1
|
Sharma K, Deng H, Banerjee P, Peng Z, Gum J, Baldelli A, Jasieniak J, Meagher L, Martino MM, Gundabala V, Alan T. High precision acoustofluidic synthesis of stable, biocompatible water-in-water emulsions. ULTRASONICS SONOCHEMISTRY 2024; 111:107120. [PMID: 39481289 DOI: 10.1016/j.ultsonch.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Water-in-water (w/w) emulsions, comprising aqueous droplets within another continuous aqueous phase, rely on a low interfacial tension for stability. Thus far, it has been challenging to control their size and stability without the use of stabilizers. In this study, we introduce a microfluidic technique that addresses these challenges, producing stable w/w emulsions with precisely controlled size and uniformity. Results shows that using an acoustically actuated microfluidic mixer, PEG, Dextran, and alginate solutions (84.66 mPa.s viscosity difference) were homogenized rapidly, forming uniformly distributed w/w emulsions stabilized in alginate gels. The emulsion size, uniformity, and shear sensitivity can be tuned by modifying the alginate concentration. Biocompatibility was evaluated by monitoring the viability of kidney cells in the presence of emulsions and gels. In conclusion, this study not only showed emulsion formation with a high mixing efficiency exceeding 90 % for all viscosities, actuated at an optimized frequency of 1.064 MHz, but also demonstrated that an aqueous, solvent, and emulsifier-free composition exhibited remarkable biocompatibility, holding promise for precise drug delivery, cosmetics, and food applications.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Hao Deng
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Parikshit Banerjee
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zaimao Peng
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jackson Gum
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Alberto Baldelli
- Faculty of Agriculture and Food Sustainability, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jacek Jasieniak
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Chen Y, Sun T, Liu Z, Zhang Y, Wang J. Towards Design Automation of Microfluidic Mixers: Leveraging Reinforcement Learning and Artificial Neural Networks. MICROMACHINES 2024; 15:901. [PMID: 39064412 PMCID: PMC11278837 DOI: 10.3390/mi15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Microfluidic mixers, a pivotal application of microfluidic technology, are primarily utilized for the rapid amalgamation of diverse samples within microscale devices. Given the intricacy of their design processes and the substantial expertise required from designers, the intelligent automation of microfluidic mixer design has garnered significant attention. This paper discusses an approach that integrates artificial neural networks (ANNs) with reinforcement learning techniques to automate the dimensional parameter design of microfluidic mixers. In this study, we selected two typical microfluidic mixer structures for testing and trained two neural network models, both highly precise and cost-efficient, as alternatives to traditional, time-consuming finite-element simulations using up to 10,000 sets of COMSOL simulation data. By defining effective state evaluation functions for the reinforcement learning agents, we utilized the trained agents to successfully validate the automated design of dimensional parameters for these mixer structures. The tests demonstrated that the first mixer model could be automatically optimized in just 0.129 s, and the second in 0.169 s, significantly reducing the time compared to manual design. The simulation results validated the potential of reinforcement learning techniques in the automated design of microfluidic mixers, offering a new solution in this field.
Collapse
Affiliation(s)
| | | | | | | | - Junchao Wang
- School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Wong YC, Dai C, Xian Q, Yan Z, Zhang Z, Wen W. Flow study of Dean's instability in high aspect ratio microchannels. Sci Rep 2023; 13:17896. [PMID: 37857780 PMCID: PMC10587195 DOI: 10.1038/s41598-023-44969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Dean's flow and Dean's instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean's flow only. This work first reports the Dean's instability flow in high aspect ratio channels on the deka-microns level for [Formula: see text]. A new channel geometry (the tortuous channel), which creates a rolled-up velocity profile, is presented and studied experimentally and numerically along with other three typical channel geometries at Dean's flow condition and Dean's instability condition. The tortuous channel generates a higher De environment at the same Re compared to the other channels and allows easier Dean's instability creation. We further demonstrate the use of multiple vortexes for mixing. The mixing efficiency is considered among different channel patterns and the tortuous channel outperforms the others. This work offers more understanding of the creation of Dean's instability at high aspect ratio channels and the effect of channel geometry on it. Ultimately, it demonstrates the potential for applications like mixing and cell sorting.
Collapse
Affiliation(s)
- Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Cheng Dai
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Qingyue Xian
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Zhaoxu Yan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ziyi Zhang
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|
4
|
Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat Methods 2023; 20:1400-1408. [PMID: 37592181 DOI: 10.1038/s41592-023-01967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/27/2023] [Indexed: 08/19/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) allows reconstruction of high-resolution structures of proteins in different conformations. Protein function often involves transient functional conformations, which can be resolved using time-resolved cryo-EM (trEM). In trEM, reactions are arrested after a defined delay time by rapid vitrification of protein solution on the EM grid. Despite the increasing interest in trEM among the cryo-EM community, making trEM samples with a time resolution below 100 ms remains challenging. Here we report the design and the realization of a time-resolved cryo-plunger that combines a droplet-based microfluidic mixer with a laser-induced generator of microjets that allows rapid reaction initiation and plunge-freezing of cryo-EM grids. Using this approach, a time resolution of 5 ms was achieved and the protein density map was reconstructed to a resolution of 2.1 Å. trEM experiments on GroEL:GroES chaperonin complex resolved the kinetics of the complex formation and visualized putative short-lived conformations of GroEL-ATP complex.
Collapse
Affiliation(s)
- Stefania Torino
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mugdha Dhurandhar
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Claessens
- Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Kanies OS, Kremer KR, Mason BM, Dudley MG, Hlavay JM, Miller CT, Spero RC, Fisher JK. A modular microfluidic device that uses magnetically actuatable microposts for enhanced magnetic bead-based workflows. LAB ON A CHIP 2023; 23:330-340. [PMID: 36597964 PMCID: PMC10158497 DOI: 10.1039/d2lc00859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Magnetic beads have been widely and successfully used for target enrichment in life science assays. There exists a large variety of commercially available magnetic beads functionalized for specific target capture, as well as options that enable simple surface modifications for custom applications. While magnetic beads are ideal for use in the macrofluidic context of typical laboratory workflows, their performance drops in microfluidic contexts, such as consumables for point-of-care diagnostics. A primary cause is the diffusion-limited analyte transport in these low Reynolds number environments. A new method, BeadPak, uses magnetically actuatable microposts to enhance analyte transport, improving yield of the desired targets. Critical parameters were defined for the operation of this technology and its performance characterized in canonical life-science assays. BeadPak achieved up to 1000× faster capture than a microfluidic chamber relying on diffusion alone, enabled a significant specimen concentration via volume reduction, and demonstrated compatibility with a range of biological specimens. The results shown in this work can be extended to other systems that utilize magnetic beads for target capture, concentration, and/or purification.
