1
|
Reiss LAJ, Goupell MJ. Binaural fusion: Complexities in definition and measurement. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2395-2408. [PMID: 39392352 PMCID: PMC11470809 DOI: 10.1121/10.0030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Despite the growing interest in studying binaural fusion, there is little consensus over its definition or how it is best measured. This review seeks to describe the complexities of binaural fusion, highlight measurement challenges, provide guidelines for rigorous perceptual measurements, and provide a working definition that encompasses this information. First, it is argued that binaural fusion may be multidimensional and might occur in one domain but not others, such as fusion in the spatial but not the spectral domain or vice versa. Second, binaural fusion may occur on a continuous scale rather than on a binary one. Third, binaural fusion responses are highly idiosyncratic, which could be a result of methodology, such as the specific experimental instructions, suggesting a need to explicitly report the instructions given. Fourth, it is possible that direct ("Did you hear one sound or two?") and indirect ("Where did the sound come from?" or "What was the pitch of the sound?") measurements of fusion will produce different results. In conclusion, explicit consideration of these attributes and reporting of methodology are needed for rigorous interpretation and comparison across studies and listener populations.
Collapse
Affiliation(s)
- Lina A J Reiss
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Kurz A, Herrmann D, Müller-Graff FT, Voelker J, Hackenberg S, Rak K. Anatomy-based fitting improves speech perception in noise for cochlear implant recipients with single-sided deafness. Eur Arch Otorhinolaryngol 2024:10.1007/s00405-024-08984-4. [PMID: 39299967 DOI: 10.1007/s00405-024-08984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE To evaluate objective and subjective hearing outcomes in experienced cochlear implant users with single sided deafness (SSD CI) who used fitting maps created via anatomy-based fitting (ABF) and clinically-based fitting (CBF). PARTICIPANTS Twelve SSD CI users with postlingual hearing loss. INTERVENTION OTOPLAN (Version 3. (MED-EL) was used to determine intracochlear electrode contact positions using post-operative high-resolution flat panel volume computed tomography. From these positions, the corresponding center frequencies and bandwidths were derived for each channel. These were implemented in the clinical fitting software MAESTRO to yield an ABF map individualized to each user. MAIN OUTCOME MEASURES ABF and CBF maps were compared. Objective speech perception in quiet and in noise, binaural effects, and self-perceived sound quality were evaluated. RESULTS Significantly higher speech perception in noise scores were observed with the ABF map compared to the CBF map (mean SRT50: -6.49 vs. -4.8 dB SNR for the S0NCI configuration and - 3.85 vs. -2.75 dB SNR for the S0N0 configuration). Summation and squelch effects were significantly increased with the ABF map (0.86 vs. 0.21 dB SNR for summation and 0.85 vs. -0.09 dB SNR for squelch). No improvement in speech perception in quiet or spatial release from masking were observed with the ABF map. A similar level of self-perceived sound quality was reported for each map. Upon the end of the study, all users opted to keep the ABF map. This preference was independent of the angular insertion depth of the electrode array. CONCLUSIONS Experienced SSD CI users preferred using the ABF map, which gave them significant improvements in binaural hearing and some aspects of speech perception.
Collapse
Affiliation(s)
- Anja Kurz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - David Herrmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
3
|
Aronoff JM, Soleimanifar S, Bk P. Temporal pitch matching with bilateral cochlear implants. JASA EXPRESS LETTERS 2024; 4:044401. [PMID: 38558234 PMCID: PMC10989667 DOI: 10.1121/10.0025507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Interaural pitch matching is a common task used with bilateral cochlear implant (CI) users, although studies measuring this have largely focused on place-based pitch matches. Temporal-based pitch also plays an important role in CI users' perception, but interaural temporal-based pitch matching has not been well characterized for CI users. To investigate this, bilateral CI users were asked to match amplitude modulation frequencies of stimulation across ears. Comparisons were made to previous place-based pitch matching data that were collected using similar procedures. The results indicate that temporal-based pitch matching is particularly sensitive to the choice of reference ear.
Collapse
Affiliation(s)
- Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| | - Simin Soleimanifar
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| | - Prajna Bk
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, , ,
| |
Collapse
|
4
|
Soleimanifar S, Staisloff HE, Aronoff JM. The effect of simulated insertion depth differences on the vocal pitches of cochlear implant users. JASA EXPRESS LETTERS 2022; 2:044401. [PMID: 36154233 DOI: 10.1121/10.0010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cochlear implant (CI) users often produce different vocal pitches when using their left versus right CI. One possible explanation for this is that insertion depth differs across the two CIs. The goal of this study was to investigate the role of electrode insertion depth in the production of vocal pitch. Eleven individuals with bilateral CIs used maps simulating differences in insertion depth. Participants produced a sustained vowel and sang Happy Birthday. Approximately half the participants significantly shifted the pitch of their voice in response to different simulated insertion depths. The results suggest insertion depth differences can alter produced vocal pitch.
