1
|
Pawłowska M, Mila-Kierzenkowska C. Effect of Alpha-1 Antitrypsin and Irisin on Post-Exercise Inflammatory Response: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:205-218. [PMID: 38680225 PMCID: PMC11053258 DOI: 10.30476/ijms.2023.97480.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 05/01/2024]
Abstract
Physical activity has a positive effect on human health and emotional well-being. However, in both amateur and professional athletes, training poses a risk of acute or chronic injury through repetitive overloading of bones, joints, and muscles. Inflammation can be an adverse effect of intense exercise caused by several factors including oxidative stress. The present narrative review summarizes current knowledge on inflammatory markers induced by physical exercise. Post-exercise recovery may reduce inflammatory responses and is key to effective training and adaptation of muscle tissues to sustained physical exertion.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
2
|
Hämälistö S, Del Valle Batalla F, Yuseff MI, Mattila PK. Endolysosomal vesicles at the center of B cell activation. J Cell Biol 2024; 223:e202307047. [PMID: 38305771 PMCID: PMC10837082 DOI: 10.1083/jcb.202307047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The endolysosomal system specializes in degrading cellular components and is crucial to maintaining homeostasis and adapting rapidly to metabolic and environmental cues. Cells of the immune system exploit this network to process antigens or promote cell death by secreting lysosome-related vesicles. In B lymphocytes, lysosomes are harnessed to facilitate the extraction of antigens and to promote their processing into peptides for presentation to T cells, critical steps to mount protective high-affinity antibody responses. Intriguingly, lysosomal vesicles are now considered important signaling units within cells and also display secretory functions by releasing their content to the extracellular space. In this review, we focus on how B cells use pathways involved in the intracellular trafficking, secretion, and function of endolysosomes to promote adaptive immune responses. A basic understanding of such mechanisms poses an interesting frontier for the development of therapeutic strategies in the context of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Saara Hämälistö
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Cancer Research Unit and FICAN West Cancer Centre Laboratory, Turku, Finland
| | - Felipe Del Valle Batalla
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Sperb-Ludwig F, Ludwig NF, Rizowy GM, Velho RV, Schwartz IVD. In vitro substrate reduction, chaperone and immunomodulation treatments reduce heparan sulfate in mucolipidosis III human fibroblasts. Genet Mol Biol 2023; 46:e20230117. [PMID: 38047750 PMCID: PMC10694850 DOI: 10.1590/1678-4685-gmb-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/09/2023] [Indexed: 12/05/2023] Open
Abstract
Mucolipidosis II and III (MLII and MLIII) are autosomal recessive diseases caused by pathogenic variants in GNPTAB and GNPTG genes that lead to defects in GlcNAc-1-phosphotransferase. This enzyme adds mannose 6-phosphate residues to lysosomal hydrolases, which allows enzymes to enter lysosomes. Defective GlcNAc-1-phosphotransferase causes substrate accumulation and inflammation. These diseases have no treatment, and we hypothesized that the use of substrate reduction therapy and immunomodulation may be beneficial at the cell level and as a future therapeutic approach. Fibroblasts from two patients with MLIII alpha/beta and 2 patients with MLIII gamma as well as from one healthy control were treated with 10 µM miglustat, 20 µM genistein, and 20 µM thalidomide independently. ELISA assay and confocal immunofluorescence microscopy were used to evaluate the presence of heparan sulfate (HS) and the impact on substrate accumulation. ELISA assay showed HS reduction in all patients with the different treatments used (p=0.05). HS reduction was also observed by immunofluorescence microscopy. Our study produced encouraging results, since the reduction in substrate accumulation, even partial, may offer benefits to the phenotype of patients with inborn errors of metabolism.