Collapse
|
6
|
São Pedro MN, Santos MS, Eppink MHM, Ottens M. Design of a microfluidic mixer channel: First steps into creating a fluorescent dye-based biosensor for mAb aggregate detection. Biotechnol J 2023; 18:e2200332. [PMID: 36330557 DOI: 10.1002/biot.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in the transition to continuous biomanufacturing is the lack of process analytical technology (PAT) tools which are able to collect real-time information on the process and elicit a response to facilitate control. One of the critical quality attributes (CQAs) of interest during monoclonal antibodies production is aggregate formation. The development of a real-time PAT tool to monitor aggregate formation is then crucial to have immediate feedback and process control. Miniaturized sensors placed after each unit operation can be a powerful solution to speed up an analytical measurement due to their characteristic short reaction time. In this work, a micromixer structure capable of mixing two streams is presented, to be employed in the detection of mAb aggregates using fluorescent dyes. Computational fluid dynamics (CFD) simulations were used to compare the mixing performance of a series of the proposed designs. A final design of a zigzag microchannel with 45° angle was reached and this structure was subsequently fabricated and experimentally validated with colour dyes and, later, with a FITC-IgG molecule. The designed zigzag micromixer presents a mixing index of around 90%, obtained in less than 30 seconds. Therefore, a micromixer channel capable of a fast and efficient mixing is hereby demonstrated, to be used as a real-time PAT tool for a fluorescence based detection of protein aggregation.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mafalda S Santos
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Michel H M Eppink
- Byondis B.V., Nijmegen, the Netherlands.,Bioprocessing Engineering, Wageningen University, Wageningen, the Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
7
|
Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture. Sci Rep 2022; 12:17781. [PMID: 36273031 PMCID: PMC9588086 DOI: 10.1038/s41598-022-22439-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Microfluidic devices that combine an extracellular matrix environment, cells, and physiologically relevant perfusion, are advantageous as cell culture platforms. We developed a hydrogel-based, microfluidic cell culture platform by loading polyethylene glycol (PEG) hydrogel-encapsulated U87 glioblastoma cells into membrane-capped wells in polydimethyl siloxane (PDMS). The multilayer microfluidic cell culture system combines previously reported design features in a configuration that loads and biomimetically perfuses a 2D array of cell culture chambers. One dimension of the array is fed by a microfluidic concentration gradient generator (MCGG) while the orthogonal dimension provides loading channels that fill rows of cell culture chambers in a separate layer. In contrast to typical tree-like MCGG mixers, a fractional serial dilution of 1, ½, ¼, and 0 of the initial solute concentration is achieved by tailoring the input microchannel widths. Hydrogels are efficiently and reproducibly loaded in all wells and cells are evenly distributed throughout the hydrogel, maintaining > 90% viability for up to 4 days. In a drug screening assay, diffusion of temozolomide and carmustine to hydrogel-encapsulated U87 cells from the perfusion solution is measured, and dose-response curves are generated, demonstrating utility as an in vitro mimic of the glioblastoma microenvironment.
Collapse
|
8
|
McIntyre D, Lashkaripour A, Fordyce P, Densmore D. Machine learning for microfluidic design and control. LAB ON A CHIP 2022; 22:2925-2937. [PMID: 35904162 PMCID: PMC9361804 DOI: 10.1039/d2lc00254j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
Microfluidics has developed into a mature field with applications across science and engineering, having particular commercial success in molecular diagnostics, next-generation sequencing, and bench-top analysis. Despite its ubiquity, the complexity of designing and controlling custom microfluidic devices present major barriers to adoption, requiring intuitive knowledge gained from years of experience. If these barriers were overcome, microfluidics could miniaturize biological and chemical research for non-experts through fully-automated platform development and operation. The intuition of microfluidic experts can be captured through machine learning, where complex statistical models are trained for pattern recognition and subsequently used for event prediction. Integration of machine learning with microfluidics could significantly expand its adoption and impact. Here, we present the current state of machine learning for the design and control of microfluidic devices, its possible applications, and current limitations.
Collapse
Affiliation(s)
- David McIntyre
- Biomedical Engineering Department, Boston University, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, MA, USA.
- Electrical & Computer Engineering Department, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Takken M, Wille R. Simulation of Pressure-Driven and Channel-Based Microfluidics on Different Abstract Levels: A Case Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:5392. [PMID: 35891071 PMCID: PMC9321135 DOI: 10.3390/s22145392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A microfluidic device, or a Lab-on-a-Chip (LoC), performs lab operations on the microscale through the manipulation of fluids. The design and fabrication of such devices usually is a tedious process, and auxiliary tools, such as simulators, can alleviate the necessary effort for the design process. Simulations of fluids exist in various forms and can be categorized according to how well they represent the underlying physics, into so-called abstraction levels. In this work, we consider simulation approaches in 1D, which are based on analytical solutions of simplified problems, and approaches in 2D and 3D, for which we use two different Computational Fluid Dynamics (CFD) methods-namely, the Finite Volume Method (FVM) and the Lattice-Boltzmann Method (LBM). All these methods come with their pros and cons with respect to accuracy and required compute time, but unfortunately, most designers and researchers are not aware of the trade-off that can be made within the broad spectrum of available simulation approaches for microfluidics and end up choosing a simulation approach arbitrarily. We provide an overview of different simulation approaches as well as a case study of their performance to aid designers and researchers in their choice. To this end, we consider three representative use cases of pressure-driven and channel-based microfluidic devices (namely the non-Newtonian flow in a channel, the mixing of two fluids in a channel, and the behavior of droplets in channels). The considerations and evaluations raise the awareness and provide several insights for what simulation approaches can be utilized today when designing corresponding devices (and for what they cannot be utilized yet).
