1
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Mousavi R, Soltani M, Souri M. Microneedle patch capable of dual drug release for drug delivery to brain tumors. Drug Deliv Transl Res 2024:10.1007/s13346-024-01696-6. [PMID: 39186235 DOI: 10.1007/s13346-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Primary brain tumors are mostly managed using surgical resection procedures. Nevertheless, in certain cases, a thin layer of tumors may remain outside of the resection process due to the possibility of permanent injury; these residual tumors expose patients to the risk of tumor recurrence. This study has introduced the use of microneedle patches implanted after surgery with a dual-release mechanism for the administration of doxorubicin. The proposed patches possess the capability to administer drugs directly to the residual tumors and initiate chemotherapy immediately following surgical procedures. Three-dimensional simulation of drug delivery to residual tumors in the brain has been performed based on a finite element method. The impact of four important parameters on drug delivery has been investigated, involving the fraction of drug released in the burst phase, the density of microneedles on the patch, the length of microneedles, and the microvascular density of the tumor. The simulation findings indicate that lowering the fraction of drug released in the initial burst phase reduces the maximum average concentration, but the sustained release that continues for a longer period, increasing the bioavailability of free drug. However, the area under curve (AUC) for different release rates remains unchanged due to the fact that an identical dose of drug is supplied in each instance. By increasing the density of microneedles on the patch, concentration accumulation is provided over an extensive region of tumor, which in turn induces more cancer cell death. A comparative analysis of various lengths reveals that longer microneedles facilitate profound penetration into the tumor layers and present better therapeutic response due to extensive area of the tumor which is exposure to chemotherapeutic drugs. Furthermore, high microvascular density, as a characteristic of the tumor microenvironment, is shown to have a significant impact on the blood microvessels drainage of drugs and consequently lower therapeutic response outcome. Our approach offers a computational framework for creating localized drug delivery systems and addressing the challenges related to residual brain tumors.
Collapse
Affiliation(s)
- Robab Mousavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Hoelm M, Porwański S, Jóźwiak P, Krześlak A. Combined Theoretical and Experimental Investigations: Design, Synthesis, Characterization, and In Vitro Cytotoxic Activity Assessment of a Complex of a Novel Ureacellobiose Drug Carrier with the Anticancer Drug Carmustine. Molecules 2024; 29:3359. [PMID: 39064937 PMCID: PMC11280079 DOI: 10.3390/molecules29143359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Drug delivery systems (DDSs) are used to transport drugs which are characterized by some pharmaceutical problems to the specific target site, enhancing therapeutic efficacy and reducing off-target accumulation in the body. In this work, one of the recently synthesized molecules, 1,10-N,N'-bis-(β-ᴅ-ureidocellobiosyl)-4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (TN), was tested as a potential drug carrier towards the anticancer drug carmustine. For this purpose, different techniques were used, from synthesis and calculations to cytotoxicity assessment. Our results showed that TN is characterized by a very compact geometry, which significantly impacts its complexation properties. Although it forms a very stable complex with carmustine, it adopts a non-inclusion geometry, as verified by both experimental and theoretical NMR analyses. The cytotoxicity study performed for all analyzed molecules (TN; carmustine; TN:carmustine complex) towards normal and cancer (breast and colon) cells revealed that TN is not toxic and that the formation of complexes with carmustine reduces the toxicity of carmustine to normal cells.
Collapse
Affiliation(s)
- Marta Hoelm
- Theoretical and Structural Group, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| | - Stanisław Porwański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.J.); (A.K.)
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.J.); (A.K.)
| |
Collapse
|
4
|
Das D, Narayanan D, Ramachandran R, Gowd GS, Manohar M, Arumugam T, Panikar D, Nair SV, Koyakutty M. Intracranial nanomedicine-gel with deep brain-penetration for glioblastoma therapy. J Control Release 2023; 355:474-488. [PMID: 36739909 DOI: 10.1016/j.jconrel.2023.01.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days. The system consists of ∼222 nm sized PLGA nanoparticles (NP-222) loaded with an anti-glioma drug, Carmustine (BCNU), and coated with a thick layer of polyethylene glycol (PEG). Upon release of the drug from PLGA core, it will interact with the outer PEG-layer leading to the formation of PEG-BCNU nanocomplexes of size ∼33 nm (BCNU-NC-33), which could penetrate >4 cm deep into the brain tissue compared to the free drug (< 5 mm). In vitro drug release showed sustained release of drug for 15 days by BCNU-NP gel, and enhanced cytotoxicity by BCNU-NC-33 drug-nanocomplexes in glioma cell lines. Ex vivo goat-brain phantom studies showed drug diffusion up to 4 cm in tissue and in vivo brain-diffusion studies showed almost complete coverage within the rat brain (∼1.2 cm), with ∼55% drug retained in the tissue by day-15, compared to only ∼5% for free BCNU. Rat orthotopic glioma studies showed excellent anti-tumor efficacy by BCNU-NP gel compared to free drug, indicating the potential of the gel-system for anti-glioma therapy. In effect, we demonstrate a unique method of sustained release of drug in the brain using larger PLGA nanoparticles acting as a reservoir while deep-penetration of the released drug was achieved by in situ formation of drug-nanocomplexes of size <50 nm which is less than the native pore size of brain tissue (> 100 nm). This method will have a major impact on a challenging field of brain drug delivery.