Collapse
Affiliation(s)
- Fernanda Sperb-Ludwig
- Hospital de Clínicas de Porto Alegre, Laboratório BRAIN, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Nataniel Floriano Ludwig
- Hospital de Clínicas de Porto Alegre, Laboratório BRAIN, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Gustavo Mottin Rizowy
- Hospital de Clínicas de Porto Alegre, Laboratório BRAIN, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Renata Voltolini Velho
- Endometriosis Research Charité, Department of Gynecology Charité with Center of Oncological Surgery, Virchow-Klinikum, Berlin, Germany
| | - Ida Vanessa Doederlein Schwartz
- Hospital de Clínicas de Porto Alegre, Laboratório BRAIN, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Bichet DG, Hopkin RJ, Aguiar P, Allam SR, Chien YH, Giugliani R, Kallish S, Kineen S, Lidove O, Niu DM, Olivotto I, Politei J, Rakoski P, Torra R, Tøndel C, Hughes DA. Consensus recommendations for the treatment and management of patients with Fabry disease on migalastat: a modified Delphi study. Front Med (Lausanne) 2023; 10:1220637. [PMID: 37727761 PMCID: PMC10505750 DOI: 10.3389/fmed.2023.1220637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
Objective Fabry disease is a progressive disorder caused by deficiency of the α-galactosidase A enzyme (α-Gal A), leading to multisystemic organ damage with heterogenous clinical presentation. The addition of the oral chaperone therapy migalastat to the available treatment options for Fabry disease is not yet universally reflected in all treatment guidelines. These consensus recommendations are intended to provide guidance for the treatment and monitoring of patients with Fabry disease receiving migalastat. Methods A modified Delphi process was conducted to determine consensus on treatment decisions and monitoring of patients with Fabry disease receiving migalastat. The multidisciplinary panel comprised 14 expert physicians across nine specialties and two patients with Fabry disease. Two rounds of Delphi surveys were completed and recommendations on the use of biomarkers, multidisciplinary monitoring, and treatment decisions were generated based on statements that reached consensus. Results The expert panel reached consensus agreement on 49 of 54 statements, including 16 that reached consensus in round 1. Statements that reached consensus agreement are summarized in recommendations for migalastat treatment and monitoring, including baseline and follow-up assessments and frequency. All patients with Fabry disease and an amenable mutation may initiate migalastat treatment if they have evidence of Fabry-related symptoms and/or organ involvement. Treatment decisions should include holistic assessment of the patient, considering clinical symptoms and organ involvement as well as patient-reported outcomes and patient preference. The reliability of α-Gal A and globotriaosylsphingosine as pharmacodynamic response biomarkers remains unclear. Conclusion These recommendations build on previously published guidelines to highlight the importance of holistic, multidisciplinary monitoring for patients with Fabry disease receiving migalastat, in addition to shared decision-making regarding treatments and monitoring throughout the patient journey. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Daniel G. Bichet
- Department of Medicine, Pharmacology and Physiology, Hôpital du Sacré-Coeur, University of Montréal, Montreal, QC, Canada
| | - Robert J. Hopkin
- Department of Pediatrics, Division of Human Genetics, University of Cincinnati College of Medicine, and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Patrício Aguiar
- Inborn Errors of Metabolism Reference Center, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Sridhar R. Allam
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
- Tarrant Nephrology Associates/PPG Health, Fort Worth, TX, United States
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology (PPGBM) at Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- BioDiscovery Laboratory at Hospital de Clinicas de Porto Alegre (HCPA), National Institute of Population Medical Genetics (INAGEMP), DASA, Casa dos Raros, Porto Alegre, Brazil
| | - Staci Kallish
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Olivier Lidove
- Department of Internal Medicine-Rheumatology, Croix Saint Simon Hospital, Paris, France
- French Network of Inherited Metabolic Disorders (G2m), France
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Meyer University Children’s Hospital, Florence, Italy
| | - Juan Politei
- Department of Neurology, Fundacion Para el Estudio de Enfermedades Neurometabolicas (FESEN), Buenos Aires, Argentina
| | | | - Roser Torra
- Inherited Kidney Disorders, Department of Nephrology, Fundació Puigvert, Institut d’Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camilla Tøndel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Derralynn A. Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, United Kingdom
| |
Collapse
|
5
|
Akgun A, Gokcay G, Mungan NO, Sivri HS, Tezer H, Zeybek CA, Ezgu F. Expert-opinion-based guidance for the care of children with lysosomal storage diseases during the COVID-19 pandemic: An experience-based Turkey perspective. Front Public Health 2023; 11:1092895. [PMID: 36794069 PMCID: PMC9922761 DOI: 10.3389/fpubh.2023.1092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
This expert-opinion-based document was prepared by a group of specialists in pediatric inherited metabolic diseases and infectious diseases including administrative board members of Turkish Society for Pediatric Nutrition and Metabolism to provide guidance for the care of children with lysosomal storage disorders (LSDs) during the COVID-19 pandemic in Turkey. The experts reached consensus on key areas of focus regarding COVID-19-based risk status in relation to intersecting immune-inflammatory mechanisms and disease patterns in children with LSDs, diagnostic virus testing, particularly preventive measures and priorities during the pandemic, routine screening and diagnostic interventions for LSDs, psychological and socioeconomic impact of confinement measures and quarantines and optimal practice patterns in managing LSDs and/or COVID-19. The participating experts agreed on the intersecting characteristics of immune-inflammatory mechanisms, end-organ damage and prognostic biomarkers in LSD and COVID-19 populations, emphasizing the likelihood of enhanced clinical care when their interaction is clarified via further studies addressing certain aspects related to immunity, lysosomal dysfunction and disease pathogenesis. In the context of the current global COVID-19 pandemic, this expert-opinion-based document provides guidance for the care of children with LSDs during the COVID-19 pandemic based on the recent experience in Turkey.