Collapse
Affiliation(s)
- Michel Takken
- Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstraße 21, 80333 München, Germany
| | - Robert Wille
- Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstraße 21, 80333 München, Germany
- Software Competence Center Hagenberg GmbH (SCCH), Softwarepark 32a, 4232 Hagenberg, Austria
| |
Collapse
|
10
|
Sabharwall P, Weaver K, Anand NK, Ellis C, Sun X, Chen D, Choi H, Christensen R, Fronk BM, Gess J, Hassan Y, Jovanovic I, Manera A, Petrov V, Vaghetto R, Balderrama-Prieto S, Burak AJ, Burger M, Cardenas-Melgar A, Garrett L, Gaudin GL, Orea D, Chavez R, Choi B, Sutton N, Williams K, Young J. Preconceptual Design of Multifunctional Gas-Cooled Cartridge Loop for the Versatile Test Reactor—Part I. NUCL SCI ENG 2022. [DOI: 10.1080/00295639.2022.2070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Piyush Sabharwall
- Idaho National Laboratory, Nuclear Systems Design and Analysis Division, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415
| | - Kevan Weaver
- Idaho National Laboratory, Nuclear Systems Design and Analysis Division, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415
| | - N. K. Anand
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Chris Ellis
- General Atomics, 3550 General Atomics Court, San Diego, California 92121
| | - Xiaodong Sun
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Di Chen
- University of Houston, Department of Physics, Houston, Texas 77204
| | - Hangbok Choi
- General Atomics, 3550 General Atomics Court, San Diego, California 92121
| | - Rich Christensen
- University of Idaho, Department of Nuclear Engineering, Idaho Falls, Idaho 83844
| | - Brian M. Fronk
- Oregon State University, Department of Mechanical, Industrial and Manufacturing Engineering, Corvallis, Oregon 97331
| | - Joshua Gess
- Oregon State University, Department of Mechanical, Industrial and Manufacturing Engineering, Corvallis, Oregon 97331
| | - Yassin Hassan
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Igor Jovanovic
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Annalisa Manera
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Victor Petrov
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Rodolfo Vaghetto
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | | | - Adam J. Burak
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Milos Burger
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | | | - Londrea Garrett
- University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109
| | - Genevieve L. Gaudin
- Oregon State University, Department of Mechanical, Industrial and Manufacturing Engineering, Corvallis, Oregon 97331
| | - Daniel Orea
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Reynaldo Chavez
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Byunghee Choi
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Noah Sutton
- Texas A&M University, Department of Mechanical Engineering, College Station, Texas 77843
| | - Ken Williams
- University of Houston, Department of Physics, Houston, Texas 77204
| | - Josh Young
- University of Idaho, Department of Nuclear Engineering, Idaho Falls, Idaho 83844
| |
Collapse
|
11
|
Zheng H, Tao H, Wan J, Lee KY, Zheng Z, Leung SSY. Preparation of Drug-Loaded Liposomes with Multi-Inlet Vortex Mixers. Pharmaceutics 2022; 14:pharmaceutics14061223. [PMID: 35745796 PMCID: PMC9227628 DOI: 10.3390/pharmaceutics14061223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The multi-inlet vortex mixer (MIVM) has emerged as a novel bottom-up technology for solid nanoparticle preparation. However, its performance in liposome preparation remains unknown. Here, two key process parameters (aqueous/organic flow rate ratio (FRR) and total flow rate (TFR)) of MIVM were investigated for liposome preparation. For this study, two model drugs (lysozyme and erythromycin) were chosen for liposome encapsulation as the representative hydrophilic and hydrophobic drugs, respectively. In addition, two modified MIVMs, one with herringbone-patterned straight inlets and one with zigzag inlets, were designed to further improve the mixing efficiency, aiming to achieve better drug encapsulation. Data showed that FRR played an important role in liposome size control, and a size of <200 nm was achieved by FRR higher than 3:1. Moreover, increasing TFR (from 1 to 100 mL/min) could further decrease the size at a given FRR. However, similar regularities in controlling the encapsulation efficiency (EE%) were only noted in erythromycin-loaded liposomes. Modified MIVMs improved the EE% of lysozyme-loaded liposomes by 2~3 times at TFR = 40 mL/min and FRR = 3:1, which was consistent with computational fluid dynamics simulations. In summary, the good performance of MIVM in the control of particle size and EE% makes it a promising tool for liposome preparation, especially for hydrophobic drug loading, at flexible production scales.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
| | - Hai Tao
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
| | - Jinzhao Wan
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
| | - Kei Yan Lee
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
| | - Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
- Correspondence: (Z.Z.); (S.S.Y.L.)
| | - Sharon Shui Yee Leung
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
- Correspondence: (Z.Z.); (S.S.Y.L.)
| |
Collapse
|
12
|
Zhang N, Horesh A, Friend J. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100408. [PMID: 34258166 PMCID: PMC8261518 DOI: 10.1002/advs.202100408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Indexed: 05/05/2023]
Abstract
Controllable manipulation and effective mixing of fluids and colloids at the nanoscale is made exceptionally difficult by the dominance of surface and viscous forces. The use of megahertz (MHz)-order vibration has dramatically expanded in microfluidics, enabling fluid manipulation, atomization, and microscale particle and cell separation. Even more powerful results are found at the nanoscale, with the key discovery of new regimes of acoustic wave interaction with 200 fL droplets of deionized water. It is shown that 40 MHz-order surface acoustic waves can manipulate such droplets within fully transparent, high-aspect ratio, 100 nm tall, 20-130 micron wide, 5-mm long nanoslit channels. By forming traps as locally widened regions along such a channel, individual fluid droplets may be propelled from one trap to the next, split between them, mixed, and merged. A simple theory is provided to describe the mechanisms of droplet transport and splitting.