Collapse
Affiliation(s)
- Devika Das
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dhanya Narayanan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ranjith Ramachandran
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Genekehal Siddaramana Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Maneesh Manohar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dilip Panikar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
5
|
Bouché M, Dong YC, Sheikh S, Taing K, Saxena D, Hsu JC, Chen MH, Salinas RD, Song H, Burdick JA, Dorsey J, Cormode DP. Novel Treatment for Glioblastoma Delivered by a Radiation Responsive and Radiopaque Hydrogel. ACS Biomater Sci Eng 2021; 7:3209-3220. [PMID: 34160196 PMCID: PMC8411482 DOI: 10.1021/acsbiomaterials.1c00385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Successful treatment of glioblastoma (GBM) is hampered by primary tumor recurrence after surgical resection and poor prognosis, despite adjuvant radiotherapy and chemotherapy. In search of improved outcomes for this disease, quisinostat appeared as a lead compound in drug screening. A delivery system was devised for this drug and to exploit current clinical methodology: an injectable hydrogel, loaded with both the quisinostat drug and radiopaque gold nanoparticles (AuNP) as contrast agent, that can release these payloads as a response to radiation. This hydrogel grants high local drug concentrations, overcoming issues with current standards of care. Significant hydrogel degradation and quisinostat release were observed due to the radiation trigger, providing high in vitro anticancer activity. In vivo, the combination of radiotherapy and the radiation-induced delivery of quisinostat from the hydrogel, successfully inhibited tumor growth in a mice model bearing xenografted human GBM tumors with a total response rate of 67%. Long-term tolerability was observed after intratumoral injection of the quisinostat loaded hydrogel. The AuNP payload enabled precise image-guided radiation delivery and the monitoring of hydrogel degradation using computed tomography (CT). These exciting results highlight this hydrogel as a versatile imageable drug delivery platform that can be activated simultaneously to radiation therapy and potentially offers improved treatment for GBM.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Saad Sheikh
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Minna H Chen
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Ryan D Salinas
- Department of Neurosurgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Jay Dorsey
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Modelling of combination therapy using implantable anticancer drug delivery with thermal ablation in solid tumor. Sci Rep 2020; 10:19366. [PMID: 33168846 PMCID: PMC7653950 DOI: 10.1038/s41598-020-76123-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Local implantable drug delivery system (IDDS) can be used as an effective adjunctive therapy for solid tumor following thermal ablation for destroying the residual cancer cells and preventing the tumor recurrence. In this paper, we develop comprehensive mathematical pharmacokinetic/pharmacodynamic (PK/PD) models for combination therapy using implantable drug delivery system following thermal ablation inside solid tumors with the help of molecular communication paradigm. In this model, doxorubicin (DOX)-loaded implant (act as a transmitter) is assumed to be inserted inside solid tumor (acts as a channel) after thermal ablation. Using this model, we can predict the extracellular and intracellular concentration of both free and bound drugs. Also, Impact of the anticancer drug on both cancer and normal cells is evaluated using a pharmacodynamic (PD) model that depends on both the spatiotemporal intracellular concentration as well as characteristics of anticancer drug and cells. Accuracy and validity of the proposed drug transport model is verified with published experimental data in the literature. The results show that this combination therapy results in high therapeutic efficacy with negligible toxicity effect on the normal tissue. The proposed model can help in optimize development of this combination treatment for solid tumors, particularly, the design parameters of the implant.