Collapse
Affiliation(s)
- Simin Soleimanifar
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| | - Hannah E Staisloff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| | - Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| |
Collapse
|
5
|
Tsai P, Wisener N, Papsin B, Cushing S, Gordon K. Toward a method of achieving balanced stimulation of bilateral auditory nerves: Evidence from children receiving matched and unmatched bilateral cochlear implants simultaneously. Hear Res 2022; 416:108445. [DOI: 10.1016/j.heares.2022.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
6
|
Bernstein JGW, Jensen KK, Stakhovskaya OA, Noble JH, Hoa M, Kim HJ, Shih R, Kolberg E, Cleary M, Goupell MJ. Interaural Place-of-Stimulation Mismatch Estimates Using CT Scans and Binaural Perception, But Not Pitch, Are Consistent in Cochlear-Implant Users. J Neurosci 2021; 41:10161-10178. [PMID: 34725189 PMCID: PMC8660045 DOI: 10.1523/jneurosci.0359-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Kenneth K Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Olga A Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Hoa
- Department of Otolaryngology Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057
| | - H Jeffery Kim
- Department of Otolaryngology Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057
| | - Robert Shih
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland 20889
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
7
|
Jensen KK, Cosentino S, Bernstein JGW, Stakhovskaya OA, Goupell MJ. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends Hear 2021; 25:2331216521997324. [PMID: 34057382 PMCID: PMC8182630 DOI: 10.1177/2331216521997324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.
Collapse
Affiliation(s)
- Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Stefano Cosentino
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| |
Collapse
|
8
|
Noble AR, Christianson E, Norton SJ, Ou HC, Phillips GS, Khalatbari H, Friedman SD, Horn DL. Reliability of Measuring Insertion Depth in Cochlear Implanted Infants and Children Using Cochlear View Radiography. Otolaryngol Head Neck Surg 2020; 163:822-828. [PMID: 32450736 DOI: 10.1177/0194599820921857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cochlear implant depth of insertion affects audiologic outcomes and can be measured in adults using plain films obtained in the "cochlear view." The objective of this study was to assess interrater and intrarater reliability of measuring depth of insertion using cochlear view radiography. STUDY DESIGN Prospective, observational. SETTING Tertiary referral pediatric hospital. SUBJECTS AND METHODS Patients aged 11 months to 20 years (median, 4 years; interquartile range [IQR], 1-8 years) undergoing cochlear implantation at our institution were studied over 1 year. Children underwent cochlear view imaging on postoperative day 1. Films were deidentified and 1 image per ear was selected. Two cochlear implant surgeons and 2 radiologists evaluated each image and determined angular depth of insertion. Images were re-reviewed 6 weeks later by all raters. Inter- and intrarater reliability were calculated with intraclass correlation coefficients (ICCs). RESULTS Fifty-seven ears were imaged from 42 children. Forty-nine ears (86%) had successful cochlear view x-rays. Median angular depth of insertion was 381° (minimum, 272°; maximum, 450°; IQR, 360°-395°) during the first round of measurement. Measurements of the same images reviewed 6 weeks later showed median depth of insertion of 382° (minimum, 272°; maximum, 449°; IQR, 360°-397°). Interrater and intrarater reliability ICCs ranged between 0.81 and 0.96, indicating excellent reliability. CONCLUSIONS Postoperative cochlear view radiography is a reliable tool for measurement of cochlear implant depth of insertion in infants and children. Further studies are needed to determine reliability of intraoperatively obtained cochlear view radiographs in this population.
Collapse
Affiliation(s)
- Anisha R Noble
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Erin Christianson
- Childhood Communication Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Susan J Norton
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.,Childhood Communication Center, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| | - Henry C Ou
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Grace S Phillips
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Hedieh Khalatbari
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - David L Horn
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Kirchner A, Loucks TM, Abbs E, Shi K, Yu JW, Aronoff JM. Influence of bilateral cochlear implants on vocal control. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2423. [PMID: 32359322 PMCID: PMC7173977 DOI: 10.1121/10.0001099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Receiving a cochlear implant (CI) can improve fundamental frequency (F0) control for deaf individuals, resulting in increased vocal pitch control. However, it is unclear whether using bilateral CIs, which often result in mismatched pitch perception between ears, will counter this benefit. To investigate this, 23 bilateral CI users were asked to produce a sustained vocalization using one CI, the other CI, both CIs, or neither. Additionally, a set of eight normal hearing participants completed the sustained vocalization task as a control group. The results indicated that F0 control is worse with both CIs compared to using the ear that yields the lowest vocal variability. The results also indicated that there was a large range of F0 variability even for the relatively stable portion of the vocalization, spanning from 6 to 46 cents. These results suggest that bilateral CIs can detrimentally affect vocal control.
