrel. TEVGs were implanted 1 or 3 months postimaging, and postoperative magnetic resonance angiography and 4D flow data were obtained and segmented. Displacement between intended and observed TEVG position was determined through center of mass analysis. Hemodynamic data were obtained from 4D flow analysis. Displacement and hemodynamic data were compared using linear regression. Results Patient-specific TEVGs were displaced between 1 and 8 mm during implantation compared with their surgically simulated, intended locations. Greater offset between intended and observed position correlated with greater wall shear stress (WSS) in postoperative vasculature (P < .01). Grafts that were implanted closer to their intended locations showed decreased WSS. Conclusions Patient-specific TEVGs are designed for precise locations to help optimize hemodynamic performance. However, if TEVGs were implanted far from their intended location, worse WSS was observed. This underscores the importance of not only patient-specific design but also precision-guided implantation to optimize hemodynamics in cardiac surgery and increase reproducibility of surgical simulation.
Collapse
Key Words
- 4D, four-dimensional
- AR, augmented reality
- CFD, computational fluid dynamics
- CHD, congenital heart disease
- LPA, left pulmonary artery
- MPA, main pulmonary artery
- MRA, magnetic resonance angiography
- MRI, magnetic resonance imaging
- PA, pulmonary artery
- RPA, right pulmonary artery
- SCA, subclavian artery
- STL, stereolithography
- TEVG, tissue-engineered vascular graft
- WSS, wall shear stress
- center of gravity
- computational fluid dynamics
- displacement
- hemodynamics
- surgical planning
- tissue-engineered vascular grafts
- wall shear stress
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | - Paige Mass
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Vincent Cleveland
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Seda Aslan
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Md
| | - Hiroshi Matsushita
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Hidenori Hayashi
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill
| | - Vivian Nguyen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Ill
| | - Keigo Kawaji
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Ill
| | - Yue-Hin Loke
- Department of Cardiology, Children's National Hospital, Washington, DC
| | | | | | - Axel Krieger
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Md
| | - Laura Olivieri
- Department of Cardiology, Children's National Hospital, Washington, DC
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Ill,Department of Cardiovascular Surgery, Advocate Children's Hospital, Oak Lawn, Ill,Address for reprints: Narutoshi Hibino, MD, PhD, Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Advocate Children's Hospital, 5841 S Maryland Ave, Room E500B, MC5040, Chicago, IL 60637.
| |
Collapse
|
3
|
Black AK, Alsoufi B. Invited Commentary: Computational Flow Dynamics: The Future of Fontan Conduit Selection and Operative Planning? World J Pediatr Congenit Heart Surg 2022; 13:302-303. [PMID: 35446216 DOI: 10.1177/21501351221091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Allison K Black
- Departments of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, USA
| | - Bahaaldin Alsoufi
- Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, USA
| |
Collapse
|
4
|
Kim B, Nguyen P, Loke YH, Cleveland V, Liu X, Mass P, Hibino N, Olivieri L, Krieger A. CorFix: Virtual Reality Cardiac Surgical Planning Software for Designing Patient-Specific Vascular Grafts: Development and Pilot Usability Study (Preprint). JMIR Cardio 2021; 6:e35488. [PMID: 35713940 PMCID: PMC9250062 DOI: 10.2196/35488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Patients with single ventricle heart defects receive 3 stages of operations culminating in the Fontan procedure. During the Fontan procedure, a vascular graft is sutured between the inferior vena cava and pulmonary artery to divert deoxygenated blood flow to the lungs via passive flow. Customizing the graft configuration can maximize the long-term benefits. However, planning patient-specific procedures has several challenges, including the ability for physicians to customize grafts and evaluate their hemodynamic performance. Objective The aim of this study was to develop a virtual reality (VR) Fontan graft modeling and evaluation software for physicians. A user study was performed to achieve 2 additional goals: (1) to evaluate the software when used by medical doctors and engineers, and (2) to explore the impact of viewing hemodynamic simulation results in numerical and graphical formats. Methods A total of 5 medical professionals including 4 physicians (1 fourth-year resident, 1 third-year cardiac fellow, 1 pediatric intensivist, and 1 pediatric cardiac surgeon) and 1 biomedical engineer voluntarily participated in the study. The study was pre-scripted to minimize the variability of the interactions between the experimenter and the participants. All participants were trained to use the VR gear and our software, CorFix. Each participant designed 1 bifurcated and 1 tube-shaped Fontan graft for a single patient. A hemodynamic performance evaluation was then completed, allowing the participants to further modify their tube-shaped design. The design time and hemodynamic performance for each graft design were recorded. At the end of the study, all participants were provided surveys to evaluate the usability and learnability of the software and rate the intensity of VR sickness. Results The average times for creating 1 bifurcated and 1 tube-shaped graft after a single 10-minute training session were 13.40 and 5.49 minutes, respectively, with 3 out 5 bifurcated and 1 out of 5 tube-shaped graft designs being in the benchmark range of hepatic flow distribution. Reviewing hemodynamic performance results and modifying the tube-shaped design took an average time of 2.92 minutes. Participants who modified their tube-shaped graft designs were able to improve the nonphysiologic wall shear stress (WSS) percentage by 7.02%. All tube-shaped graft designs improved the WSS percentage compared to the native surgical case of the patient. None of the designs met the benchmark indexed power loss. Conclusions VR graft design software can quickly be taught to physicians with no engineering background or VR experience. Improving the CorFix system could improve performance of the users in customizing and optimizing grafts for patients. With graphical visualization, physicians were able to improve WSS percentage of a tube-shaped graft, lowering the chance of thrombosis. Bifurcated graft designs showed potential strength in better flow split to the lungs, reducing the risk for pulmonary arteriovenous malformations.
Collapse
Affiliation(s)
- Byeol Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Phong Nguyen
- Department of Computer Science, University of Maryland, College Park, MD, United States
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Vincent Cleveland
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Xiaolong Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Paige Mass
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Laura Olivieri
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|