Collapse
|
7
|
Pramanik A, Garg S. Design of diffusion-controlled drug delivery devices for controlled release of Paclitaxel. Chem Biol Drug Des 2019; 94:1478-1487. [PMID: 30920732 DOI: 10.1111/cbdd.13524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Controlled drug delivery devices were predicted in a reverse engineering framework for the controlled release of Paclitaxel, an anti-cancer drug, widely used in the treatment of solid tumors. Using quantitative structure-property relationship models for mutual diffusion coefficients of the drug in biocompatible and biodegradable polymers and partition coefficients of the drug between polymers and blood, a framework was developed to predict optimal drug delivery devices for desired dosage regimens. The validation of the predicted mutual diffusion and partition coefficients using experimental data was reported in previous studies. Optimal design parameters along with selection of most appropriate polymers suitable for different dosage regimens, selected based on current clinical practice, were predicted for maximum bioavailability of the drug while maintaining the released drug concentration in blood within the therapeutic range. Reservoir and monolithic type of diffusion-controlled drug delivery devices of different shapes and sizes were predicted with different initial drug loadings and bioavailability for different dosage regimens. The effects of the released Paclitaxel from these devices on the tumor growth were also modeled using a previously reported mathematical pharmacokinetic-pharmacodynamic model. The proposed approach can easily be used to design other diffusion-controlled drug delivery devices.
Collapse
Affiliation(s)
- Anurag Pramanik
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sanjeev Garg
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
8
|
Guthier CV, D'Amico AV, King MT, Nguyen PL, Orio PF, Sridhar S, Makrigiorgos GM, Cormack RA. Determining optimal eluter design by modeling physical dose enhancement in brachytherapy. Med Phys 2018; 45:3916-3925. [PMID: 29905964 DOI: 10.1002/mp.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE In situ drug release concurrent with radiation therapy has been proposed to enhance the therapeutic ratio of permanent prostate brachytherapy. Both brachytherapy sources and brachytherapy spacers have been proposed as potential eluters to release compounds, such as nanoparticles or chemotherapeutic agents. The relative effectiveness of the approaches has not been compared yet. This work models the physical dose enhancement of implantable eluters in conjunction with brachytherapy to determine which delivery mechanism provides greatest opportunity to enhance the therapeutic ratio. MATERIALS AND METHODS The combined effect of implanted eluters and radioactive sources were modeled in a manner that allowed the comparison of the relative effectiveness of different types of implantable eluters over a range of parameters. Prostate geometry, source, and spacer positions were extracted from treatment plans used for 125 I permanent prostate implants. Compound concentrations were calculated using steady-state solution to the diffusion equation including an elimination term characterized by the diffusion-elimination modulus (ϕb ). Does enhancement was assumed to be dependent on compound concentration up to a saturation concentration (csat ). Equivalent uniform dose (EUD) was used as an objective to determine the optimal configuration of eluters for a range of diffusion-elimination moduli, concentrations, and number of eluters. The compound delivery vehicle that produced the greatest enhanced dose was tallied for points in parameter space mentioned to determine the conditions under whether there are situations where one approach is preferable to the other. RESULTS The enhanced effect of implanted eluters was calculated for prostate volumes from 14 to 45 cm3 , ϕb from 0.01 to 4 mm-1 , csat from 0.05 to 7.5 times the steady-state compound concentration released from the surface of the eluter. The number of used eluters (ne ) was simulated from 10 to 60 eluters. For the region of (csat , Φ)-space that results in a large fraction of the gland being maximally sensitized, compound eluting spacers or sources produce equal increase in EUD. In the majority of the remaining (csat , Φ)-space, eluting spacers result in a greater EUD than sources even where sources often produce greater maximal physical dose enhancement. Placing eluting implants in planned locations throughout the prostate results in even greater enhancement than using only source or spacer locations. CONCLUSIONS Eluting brachytherapy spacers offer an opportunity to increase EUD during the routine brachytherapy process. Incorporating additional needle placements permits compound eluting spacer placement independent of source placement and thereby allowing a further increase in the therapeutic ratio. Additional work is needed to understand the in vivo spatial distribution of compound around eluters, and to incorporate time dependence of both compound release and radiation dose.