Collapse
Affiliation(s)
- Naiqing Zhang
- Medically Advanced Devices Lab, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, 9500 Gilman Dr. MC0411University of California San DiegoLa JollaCA92093USA
| | - Amihai Horesh
- Medically Advanced Devices Lab, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, 9500 Gilman Dr. MC0411University of California San DiegoLa JollaCA92093USA
| | - James Friend
- Medically Advanced Devices Lab, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, 9500 Gilman Dr. MC0411University of California San DiegoLa JollaCA92093USA
| |
Collapse
|
13
|
Li X, He Z, Li C, Li P. One-step enzyme kinetics measurement in 3D printed microfluidics devices based on a high-performance single vibrating sharp-tip mixer. Anal Chim Acta 2021; 1172:338677. [PMID: 34119024 DOI: 10.1016/j.aca.2021.338677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022]
Abstract
Measuring enzyme kinetics is of great importance to understand many biological processes and improve biosensing and industrial applications. Conventional methods of measuring enzyme kinetics require to prepare a series of solutions with different substrate concentrations and measure the signal response over time with these solutions, leading to tedious sample preparation steps, high reagents/sample consumption, and difficulties in studying fast enzyme kinetics. Here we report a one-step assay to measure enzyme kinetics using a 3D-printed microfluidic device, which eliminates the steps of preparing and handling multiple solutions thereby simplifying the whole workflow significantly. The assay is enabled by a highly efficient vibrating sharp-tip mixing method that can mix multiple streams of fluids with minimal mixing length (∼300 μm) and time (as low as 3 ms), and a wide range of working flow rates from 1.5 μL/min to 750 μL/min. Owing to the high performance of the mixer, a series of experiments with different substrate concentrations are performed by simply adjusting the flow rates of reagents loaded from three inlets in one experiment run. The Michaelis-Menten kinetics of the horseradish peroxidase (HRP)-catalyzed reaction between H2O2 and amplex red is measured in this system. The calculated Michaelis constant is consistent with the values from literature and conventional analysis methods. Due to the simplicity in fabrication and operation, rapid analysis, low power consumption (1.4-45.0 mW), and high temporal resolution, this method will significantly facilitate enzyme kinetics measurement, and offers great potential for optimizing enzyme based biosensing experiments and probing many biochemical processes.
Collapse
Affiliation(s)
- Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Fisher JT, Gurney TO, Mason BM, Fisher JK, Kelly WJ. Mixing and oxygen transfer characteristics of a microplate bioreactor with surface-attached microposts. Biotechnol J 2021; 16:e2000257. [PMID: 33470052 DOI: 10.1002/biot.202000257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Bioprocess optimization for cell-based therapies is a resource heavy activity. To reduce the associated cost and time, process development may be carried out in small volume systems, with the caveat that such systems be predictive for process scale-up. The transport of oxygen from the gas phase into the culture medium, characterized using the volumetric mass transfer coefficient, kL a, has been identified as a critical parameter for predictive process scale-up. Here, we describe the development of a 96-well microplate with integrated Redbud Posts to provide mixing and enhanced kL a. Mixing in the microplate is characterized by observation of dyes and analyzed using the relative mixing index (RMI). The kL a is measured via dynamic gassing out method. Actuating Redbud Posts are shown to increase rate of planar homogeneity (2 min) verse diffusion alone (120 min) and increase oxygenation, with increasing stirrer speed (3500-9000 rpm) and decreasing fill volume (150-350 μL) leading to an increase in kL a (4-88 h-1 ). Significant increase in Chinese Hamster Ovary growth in Redbud Labs vessel (580,000 cells mL-1 ) versus the control (420,000 cells mL-1 ); t(12.814) = 8.3678, p ≤ .001), and CD4+ Naïve cell growth in the microbioreactor indicates the potential for this technology in early stage bioprocess development and optimization.
Collapse
Affiliation(s)
- Justin T Fisher
- Department of Chemical Engineering, Villanova University, Villanova, Pennsylvania, 19085, USA
| | - Travis O Gurney
- Redbud Labs Inc., Research Triangle Park, North Carolina, 27709, USA
| | - Brittany M Mason
- Redbud Labs Inc., Research Triangle Park, North Carolina, 27709, USA
| | - Jay K Fisher
- Redbud Labs Inc., Research Triangle Park, North Carolina, 27709, USA
| | - William J Kelly
- Department of Chemical Engineering, Villanova University, Villanova, Pennsylvania, 19085, USA
| |
Collapse
|
15
|
Boutiette AL, Toothaker C, Corless B, Boukaftane C, Howell C. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems. PLoS One 2020; 15:e0244324. [PMID: 33370381 PMCID: PMC7769481 DOI: 10.1371/journal.pone.0244324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Microfluidic technologies have enormous potential to offer breakthrough solutions across a wide range of applications. However, the rate of scale-up and commercialization of these technologies has lagged significantly behind promising breakthrough developments in the lab, due at least in part to the problems presented by transitioning from benchtop fabrication methods to mass-manufacturing. In this work, we develop and validate a method to create functional microfluidic prototype devices using 3D printed masters in an industrial-scale roll-to-roll continuous casting process. There were no significant difference in mixing performance between the roll-to-roll cast devices and the PDMS controls in fluidic mixing tests. Furthermore, the casting process provided information on the suitability of the prototype microfluidic patterns for scale-up. This work represents an important step in the realization of high-volume prototyping and manufacturing of microfluidic patterns for use across a broad range of applications.
Collapse
Affiliation(s)
- Amber L. Boutiette
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Cristoffer Toothaker
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Bailey Corless
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | | | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
16
|
High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes. J Colloid Interface Sci 2020; 585:229-236. [PMID: 33285461 DOI: 10.1016/j.jcis.2020.11.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Protein nanoparticles have attracted increased interest due to their broad applications ranging from drug delivery and vaccines to biocatalysts and biosensors. The morphology and the size of the nanoparticles play a crucial role in determining their suitability for different applications. Yet, effectively controlling the size of the nanoparticles is still a significant challenge in their manufacture. The hypothesis of this paper is that the assembly conditions and size of protein particles can be tuned via a mechanical route by simply modifying the mixing time and strength, while keeping the chemical parameters constant. EXPERIMENTAL We use an acoustically actuated, high throughput, ultrafast, microfluidic mixer for the assembly of protein particles with tuneable sizes. The performance of the acoustic micro-mixer is characterized via Laser Doppler Vibrometry and image processing. The assembly of protein nanoparticles is monitored by dynamic light scattering (DLS) and transmission electron microscopy (TEM). FINDINGS By changing actuation parameters, the turbulence and mixing in the microchannel can be precisely varied to control the initiation of protein particle assembly while the solution conditions of assembly (pH and ionic strength) are kept constant. Importantly, mixing times as low as 6 ms can be achieved for triggering protein assembly in the microfluidic channel. In comparison to the conventional batch process of assembly, the acoustic microfluidic mixer approach produces smaller particles with a more uniform size distribution, promising a new way to manufacture protein particles with controllable quality.