Collapse
Affiliation(s)
- Abdurrahman Akgun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulden Gokcay
- Division of Nutrition and Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Neslihan Onenli Mungan
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Tezer
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cigdem Aktuglu Zeybek
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fatih Ezgu
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Villalba Silva GC, Steindorff T, Silvestri Schuh R, Cardoso Flores N, Matte U. Drug Repositioning Applied to Cardiovascular Disease in Mucopolysaccharidosis. Life (Basel) 2022; 12:2085. [PMID: 36556450 PMCID: PMC9784427 DOI: 10.3390/life12122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are genetic metabolic diseases characterized by defects in the activity of lysosomal hydrolases. In MPS, secondary cell disturbance affects pathways related to cardiovascular disorders. Hence, the study aimed to identify MPS-related drugs targeting cardiovascular disease and select a list of drugs for repositioning. We obtained a list of differentially expressed genes and pathways. To identify drug perturbation-driven gene expression and drug pathways interactions, we used the CMAP and LINCS databases. For molecular docking, we used the DockThor web server. Our results suggest that pirfenidone and colchicine are promising drugs to treat cardiovascular disease in MPS patients. We also provide a brief description of good practices for the repositioning analysis. Furthermore, the list of drugs and related MPS-enriched genes could be helpful to new treatments and considered for pathophysiological studies.
Collapse
Affiliation(s)
| | - Thiago Steindorff
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Roselena Silvestri Schuh
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, Porto Alegre 2752, RS, Brazil
| | - Natalia Cardoso Flores
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Ursula Matte
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Genetics and Molecular Biology Graduate Program, UFRGS, Av. Bento Gonçalves, Porto Alegre 9500, RS, Brazil
| |
Collapse
|
7
|
Hemostatic Abnormalities in Gaucher Disease: Mechanisms and Clinical Implications. J Clin Med 2022; 11:jcm11236920. [PMID: 36498496 PMCID: PMC9735904 DOI: 10.3390/jcm11236920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Gaucher disease (GD) is a rare inherited lysosomal metabolism disorder, characterized by an accumulation into lysosomes of reticuloendothelial cells, especially in the bone marrow, spleen, and liver of β-glucosylceramide and glucosyl sphingosine, which is its deacylated product. Impaired storage is responsible for a chronic inflammatory state at the sites of accumulation and together represents the pathophysiological cause of GD. GD is a progressive, multi-organ chronic disorder. Type 1 GD is the most prevalent form, with heterogeneous multisystem involvement and different severity of symptoms at any age. Hematological involvement is consistent, and a bleeding tendency is frequent, particularly at diagnosis. Several coagulation and primary hemostasis abnormalities are observed in GD. Bleeding manifestations are rarely severe and usually mucocutaneous. Post-operative, delivery, and post-partum hemorrhages are also common. Thrombocytopenia, platelet function defects, and clotting abnormalities, alone or variably associated, contribute to increase the risk of bleeding in GD. Enzyme replacement therapy (ERT) or substrate reduction therapy (SRT) are the two specific available treatments effective in improving typical hematological symptoms and abnormalities, including those of hemostasis. However, the use of medication to potentiate hemostasis may be also useful in defined clinical situations: recent starting of ERT/SRT, surgery, delivery, and life-threatening bleeding.