Collapse
Affiliation(s)
- C V Guthier
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A V D'Amico
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M T King
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P F Orio
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Sridhar
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - G M Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R A Cormack
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Hruby M, Agrawal K, Policianova O, Brus J, Skopal J, Svec P, Otmar M, Dzubak P, Stepanek P, Hajduch M. Biodegradable system for drug delivery of hydrolytically labile azanucleoside drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:222-30. [PMID: 27003313 DOI: 10.5507/bp.2016.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The archetypal DNA methyltransferase inhibitors, 5-azacytidine (AZA) and 5-aza-2'-deoxycytidine (DAC) are potent antineoplastic agents used in the treatment of mainly, blood malignancies. However, the administration of these drugs is confounded by their hydrolytic lability which decreases plasma circulation time. Here, we describe a new biodegradable, polyanhydride formulation for drug delivery that circumvents this drawback. METHODS Injectable/implantable polymeric microbeads containing dispersed microcrystals of hydrophilic AZA or DAC packed in a dry environment are protected from hydrolysis, until the hydrolytic zone reaches the core. Diclofenac is embedded into the formulation to decrease any local inflammation. The efficacy of the formulations was confirmed by monitoring the induced demethylation, and cytostatic/cytotoxic effects of continuous drug release from the time-course dissolution of the microbeads, using an in vitro developed cell based reporter system. RESULTS Poly(sebaccic acid-co-1,4-cyclohexanedicarboxylic acid) containing 30 wt. % drug showed zero-order release (R(2) = 0.984 for linear regression), and release rate of 10.0 %/h within the first 5 h, and subsequent slower release of the remaining drug, thus maintaining the level of drugs in the outer environment considerably longer than the typical plasma half-life of free azanucleosides. At lower concentrations, the differences between powder drug formulations and microbeads were very low or negligible, however, at higher concentrations, we discovered equivalent or increasing effects of the drugs loaded in microbeads. CONCLUSIONS The study provides evidence that microbead formulations of the hydrolytically labile azanucleoside drugs could prevent their chemical decomposition in aqueous solution, and effectively increase plasma circulation time.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Khushboo Agrawal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Olivia Policianova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jan Skopal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Fleming Sq. 2.166 10 Prague 6, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
Shemi A, Khvalevsky EZ, Gabai RM, Domb A, Barenholz Y. Multistep, effective drug distribution within solid tumors. Oncotarget 2015; 6:39564-77. [PMID: 26416413 PMCID: PMC4741846 DOI: 10.18632/oncotarget.5051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022] Open
Abstract
The distribution of drugs within solid tumors presents a long-standing barrier for efficient cancer therapies. Tumors are highly resistant to diffusion, and the lack of blood and lymphatic flows suppresses convection. Prolonged, continuous intratumoral drug delivery from a miniature drug source offers an alternative to both systemic delivery and intratumoral injection. Presented here is a model of drug distribution from such a source, in a multistep process. At delivery onset the drug mainly affects the closest surroundings. Such 'priming' enables drug penetration to successive cell layers. Tumor 'void volume' (volume not occupied by cells) increases, facilitating lymphatic perfusion. The drug is then transported by hydraulic convection downstream along interstitial fluid pressure (IFP) gradients, away from the tumor core. After a week tumor cell death occurs throughout the entire tumor and IFP gradients are flattened. Then, the drug is transported mainly by 'mixing', powered by physiological bulk body movements. Steady state is achieved and the drug covers the entire tumor over several months. Supporting measurements are provided from the LODER system, releasing siRNA against mutated KRAS over months in pancreatic cancer in-vivo models. LODER was also successfully employed in a recent Phase 1/2 clinical trial with pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Abraham Domb
- Faculty of Medicine - School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
11
|
González-González MA, Ostos-Valverde A, Becerra-Hernández A, Sánchez-Castillo H, Martínez-Torres A. The effect of carmustine on Bergmann cells of the cerebellum. Neurosci Lett 2015; 595:18-24. [PMID: 25841791 DOI: 10.1016/j.neulet.2015.03.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/21/2015] [Accepted: 03/31/2015] [Indexed: 11/15/2022]
Abstract
Administration of the alkylating agent carmustine to pregnant mice induces hyperlocomotion in the offspring. Motor performance was evaluated by the rotarod task, which revealed that these animals have diminished Grab Frequency and a higher Performance Index, whereas Error of Latency and Latency to Fall were unaffected. Considering the recently revealed role of Bergmann cells of cerebellum in the control of motor activity, we used the transgenic mice GFAP-GFP to explore the impact of carmustine on the organization of these glial cells. Multiple examples of cell layer disorganization were detected; many soma of Bergmann cells were displaced to the external cell layer, and their processes were not well defined until young adulthood. In addition, the roof of the fourth ventricle was convoluted. These observations suggest that the exacerbated locomotion induced by carmustine may be due, in part, to the altered organization of the cell layers of cerebellum.
Collapse
Affiliation(s)
- María Alejandra González-González
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Querétaro, Qro, Mexico
| | - Aline Ostos-Valverde
- Laboratory of Neuropsychopharmacology and Timing, School of Psychology, UNAM, Building B, B001, Mexico City 04510, Mexico
| | - Armando Becerra-Hernández
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Querétaro, Qro, Mexico
| | - Hugo Sánchez-Castillo
- Laboratory of Neuropsychopharmacology and Timing, School of Psychology, UNAM, Building B, B001, Mexico City 04510, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Querétaro, Qro, Mexico.
| |
Collapse
|
12
|
Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release 2014; 190:664-73. [PMID: 24801251 PMCID: PMC4142083 DOI: 10.1016/j.jconrel.2014.04.048] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/15/2014] [Accepted: 04/25/2014] [Indexed: 01/14/2023]
Abstract
Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.
Collapse
Affiliation(s)
- Jennifer R Weiser
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|