Collapse
|
17
|
Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions. Pharmaceutics 2020; 12:pharmaceutics12111001. [PMID: 33105650 PMCID: PMC7690435 DOI: 10.3390/pharmaceutics12111001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous-flow production of liposomes using microfluidic reactors has demonstrated advantages compared to batch methods, including greater control over liposome size and size distribution and reduced reliance on post-production processing steps. However, the use of microfluidic technology for the production of nanoscale vesicular systems (such as liposomes) has not been fully translated to industrial scale yet. This may be due to limitations of microfluidic-based reactors, such as low production rates, limited lifetimes, and high manufacturing costs. In this study, we investigated the potential of millimeter-scale flow reactors (or millireactors) with a serpentine-like architecture, as a scalable and cost-effective route to the production of nanoscale liposomes. The effects on liposome size of varying inlet flow rates, lipid type and concentration, storage conditions, and temperature were investigated. Liposome size (i.e., mean diameter) and size dispersity were characterised by dynamic light scattering (DLS); z-potential measurements and TEM imaging were also carried out on selected liposome batches. It was found that the lipid type and concentration, together with the inlet flow settings, had significant effects on the properties of the resultant liposome dispersion. Notably, the millifluidic reactor was able to generate liposomes with size and dispersity ranging from 54 to 272 nm, and from 0.04 to 0.52 respectively, at operating flow rates between 1 and 10 mL/min. Moreover, when compared to a batch ethanol-injection method, the millireactor generated liposomes with a more therapeutically relevant size and size dispersity.
Collapse
|
18
|
Sweet E, Mehta R, Xu Y, Jew R, Lin R, Lin L. Finger-powered fluidic actuation and mixing via MultiJet 3D printing. LAB ON A CHIP 2020; 20:3375-3385. [PMID: 32766613 DOI: 10.1039/d0lc00488j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Additive manufacturing, or three-dimensional (3D) printing, has garnered significant interest in recent years towards the fabrication of sub-millimeter scale devices for an ever-widening array of chemical, biological and biomedical applications. Conventional 3D printed fluidic systems, however, still necessitate the use of non-portable, high-powered external off-chip sources of fluidic actuation, such as electro-mechanical pumps and complex pressure-driven controllers, thus limiting their scope towards point-of-need applications. This work proposes entirely 3D printed sources of human-powered fluidic actuation which can be directly incorporated into the design of any 3D printable sub-millifluidic or microfluidic system where electrical power-free operation is desired. Multiple modular, single-fluid finger-powered actuator (FPA) designs were fabricated and experimentally characterized. Furthermore, a new 3D fluidic one-way valve concept employing a dynamic bracing mechanism was developed, demonstrating a high diodicity of ∼1117.4 and significant reduction in back-flow from the state-of-the-art. As a result, fabricated FPA prototypes achieved tailorable experimental fluid flow rates from ∼100 to ∼3000 μL min-1 without the use of electricity. Moreover, a portable human-powered two-fluid pulsatile fluidic mixer, capable of generating fully-mixed fluids in 10 seconds, is presented, demonstrating the application of FPAs towards on-chip integration into more complex 3D printed fluidic networks.
Collapse
Affiliation(s)
- Eric Sweet
- Department of Mechanical Engineering, University of California, Berkeley, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Arjun A, Ajith RR, Kumar Ranjith S. Mixing characterization of binary-coalesced droplets in microchannels using deep neural network. BIOMICROFLUIDICS 2020; 14:034111. [PMID: 32549924 PMCID: PMC7274813 DOI: 10.1063/5.0008461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 05/16/2023]
Abstract
Real-time object identification and classification are essential in many microfluidic applications especially in the droplet microfluidics. This paper discusses the application of convolutional neural networks to detect the merged microdroplet in the flow field and classify them in an on-the-go manner based on the extent of mixing. The droplets are generated in PMMA microfluidic devices employing flow-focusing and cross-flow configurations. The visualization of binary coalescence of droplets is performed by a CCD camera attached to a microscope, and the sequence of images is recorded. Different real-time object localization and classification networks such as You Only Look Once and Singleshot Multibox Detector are deployed for droplet detection and characterization. A custom dataset to train these deep neural networks to detect and classify is created from the captured images and labeled manually. The merged droplets are segregated based on the degree of mixing into three categories: low mixing, intermediate mixing, and high mixing. The trained model is tested against images taken at different ambient conditions, droplet shapes, droplet sizes, and binary-fluid combinations, which indeed exhibited high accuracy and precision in predictions. In addition, it is demonstrated that these schemes are efficient in localization of coalesced binary droplets from the recorded video or image and classify them based on grade of mixing irrespective of experimental conditions in real time.
Collapse
Affiliation(s)
- A Arjun
- Micro/nanofluidics Research Laboratory, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananathapuram 695016, Kerala, India
| | - R R Ajith
- Micro/nanofluidics Research Laboratory, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananathapuram 695016, Kerala, India
| | - S Kumar Ranjith
- Micro/nanofluidics Research Laboratory, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananathapuram 695016, Kerala, India
| |
Collapse
|
20
|
Zhou R, Surendran AN, Mejulu M, Lin Y. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet. MICROMACHINES 2019; 11:mi11010029. [PMID: 31881667 PMCID: PMC7019818 DOI: 10.3390/mi11010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
Ferrofluid-based micromixers have been widely used for a myriad of microfluidic industrial applications in biochemical engineering, food processing, and detection/analytical processes. However, complete mixing in micromixers is extremely time-consuming and requires very long microchannels due to laminar flow. In this paper, we developed an effective and low-cost microfluidic device integrated with microscale magnets manufactured with neodymium (NdFeB) powders and polydimethylsiloxane (PDMS) to achieve rapid micromixing between ferrofluid and buffer flow. Experiments were conducted systematically to investigate the effect of flow rate, concentration of the ferrofluid, and micromagnet NdFeB:PDMS mass ratio on the mixing performance. It was found that mixing is more efficient with lower total flow rates and higher ferrofluid concentration, which generate greater magnetic forces acting on both streamwise and lateral directions to increase the intermixing of the fluids within a longer residence time. Numerical models were also developed to simulate the mixing process in the microchannel under the same conditions and the simulation results indicated excellent agreements with the experimental data on mixing performance. Combining experimental measurements and numerical simulations, this study demonstrates a simple yet effective method to realize rapid mixing for lab-on-chip systems.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Mechanical and Civil Engineering, Purdue University Northwest, Hammond, IN 46323, USA; (A.N.S.); (M.M.)