Collapse
Affiliation(s)
- Abbigail Kirchner
- Department of Speech and Hearing Science, The University of Illinois at Urbana Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA
- Electronic mail:
| | - Torrey M. Loucks
- Department of Communication Sciences and Disorders, University of Alberta, 116 St. and 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Elizabeth Abbs
- Department of Speech and Hearing Science, The University of Illinois at Urbana Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA
| | - Kevin Shi
- Department of Otolaryngology, The University of Illinois at Chicago, 1740 West Taylor Street, Chicago, Illinois 60612, USA
| | - Jeff W. Yu
- Department of Otolaryngology, The University of Illinois at Chicago, 1740 West Taylor Street, Chicago, Illinois 60612, USA
| | - Justin M. Aronoff
- Department of Speech and Hearing Science, The University of Illinois at Urbana Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA
| |
Collapse
|
10
|
Pitch Matching Adapts Even for Bilateral Cochlear Implant Users with Relatively Small Initial Pitch Differences Across the Ears. J Assoc Res Otolaryngol 2019; 20:595-603. [PMID: 31385149 DOI: 10.1007/s10162-019-00733-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022] Open
Abstract
There is often a mismatch for bilateral cochlear implant (CI) users between the electrodes in the two ears that receive the same frequency allocation and the electrodes that, when stimulated, yield the same pitch. Studies with CI users who have extreme mismatches between the two ears show that adaptation occurs in terms of pitch matching, reducing the difference between which electrodes receive the same frequency allocation and which ones produce the same pitch. The considerable adaptation that occurs for these extreme cases suggests that adaptation should be sufficient to overcome the relatively minor mismatches seen with typical bilateral CI users. However, even those with many years of bilateral CI use continue to demonstrate a mismatch. This may indicate that adaptation only occurs when there are large mismatches. Alternatively, it may indicate that adaptation occurs regardless of the magnitude of the mismatch, but that adaptation is proportional to the magnitude of the mismatch, and thus never fully counters the original mismatch. To investigate this, six bilateral CI users with initial pitch-matching mismatches of less than 3 mm completed a pitch-matching task near the time of activation, 6 months after activation, and 1 year after activation. Despite relatively small initial mismatches, the results indicated that adaptation still occurred.
Collapse
|
11
|
Abstract
OBJECTIVES Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. DESIGN Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. RESULTS Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. CONCLUSIONS Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.
Collapse
|
12
|
Interaural Pitch-Discrimination Range Effects for Bilateral and Single-Sided-Deafness Cochlear-Implant Users. J Assoc Res Otolaryngol 2019; 20:187-203. [PMID: 30623318 DOI: 10.1007/s10162-018-00707-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022] Open
Abstract
By allowing bilateral access to sound, bilateral cochlear implants (BI-CIs) or unilateral CIs for individuals with single-sided deafness (SSD; i.e., normal or near-normal hearing in one ear) can improve sound localization and speech understanding in noise. Spatial hearing in the horizontal plane is primarily conveyed by interaural time and level differences computed from neurons in the superior olivary complex that receive frequency-matched inputs. Because BI-CIs and SSD-CIs do not necessarily convey frequency-matched information, it is critical to understand how to align the inputs to CI users. Previous studies show that interaural pitch discrimination for SSD-CI listeners is highly susceptible to contextual biases, questioning its utility for establishing interaural frequency alignment. Here, we replicate this finding for SSD-CI listeners and show that these biases also extend to BI-CI listeners. To assess the testing-range bias, three ranges of comparison electrodes (BI-CI) or pure-tone frequencies (SSD-CI) were tested: full range, apical/lower half, or basal/upper half. To assess the reference bias, the reference electrode was either held fixed throughout a testing block or randomly chosen from three electrodes (basal end, middle, or apical end of the array). Results showed no effect of reference electrode randomization, but a large testing range bias; changing the center of the testing-range shifted the pitch match by an average 63 % (BI-CI) or 43 % (SSD-CI) of the change magnitude. This bias diminished pitch-match accuracy, with a change in reference electrode shifting the pitch match only an average 34 % (BI-CI) or 40 % (SSD-CI) of the expected amount. Because these effects extended to the relatively more symmetric BI-CI listeners, the results suggest that the bias cannot be attributed to interaural asymmetry. Unless the range effect can be minimized or accounted for, a pitch-discrimination task will produce interaural place-of-stimulation estimates that are highly influenced by the conditions tested, rather than reflecting a true interaural place-pitch comparison.