Collapse
|
8
|
Sanchez-Álvarez NT, Bautista-Niño PK, Trejos-Suárez J, Serrano-Díaz NC. A model of metformin mitochondrial metabolism in metachromatic leukodystrophy: first description of human Schwann cells transfected with CRISPR-Cas9. Open Biol 2022; 12:210371. [PMID: 35857900 PMCID: PMC9256087 DOI: 10.1098/rsob.210371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metachromatic leukodystrophy is a neurological lysosomal deposit disease that affects public health despite its low incidence in the population. Currently, few reports are available on pathophysiological events related to enzyme deficiencies and subsequent sulfatide accumulation. This research aims to examine the use of metformin as an alternative treatment to counteract these effects. This was evaluated in human Schwann cells (HSCs) transfected or non-transfected with CRISPR-Cas9, and later treated with sulfatides and metformin. This resulted in transfected HSCs showing a significant increase in cell reactive oxygen species (ROS) production when exposed to 100 µM sulfatides (p = 0.0007), compared to non-transfected HSCs. Sulfatides at concentrations of 10 to 100 µM affected mitochondrial bioenergetics in transfected HSCs. Moreover, these analyses showed that transfected cells showed a decrease in basal and maximal respiration rates after exposure to 100 µM sulfatide. However, maximal and normal mitochondrial respiratory capacity decreased in cells treated with both sulfatide and metformin. This study has provided valuable insights into bioenergetic and mitochondrial effects of sulfatides in HSCs for the first time. Treatment with metformin (500 µM) restored the metabolic activity of these cells and decreased ROS production.
Collapse
Affiliation(s)
- Nayibe Tatiana Sanchez-Álvarez
- Faculty of Medical and Health Sciences, Masira Institute for Biomedical Research, Universidad de Santander, Bucaramanga, Colombia,Faculty of Health, Phd in Biomedical Sciences, Universidad del Valle, Cali, Colombia,Research Center Floridablanca, Colombian Cardiovascular Foundation, FL, Colombia
| | | | - Juanita Trejos-Suárez
- Faculty of Medical and Health Sciences, Masira Institute for Biomedical Research, Universidad de Santander, Bucaramanga, Colombia
| | | |
Collapse
|
9
|
Guerrero-Navarro L, Jansen-Dürr P, Cavinato M. Age-Related Lysosomal Dysfunctions. Cells 2022; 11:cells11121977. [PMID: 35741106 PMCID: PMC9221958 DOI: 10.3390/cells11121977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Organismal aging is normally accompanied by an increase in the number of senescent cells, growth-arrested metabolic active cells that affect normal tissue function. These cells present a series of characteristics that have been studied over the last few decades. The damage in cellular organelles disbalances the cellular homeostatic processes, altering the behavior of these cells. Lysosomal dysfunction is emerging as an important factor that could regulate the production of inflammatory molecules, metabolic cellular state, or mitochondrial function.
Collapse
Affiliation(s)
- Lena Guerrero-Navarro
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
10
|
Vera LNP, Schuh RS, Fachel FNS, Poletto E, Piovesan E, Kubaski F, Couto E, Brum B, Rodrigues G, Souza H, Giugliani R, Matte U, Baldo G, Teixeira HF. Brain and visceral gene editing of mucopolysaccharidosis I mice by nasal delivery of the CRISPR/Cas9 system. J Gene Med 2022; 24:e3410. [PMID: 35032067 DOI: 10.1002/jgm.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-L-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS Liposomes were prepared by microfluidization and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS Monodisperse mucoadhesive complexes around 110nm, which are able to efficiently permeate the PNM. In animals the treatment led to a modest increase in IDUA activity in the lung, heart and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION Non-viral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly to other neurological disorders.