- Correspondence:
| | - Athira N. Surendran
- Department of Mechanical and Civil Engineering, Purdue University Northwest, Hammond, IN 46323, USA; (A.N.S.); (M.M.)
| | - Marcel Mejulu
- Department of Mechanical and Civil Engineering, Purdue University Northwest, Hammond, IN 46323, USA; (A.N.S.); (M.M.)
| | - Yang Lin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
21
|
Guan Y, Sun B. Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles. MICROMACHINES 2019; 10:mi10120854. [PMID: 31817508 PMCID: PMC6952768 DOI: 10.3390/mi10120854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023]
Abstract
Microfluidic mixers have been extensively studied due to their wide application in various fields, including clinical diagnosis and chemical research. In this paper, we demonstrate a mixing platform that can be used for low- and high-viscosity liquid mixing by integrating passive (utilizing the special circulating crossflow characteristics of a zigzag microstructure and cavitation surfaces at the zigzag corners) and active (adding an acoustic field to produce oscillating microbubbles) mixing methods. By exploring the relationship between the active and passive mixing methods, it was found that the microbubbles were more likely generated at the corners of the zigzag microchannel and achieved the best mixing efficiency with the acoustically generated microbubbles (compared with the straight channel). In addition, a higher mixing effect was achieved when the microchannel corner angle and frequency were 60° and 75 kHz, respectively. Meanwhile, the device also achieved an excellent mixing effect for high-viscosity fluids, such as glycerol (its viscosity was approximately 1000 times that of deionized (DI) water at 25 °C). The mixing time was less than 1 s, and the mixing efficiency was 0.95 in the experiment. Furthermore, a new microbubble generation method was demonstrated based on chemical reactions. A higher mixing efficiency (0.97) was achieved by combining the chemical and acoustic microbubble methods, which provides a new direction for future applications and is suitable for the needs of lab-on-a-chip (LOC) systems and point-of-care testing (POCT).
Collapse
|
22
|
Sakurai R, Yamamoto K, Motosuke M. Concentration-adjustable micromixers using droplet injection into a microchannel. Analyst 2019; 144:2780-2787. [PMID: 30869661 DOI: 10.1039/c8an02310g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel micromixing technique that exploits a thrust of droplets into the mixing interface is developed. The technique enhances the mixing by injecting immiscible droplets into a mixing channel and the methodology enables control of the mixing level simply by changing the droplet injection frequency. We experimentally characterize the mixing performance with various droplet injection frequencies, channel geometries, and diffusion coefficients. Consequently, it is revealed that the mixing level increases with the injection frequency, the droplet-diameter-to-channel-width ratio, and the diffusion coefficient. Moreover, the mixing level is found to be a linear function of the droplet volume fraction in the mixing section. The results suggest that the developed device can produce a large amount of sample solution whose concentration is arbitrary and precisely controllable with a simple and stable operation.
Collapse
Affiliation(s)
- Ryosuke Sakurai
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Ken Yamamoto
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan. and Research Institute for Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan. and Research Institute for Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
23
|
Zhang Y, Devendran C, Lupton C, de Marco A, Neild A. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing. LAB ON A CHIP 2019; 19:262-271. [PMID: 30564824 DOI: 10.1039/c8lc01117f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present and demonstrate a dextrous microfluidic device which features a reaction chamber with volume flexibility. This feature is critical for developing protocols directly on chip when the exact reaction is not yet defined, enabling bio/chemical reactions on chip to be performed without volumetric restrictions. This is achieved by the integration of single layer valves (for reagent dispensing) and surface acoustic wave excitation (for rapid reagent mixing). We show that a single layer valve can control the delivery of fluid into, an initially air-filled, mixing chamber. This chamber arrangement offers flexibility in the relative volume of reagents used, and so offers the capability to not only conduct, but also develop protocols on a chip. To enable this potential, we have integrated a SAW based mixer into the system, and characterised its mixing time based on frequency and power of excitation. Numerical simulations on the streaming pattern inside the chamber were conducted to probe the underlying physics of the experimental system. To demonstrate the on-chip protocol capability, the system was utilised to perform protein crystallization. Furthermore, the effect of rapid mixing, results in a significant increase in crystal size uniformity.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
24
|
Gong H, Woolley AT, Nordin GP. 3D printed selectable dilution mixer pumps. BIOMICROFLUIDICS 2019; 13:014106. [PMID: 30766649 PMCID: PMC6353643 DOI: 10.1063/1.5070068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 05/03/2023]
Abstract
In this paper, we demonstrate the ability to 3D print tightly integrated structures with active valves, pumps, and mixers, and we use our compact chip-to-chip interconnects [Gong et al., Lab Chip 18, 639-647 (2018)] to move bulky world-to-chip connections to separate interface chips for both post-print flushing and post-cure device operation. As example devices, we first examine 3D printed pumps, followed by two types of selectable ratio mixer pumps, a linear dilution mixer pump (LDMP) and a parallelized dilution mixer pump (PDMP), which occupy volumes of only 1.5 mm 3 and 2.6 mm 3 , respectively. The LDMP generates a selectable dilution ratio from a linear set of possibilities, while the PDMP generates a denser set of possible dilutions with a maximum dilution ratio of 1/16. The PDMP also incorporates a new 4-to-1 valve to simultaneously control 4 inlet channels. To characterize LDMP and PDMP operation and performance, we present a new, low-cost video method to directly measure the relative concentration of an absorptive dye on a pixel-by-pixel basis for each video frame. Using this method, we find that 6 periods of the active mixer that forms the core of the LDMP and PDMP are sufficient to fully mix the fluid, and that the generated concentrations track the designed dilution ratios as expected. The LDMP mixes 20 nl per 4.6 s mixer pump period, while the PDMP uses parallelized input pumps to process the same fluid volume with greater choice of dilution ratios in a 3.6 s period.
Collapse
Affiliation(s)
- Hua Gong
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - Adam T Woolley
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah 84602, USA
| | - Gregory P Nordin
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
25
|
Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK. FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices. Anal Chem 2018; 90:10450-10456. [PMID: 30071717 DOI: 10.1021/acs.analchem.8b02356] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transparent surfaces within microfluidic devices are essential for accurate quantification of chemical, biological, and mechanical interactions. Here, we report how to create low-cost, rapid 3D-printed microfluidic devices that are optically free from artifacts and have transparent surfaces suitable for visualizing a variety of fluid phenomenon. The methodology described here can be used for creating high-pressure microfluidic systems (significantly higher than PDMS-glass bonding). We develop methods for annealing Poly-Lactic Acid (PLA) microfluidic devices demonstrating heat resistance typically not achievable with other plastic materials. We show DNA melting and subsequent fluorescent imaging analysis, opening the door to other high-temperature applications. The FDM techniques demonstrated here allow for fabrication of microfluidic devices for precise visualization of interfacial dynamics, whether mixing between two laminar streams or droplet tracking. In addition to these characterizations, we include a printer troubleshooting guide and printing recipes for device fabrication to facilitate FDM printing for microfluidic device development.