Collapse
|
13
|
Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users. Ear Hear 2018; 38:760-766. [PMID: 28957975 DOI: 10.1097/aud.0000000000000496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. DESIGN Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. RESULTS There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. CONCLUSION The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.
Collapse
|
14
|
Aronoff JM, Kirchner A, Abbs E, Harmon B. When singing with cochlear implants, are two ears worse than one for perilingually/postlingually deaf individuals? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:EL503. [PMID: 29960471 DOI: 10.1121/1.5043093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many individuals with bilateral cochlear implants hear different pitches when listening with their left versus their right cochlear implant. This conflicting information could potentially increase the difficulty of singing with cochlear implants. To determine if bilateral cochlear implants are detrimental for singing abilities, ten perilingually/postlingually deaf bilateral adult cochlear implant users were asked to sing "Happy Birthday" when using their left, right, both, or neither cochlear implant. The results indicated that bilateral cochlear implant users have more difficulty singing the appropriate pitch contour when using both cochlear implants as opposed to the better ear alone.
Collapse
Affiliation(s)
- Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , ,
| | - Abbigail Kirchner
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , ,
| | - Elizabeth Abbs
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , ,
| | - Bailey Harmon
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , ,
| |
Collapse
|
15
|
Lee DH, Aronoff JM. Changing stimulation patterns can change the broadness of contralateral masking functions for bilateral cochlear implant users. Hear Res 2018; 363:55-61. [PMID: 29548706 DOI: 10.1016/j.heares.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/19/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
Abstract
Past studies have found that contralateral masking functions are sharper than ipsilateral masking functions for cochlear implant (CI) users. This could suggest that contralateral masking effects are only sensitive to the peak of the masker stimulation for this population. To determine if that is the case, this study investigated whether using broader stimulation patterns affects the broadness of the contralateral masking function. Contralateral masking functions were measured for six bilateral CI users using both a broad and narrow masker. Findings from this study revealed that the broad masker resulted in a broader contralateral masking function. This would suggest that stimulation outside of the peak of the masker affects contralateral masking functions for CI users.
Collapse
Affiliation(s)
- Daniel H Lee
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| | - Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| |
Collapse
|
16
|
Suneel D, Staisloff H, Shayman CS, Stelmach J, Aronoff JM. Localization performance correlates with binaural fusion for interaurally mismatched vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:EL276. [PMID: 28964063 PMCID: PMC5724736 DOI: 10.1121/1.5001903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bilateral cochlear implant users often have difficulty fusing sounds from the two ears into a single percept. However, measuring fusion can be difficult, particularly with cochlear implant users who may have no reference for a fully fused percept. As a first step to address this, this study examined how localization performance of normal hearing subjects relates to binaural fusion. The stimuli were vocoded speech tokens with various interaural mismatches. The results reveal that the percentage of stimuli perceived as fused was correlated with localization performance, suggesting that changes in localization performance can serve as an indicator for binaural fusion changes.
Collapse
Affiliation(s)
- Deepa Suneel
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Hannah Staisloff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Corey S Shayman
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Julia Stelmach
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| | - Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61820, USA , , , ,
| |
Collapse
|
17
|
Polonenko MJ, Giannantonio S, Papsin BC, Marsella P, Gordon KA. Music perception improves in children with bilateral cochlear implants or bimodal devices. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4494. [PMID: 28679263 DOI: 10.1121/1.4985123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objectives of this study were to determine if music perception by pediatric cochlear implant users can be improved by (1) providing access to bilateral hearing through two cochlear implants or a cochlear implant and a contralateral hearing aid (bimodal users) and (2) any history of music training. The Montreal Battery of Evaluation of Musical Ability test was presented via soundfield to 26 bilateral cochlear implant users, 8 bimodal users and 16 children with normal hearing. Response accuracy and reaction time were recorded via an iPad application. Bilateral cochlear implant and bimodal users perceived musical characteristics less accurately and more slowly than children with normal hearing. Children who had music training were faster and more accurate, regardless of their hearing status. Reaction time on specific subtests decreased with age, years of musical training and, for implant users, better residual hearing. Despite effects of these factors on reaction time, bimodal and bilateral cochlear implant users' responses were less accurate than those of their normal hearing peers. This means children using bilateral cochlear implants and bimodal devices continue to experience challenges perceiving music that are related to hearing impairment and/or device limitations during development.
Collapse
Affiliation(s)
- Melissa J Polonenko
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| | - Sara Giannantonio
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| | - Pasquale Marsella
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Karen A Gordon
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| |
Collapse
|