Collapse
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Flavia Nathielly Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Edina Poletto
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Eduarda Piovesan
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Francyne Kubaski
- Serviço de Genética Medica, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Eduarda Couto
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Bruna Brum
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Graziella Rodrigues
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Hallana Souza
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil.,Serviço de Genética Medica, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Fisiologia da Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Parolo S, Tomasoni D, Bora P, Ramponi A, Kaddi C, Azer K, Domenici E, Neves-Zaph S, Lombardo R. Reconstruction of the Cytokine Signaling in Lysosomal Storage Diseases by Literature Mining and Network Analysis. Front Cell Dev Biol 2021; 9:703489. [PMID: 34490253 PMCID: PMC8417786 DOI: 10.3389/fcell.2021.703489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous clinical manifestations, chronic inflammation has been consistently reported for several LSDs. However, the molecular mechanisms involved in the inflammatory response are still not completely understood. In this study, we performed text-mining and systems biology analyses to investigate the inflammatory signals in three LSDs characterized by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency (ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and then built on the extracted knowledge to investigate the inflammatory signals. We found numerous transcription factors that are putative regulators of cytokine expression in a cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2 as candidate regulators of the monocyte Gaucher disease cytokine network. Overall, our results suggest the presence of a complex inflammatory signaling in LSDs involving many cellular and molecular players that could be further investigated as putative targets of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Silvia Parolo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Danilo Tomasoni
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Pranami Bora
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Alan Ramponi
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Chanchala Kaddi
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Karim Azer
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Enrico Domenici
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Susana Neves-Zaph
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Rosario Lombardo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| |
Collapse
|
12
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
13
|
Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis 2021; 20:44. [PMID: 33941173 PMCID: PMC8094529 DOI: 10.1186/s12944-021-01466-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Johann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.
Collapse
Affiliation(s)
- Muna Abed Rabbo
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine.
| |
Collapse
|
14
|
Yuskiv N, Higaki K, Stockler-Ipsiroglu S. Morquio B Disease. Disease Characteristics and Treatment Options of a Distinct GLB1-Related Dysostosis Multiplex. Int J Mol Sci 2020; 21:E9121. [PMID: 33266180 PMCID: PMC7729736 DOI: 10.3390/ijms21239121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual β-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Nataliya Yuskiv
- BC Children’s Hospital, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago 683-8503, Japan;
| | | |
Collapse
|
15
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
16
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 659] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
17
|
Azambuja AS, Pimentel-Vera LN, Gonzalez EA, Poletto E, Pinheiro CV, Matte U, Giugliani R, Baldo G. Evidence for inflammasome activation in the brain of mucopolysaccharidosis type II mice. Metab Brain Dis 2020; 35:1231-1236. [PMID: 32623553 DOI: 10.1007/s11011-020-00592-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Hunter syndrome or mucopolysaccharidosis type II (MPS II) is an X-linked recessive disease caused by the deficiency of iduronate 2-sulfatase (IDS), leading to storage of undegraded heparan and dermatan sulfate. Patients with the severe form present neurological abnormalities, but the mechanisms of such alterations are unknown. Here, we hypothesized that the undegraded substances found in this disease could be recognized as damage-associated molecular patterns (DAMPS), leading to activation of the inflammasome. Brains from 2 and 5 months normal and MPS II mice were studied. We observed an increase in cathepsin B activity in the brain tissue and leakage of this enzyme from the lysosome to the cytoplasm in a MPS II neuronal cell line, which is a known activator of the inflammasome. Furthermore, Caspase-1 activity and IL-1-beta levels were elevated at 5 months, confirming that this pathway is indeed altered. Our results suggest that undegraded GAG activate the inflammasome pathway in MPS II and future studies could focus on blocking such pathway to better understand the role of this process to the pathogenesis of MPS II.
Collapse
Affiliation(s)
- A S Azambuja
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, UFRGS, Porto Alegre, Brazil
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - L N Pimentel-Vera
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil
| | - E A Gonzalez
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil
| | - E Poletto
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil
| | - C V Pinheiro
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - U Matte
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil
| | - R Giugliani
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, UFRGS, Porto Alegre, Brazil.