Collapse
Affiliation(s)
| | | | | | | | - Adam Frost
- Department of Biochemistry and Biophysics , University of California, San Francisco , San Francisco , California 94158 , United States.,California Institute for Quantitative Biomedical Research , San Francisco , California 94158 , United States.,Chan Zuckerberg Biohub , San Francisco , California 94158 , United States
| | | |
Collapse
|
26
|
Orbay S, Ozcelik A, Bachman H, Huang TJ. Acoustic Actuation of in situ Fabricated Artificial Cilia. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2018; 28:025012. [PMID: 30479458 PMCID: PMC6251322 DOI: 10.1088/1361-6439/aaa0ae] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present on-chip acoustic actuation of in situ fabricated artificial cilia. Arrays of cilia structures are UV polymerized inside a microfluidic channel using a photocurable polyethylene glycol (PEG) polymer solution and photomasks. During polymerization, cilia structures are attached to a silane treated glass surface inside the microchannel. Then, the cilia structures are actuated using acoustic vibrations at 4.6 kHz generated by piezo transducers. As a demonstration of a practical application, DI water and fluorescein dye solutions are mixed inside a microfluidic channel. Using pulses of acoustic excitations, and locally fabricated cilia structures within a certain region of the microchannel, a waveform of mixing behavior is obtained. This result illustrates one potential application wherein researchers can achieve spatiotemporal control of biological microenvironments in cell stimulation studies. These acoustically actuated, in situ fabricated, cilia structures can be used in many on-chip applications in biological, chemical and engineering studies.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Cengelkoy, Istanbul, 34684, Turkey
| | - Adem Ozcelik
- Department of Electronics and Automation, Soma Vocational School, Manisa Celal Bayar University, Soma, Manisa, 45500, Turkey
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
27
|
Javaid MU, Cheema TA, Park CW. Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls. MICROMACHINES 2017; 9:E8. [PMID: 30393285 PMCID: PMC6187489 DOI: 10.3390/mi9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 01/22/2023]
Abstract
Sample mixing is difficult in microfluidic devices because of laminar flow. Micromixers are designed to ensure the optimal use of miniaturized devices. The present study aims to design a chaotic-advection-based passive micromixer with enhanced mixing efficiency. A serpentine-shaped microchannel with sinusoidal side walls was designed, and three cases, with amplitude to wavelength (A/λ) ratios of 0.1, 0.15, and 0.2 were investigated. Numerical simulations were conducted using the Navier⁻Stokes equations, to determine the flow field. The flow was then coupled with the convection⁻diffusion equation to obtain the species concentration distribution. The mixing performance of sinusoidal walled channels was compared with that of a simple serpentine channel for Reynolds numbers ranging from 0.1 to 50. Secondary flows were observed at high Reynolds numbers that mixed the fluid streams. These flows were dominant in the proposed sinusoidal walled channels, thereby showing better mixing performance than the simple serpentine channel at similar or less mixing cost. Higher mixing efficiency was obtained by increasing the A/λ ratio.
Collapse
Affiliation(s)
- Muhammad Usman Javaid
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Korea.
| | - Taqi Ahmad Cheema
- Department of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Khyber Pakhtoon Khwa, Pakistan.
| | - Cheol Woo Park
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Korea.
| |
Collapse
|
28
|
Syms R. Rapid evaporation-driven chemical pre-concentration and separation on paper. BIOMICROFLUIDICS 2017; 11:044116. [PMID: 28868109 PMCID: PMC5570596 DOI: 10.1063/1.4989627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/14/2017] [Indexed: 05/10/2023]
Abstract
Airflow-enhanced evaporation is investigated as a method for rapid chemical preconcentration on a thin porous substrate. The mechanism is described by combining 1D models of capillary rise, chromatography, and pervaporation concentration. It is shown that the effective length of the column can be shorter than its actual length, allowing concentrate to be held at a stagnation point and then released for separation, and that the Péclet number, which determines the concentration performance, is determined only by the substrate properties. The differential equations are solved dynamically, and it is shown that faster concentration can be achieved during capillary filling. Experiments are carried out using chromatography paper in a ducted airflow, and concentration is quantified by optical imaging of water-soluble food dyes. Good agreement with the model is obtained, and concentration factors of ≈100 are achieved in 10 min using Brilliant Blue FCF. Partial separation of Brilliant Blue from Tartrazine is demonstrated immediately following concentration, on a single unpatterned substrate. The mechanism may provide a method for improving the sensitivity of lab-on-paper devices.
Collapse
Affiliation(s)
- Richard Syms
- EEE Department, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Bertin N, Spelman TA, Combriat T, Hue H, Stéphan O, Lauga E, Marmottant P. Bubble-based acoustic micropropulsors: active surfaces and mixers. LAB ON A CHIP 2017; 17:1515-1528. [PMID: 28374878 DOI: 10.1039/c7lc00240h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acoustic micropropulsors present great potential for microfluidic applications. The propulsion is based on encapsulated 20 μm bubbles excited by a contacless ultrasonic transducer. The vibrating bubbles then generate a powerful streaming flow, with speeds 1-100 mm s-1 in water, through the action of viscous stresses. In this paper we introduce a full toolbox of micropropulsors using a versatile three-dimensional (3D) microfabrication setup. Doublets and triplets of propulsors are introduced, and the flows they generate are predicted by a theoretical hydrodynamic model. We then introduce whole surfaces covered with propulsors, which we term active surfaces. These surfaces are excited by a single ultrasonic wave, can generate collective flows and may be harnessed for mixing purposes. Several patterns of propulsors are tested, and the flows produced by the two most efficient mixers are predicted by a simple theoretical model based on flow singularities. In particular, the vortices generated by the most efficient pattern, an L-shaped mixer, are analysed in detail.