- Centro de Terapia Gênica-HCPA, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Salah NY. Vascular endothelial growth factor (VEGF), tissue inhibitors of metalloproteinase-1 (TIMP-1) and nail fold capillaroscopy changes in children and adolescents with Gaucher disease; relation to residual disease severity. Cytokine 2020; 133:155120. [DOI: 10.1016/j.cyto.2020.155120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
|
19
|
Lübow C, Bockstiegel J, Weindl G. Lysosomotropic drugs enhance pro-inflammatory responses to IL-1β in macrophages by inhibiting internalization of the IL-1 receptor. Biochem Pharmacol 2020; 175:113864. [PMID: 32088265 DOI: 10.1016/j.bcp.2020.113864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-1 signaling leads to production of pro-inflammatory mediators and is regulated by receptor endocytosis. Lysosomotropic drugs have been linked to increased pro-inflammatory responses under sterile inflammatory conditions but the underlying mechanisms have not been fully elucidated. Here, we report that lysosomotropic drugs potentiate pro-inflammatory effects in response to IL-1β via a mechanism involving reactive oxygen species, p38 mitogen-activated protein kinase and reduced IL-1 receptor internalization. Chloroquine and hydroxychloroquine increased IL-1β-induced CXCL8 secretion in macrophages which was critically dependent on the lysosomotropic character and inhibition of macroautophagy but independent from the NLRP3 inflammasome. Co-stimulation with the autophagy inducer interferon gamma attenuated CXCL8 release. Other lysosomotropic drugs like bafilomycin A1, fluoxetine and chlorpromazine but also the endocytosis inhibitor dynasore showed similar pro-inflammatory responses. Increased cell surface expression of IL-1 receptor suggests reduced receptor degradation in the presence of lysosomotropic drugs. Our findings provide new insights into a potentially crucial immunoregulatory mechanism in macrophages that may explain how lysosomotropic drugs drive sterile inflammation.
Collapse
Affiliation(s)
- Charlotte Lübow
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Judith Bockstiegel
- University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany.
| |
Collapse
|
20
|
Dahal D, Pokhrel S, McDonald L, Bertman K, Paruchuri S, Konopka M, Pang Y. NIR-Emitting Hemicyanines with Large Stokes’ Shifts for Live Cell Imaging: from Lysosome to Mitochondria Selectivity by Substituent Effect. ACS APPLIED BIO MATERIALS 2019; 2:4037-4043. [DOI: 10.1021/acsabm.9b00564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Moriya S, Tan VP, Yee AK, Parhar IS. pink1, atp13a2 and uchl1 expressions are affected by inflammation in the brain. Neurosci Lett 2019; 708:134330. [PMID: 31201839 DOI: 10.1016/j.neulet.2019.134330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023]
Abstract
In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
Collapse
Affiliation(s)
- Shogo Moriya
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Victoria P Tan
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alicia Kw Yee
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
22
|
Bocheńska K, Moskot M, Malinowska M, Jakóbkiewicz-Banecka J, Szczerkowska-Dobosz A, Purzycka-Bohdan D, Pleńkowska J, Słomiński B, Gabig-Cimińska M. Lysosome Alterations in the Human Epithelial Cell Line HaCaT and Skin Specimens: Relevance to Psoriasis. Int J Mol Sci 2019; 20:E2255. [PMID: 31067781 PMCID: PMC6539968 DOI: 10.3390/ijms20092255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023] Open
Abstract
Despite the constantly updated knowledge regarding the alterations occurring in the cells of patients with psoriasis, the status and the role of the lysosome, a control center of cell metabolism, remain to be elucidated. The architecture of the epidermis is largely regulated by the action of lysosomes, possibly activating signaling pathways in the cellular crosstalk of keratinocytes-epidermal cells-with infiltrating immune cells. Thus, in the present study, lysosome alterations were examined in vitro and in situ using a two-dimensional (2D) keratinocyte model of HaCaT cells with "psoriasis-like" inflammation and skin specimens, respectively. Specific fluorescence and immunohistochemical staining showed an augmented level of acidic organelles in response to keratinocyte activation (mimicking a psoriatic condition while maintaining the membrane integrity of these structures) as compared with the control, similar to that seen in skin samples taken from patients. Interestingly, patients with the most pronounced PASI (Psoriasis Area and Severity Index), BSA (Body Surface Area), and DLQI (Dermatology Life Quality Index) scores suffered a high incidence of positive lysosomal-associated membrane protein 1 (LAMP1) expression. Moreover, it was found that the gene deregulation pattern was comparable in lesioned (PP) and non-lesioned (PN) patient-derived skin tissue, which may indicate that these alterations occur prior to the onset of the characteristic phenotype of the disease. Changes in the activity of genes encoding the microphthalmia family (MiT family) of transcription factors and mammalian target of rapamycin complex 1 (MTORC1) were also observed in the in vitro psoriasis model, indicating that the biogenesis pathway of this arm is inhibited. Interestingly, in contrast to the keratinocytes of HaCaT with "psoriasis-like" inflammation, LAMP1 was up-regulated in both PP and PN skin, which can be a potential sign of an alternative mechanism of lysosome formation. Defining the molecular profile of psoriasis in the context of "the awesome lysosome" is not only interesting, but also desired; therefore, it is believed that this paper will serve to encourage other researchers to conduct further studies on this subject.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214 Gdańsk, Poland.