Collapse
Affiliation(s)
- Nicolas Bertin
- Univ. Grenoble Alpes and CNRS, UMR 5588 LIPhy, F-38402 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Gelber MK, Kole MR, Kim N, Aluru NR, Bhargava R. Quantitative Chemical Imaging of Nonplanar Microfluidics. Anal Chem 2017; 89:1716-1723. [PMID: 27983804 DOI: 10.1021/acs.analchem.6b03943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Confocal and multiphoton optical imaging techniques have been powerful tools for evaluating the performance of and monitoring experiments within microfluidic devices, but this application suffers from two pitfalls. The first is that obtaining the necessary imaging contrast often requires the introduction of an optical label which can potentially change the behavior of the system. The emerging analytical technique stimulated Raman scattering (SRS) microscopy promises a solution, as it can rapidly measure 3D concentration maps based on vibrational spectra, label-free; however, when using any optical imaging technique, including SRS, there is an additional problem of optical aberration due to refractive index mismatch between the fluid and the device walls. New approaches such as 3D printing are extending the range of materials from which microfluidic devices can be fabricated; thus, the problem of aberration can be obviated simply by selecting a chip material that matches the refractive index of the desired fluid. To demonstrate complete chemical imaging of a geometrically complex device, we first use sacrificial molding of a freeform 3D printed template to create a round-channel, 3D helical micromixer in a low-refractive-index polymer. We then use SRS to image the mixing of aqueous glucose and salt solutions throughout the entire helix volume. This fabrication approach enables truly nonperturbative 3D chemical imaging with low aberration, and the concentration profiles measured within the device agree closely with numerical simulations.
Collapse
Affiliation(s)
- Matthew K Gelber
- Beckman Institute for Advanced Science and Technology, ‡Department of Bioengineering, §Department of Mechanical Science and Engineering, and ∥Departments of Electrical & Computer Engineering, Chemical and Biomolecular Engineering and Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Matthew R Kole
- Beckman Institute for Advanced Science and Technology, ‡Department of Bioengineering, §Department of Mechanical Science and Engineering, and ∥Departments of Electrical & Computer Engineering, Chemical and Biomolecular Engineering and Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Namjung Kim
- Beckman Institute for Advanced Science and Technology, ‡Department of Bioengineering, §Department of Mechanical Science and Engineering, and ∥Departments of Electrical & Computer Engineering, Chemical and Biomolecular Engineering and Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Narayana R Aluru
- Beckman Institute for Advanced Science and Technology, ‡Department of Bioengineering, §Department of Mechanical Science and Engineering, and ∥Departments of Electrical & Computer Engineering, Chemical and Biomolecular Engineering and Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, ‡Department of Bioengineering, §Department of Mechanical Science and Engineering, and ∥Departments of Electrical & Computer Engineering, Chemical and Biomolecular Engineering and Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Munaz A, Kamble H, Shiddiky MJA, Nguyen NT. Magnetofluidic micromixer based on a complex rotating magnetic field. RSC Adv 2017. [DOI: 10.1039/c7ra08073e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a magnetically actuated micromixer for mixing non-magnetic microparticles in a microfluidic system.
Collapse
Affiliation(s)
- Ahmed Munaz
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Harshad Kamble
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Muhammad J. A. Shiddiky
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
- School of Natural Sciences
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| |
Collapse
|
32
|
Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of micromixing by acoustically oscillated sharp-edges. BIOMICROFLUIDICS 2016; 10:024124. [PMID: 27158292 PMCID: PMC4833753 DOI: 10.1063/1.4946875] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/04/2016] [Indexed: 05/03/2023]
Abstract
Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.
Collapse
Affiliation(s)
- Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University , University Park, Pennsylvania 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University , University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
33
|
Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Phan HV, Coşkun MB, Şeşen M, Pandraud G, Neild A, Alan T. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. LAB ON A CHIP 2015; 15:4206-4216. [PMID: 26381355 DOI: 10.1039/c5lc00836k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study presents a novel acoustic mixer comprising of a microfabricated silicon nitride membrane with a hole etched through it. We show that the introduction of the through hole leads to extremely fast and homogeneous mixing. When the membrane is immersed in fluid and subjected to acoustic excitation, a strong streaming field in the form of vortices is generated. The vortices are always observed to centre at the hole, pointing to the critical role it has on the streaming field. We hypothesise that the hole introduces a discontinuity to the boundary conditions of the membrane, leading to strong streaming vortices. With numerical simulations, we show that the hole's presence can increase the volume force responsible for driving the streaming field by 2 orders of magnitude, thus supporting our hypothesis. We investigate the mixing performance at different Peclet numbers by varying the flow rates for various devices containing circular, square and rectangular shaped holes of different dimensions. We demonstrate rapid mixing within 3 ms mixing time (90% mixing efficiency at 60 μl min(-1) total flow rate, Peclet number equals 8333 ± 3.5%) is possible with the current designs. Finally, we examine the membrane with two circular holes which are covered by air bubbles and compare it to when the membrane is fully immersed. We find that coupling between the holes' vortices occurs only when membrane is immersed; while with the bubble membrane, the upstream hole's vortices can act as a blockage to fluid flow passing it.
Collapse
Affiliation(s)
- Hoang Van Phan
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Rivera CM, Kwon HJ, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG. Towards a dynamic clamp for neurochemical modalities. SENSORS 2015; 15:10465-80. [PMID: 25946635 PMCID: PMC4481920 DOI: 10.3390/s150510465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
The classic dynamic clamp technique uses a real-time electrical interface between living cells and neural simulations in order to investigate hypotheses about neural function and structure. One of the acknowledged drawbacks of that technique is the limited control of the cells' chemical microenvironment. In this manuscript, we use a novel combination of nanosensor and microfluidic technology and microfluidic and neural simulations to add sensing and control of chemical concentrations to the dynamic clamp technique. Specifically, we use a microfluidic lab-on-a-chip to generate distinct chemical concentration gradients (ions or neuromodulators), to register the concentrations with embedded nanosensors and use the processed signals as an input to simulations of a neural cell. The ultimate goal of this project is to close the loop and provide sensor signals to the microfluidic lab-on-a-chip to mimic the interaction of the simulated cell with other cells in its chemical environment.
Collapse
Affiliation(s)
- Catalina Maria Rivera
- Departments of Mathematics, Washington State University Vancouver, Vancouver, WA 98686, USA.
- Department of Physics, Emory University, Atlanta, GA 30332, USA.
| | - Hyuck-Jin Kwon
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S4L8, Canada.
| | - Ali Hashmi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Gan Yu
- Departments of Mechanical Engineering, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Jiheng Zhao
- Departments of Mechanical Engineering, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Jianlong Gao
- Departments of Mechanical Engineering, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Wei Xue
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Alexander G Dimitrov
- Departments of Mathematics, Washington State University Vancouver, Vancouver, WA 98686, USA.
| |
Collapse
|