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214 Gdańsk, Poland.
| | - Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Bartosz Słomiński
- Department of Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
23
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
24
|
Paget TL, Parkinson-Lawrence EJ, Orgeig S. Interstitial lung disease and surfactant dysfunction as a secondary manifestation of disease: insights from lysosomal storage disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ddmod.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
27
|
Abstract
Enzymes are attractive as immunotherapeutics because they can catalyze shifts in the local availability of immunostimulatory and immunosuppressive signals. Clinical success of enzyme immunotherapeutics frequently hinges upon achieving sustained biocatalysis over relevant time scales. The time scale and location of biocatalysis are often dictated by the location of the substrate. For example, therapeutic enzymes that convert substrates distributed systemically are typically designed to have a long half-life in circulation, whereas enzymes that convert substrates localized to a specific tissue or cell population can be more effective when designed to accumulate at the target site. This Topical Review surveys approaches to improve enzyme immunotherapeutic efficacy via chemical modification, encapsulation, and immobilization that increases enzyme accumulation at target sites or extends enzyme half-life in circulation. Examples provided illustrate "replacement therapies" to restore deficient enzyme function, as well as "enhancement therapies" that augment native enzyme function via supraphysiologic doses. Existing FDA-approved enzyme immunotherapies are highlighted, followed by discussion of emerging experimental strategies such as those designed to enhance antitumor immunity or resolve inflammation.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Sabrina L Freeman
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
28
|
Glucosylsphingosine Causes Hematological and Visceral Changes in Mice-Evidence for a Pathophysiological Role in Gaucher Disease. Int J Mol Sci 2017; 18:ijms18102192. [PMID: 29053611 PMCID: PMC5666873 DOI: 10.3390/ijms18102192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023] Open
Abstract
Glucosylceramide and glucosylsphingosine are the two major storage products in Gaucher disease (GD), an inherited metabolic disorder caused by a deficiency of the lysosomal enzyme glucocerebrosidase. The build-up of glucosylceramide in the endoplasmic reticulum and prominent accumulation in cell lysosomes of tissue macrophages results in decreased blood cell and platelet counts, and skeletal abnormalities. The pathological role of the deacylated form of glucosylceramide, glucosylsphingosine (lyso-Gb1), a recently identified sensitive and specific biomarker for GD, is not well investigated. We established a long-term infusion model in C57BL/6JRj mice to examine the effect of lyso-Gb1 on representative hallmark parameters of GD. Mice received lyso-Gb1 at a dosage of 10 mg·kg−1 per day as a continuous subcutaneous administration, and were routinely checked for blood lyso-Gb1 levels using liquid chromatography-multiple reaction monitoring mass spectrometry (LC/MRM-MS) measurements at four-weekly intervals throughout treatment. The C57BL/6JRj mice showed a stable increase of lyso-Gb1 up to->500-fold greater than the normal reflecting concentrations seen in moderately to severely affected patients. Furthermore, lyso-Gb1 accumulated in peripheral tissues. The mice developed hematological symptoms such as reduced hemoglobin and hematocrit, increased spleen weights and a slight inflammatory tissue response after eight weeks of treatment. The above findings indicate a measurable visceral and hematological response in treated mice that suggests a role for lyso-Gb1 in the development of peripheral signs of GD.
Collapse
|