1
|
Ben Akacha R, Gdoura-Ben Amor M, Sellami H, Grosset N, Jan S, Gautier M, Gdoura R. Isolation, Identification, and Characterization of Bacillus cereus Group Bacteria Isolated from the Dairy Farm Environment and Raw Milk in Tunisia. Foodborne Pathog Dis 2024. [PMID: 38502798 DOI: 10.1089/fpd.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Members of the Bacillus cereus group are well-known opportunistic foodborne pathogens. In this study, the prevalence, hemolytic activity, antimicrobial resistance profile, virulence factor genes, genetic diversity by enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) genotyping, and adhesion potential were investigated in isolates from a Tunisian dairy farm environment and raw milk. A total of 200 samples, including bedding, feces, feed, liquid manure, and raw bovine milk, were examined. Based on PCR test targeting sspE gene, 59 isolates were detected. The prevalence of B. cereus group isolates in bedding, feces, liquid manure, feed, and raw milk was 48%, 37.8%, 20%, 17.1%, and 12.5%, respectively. Out of the tested strains, 81.4% showed β-hemolytic on blood agar plates. An antimicrobial resistance test against 11 antibiotics showed that more than 50% of the isolates were resistant to ampicillin and novobiocin, while a high sensitivity to other antibiotics tested was observed in most isolates. The distribution of enterotoxigenic genes showed that 8.5% and 67.8% of isolates carried hblABCD and nheABC, respectively. In addition, the detection rate of cytotoxin K (cytk), enterotoxin T (bceT), and ces genes was 72.9%, 64.4%, and 5.1%, respectively. ERIC-PCR fingerprinting genotype analysis allowed discriminating 40 different profiles. The adhesion potential of B. cereus group on stainless steel showed that all isolates were able to adhere at various levels, from 1.5 ± 0.3 to 5.1 ± 0.1 log colony-forming unit (CFU)/cm2 for vegetative cells and from 2.6 ± 0.4 to 5.7 ± 0.3 log CFU/cm2 for spores. An important finding of the study is useful for updating the knowledge of the contamination status of B. cereus group in Tunisia, at the dairy farm level.
Collapse
Affiliation(s)
- Randa Ben Akacha
- Research Laboratory of Environmental Toxicology Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
- Equipe Microbiologie de l'Œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Maroua Gdoura-Ben Amor
- Research Laboratory of Environmental Toxicology Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
- Equipe Microbiologie de l'Œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Hanen Sellami
- Laboratory of Treatment and Valorization of Water Rejects, Water Research and Technologies Center (CERTE), Borj-Cedria Technopark, University of Carthage, Soliman, Tunisia
| | - Noël Grosset
- Equipe Microbiologie de l'Œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Sophie Jan
- Equipe Microbiologie de l'Œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Michel Gautier
- Equipe Microbiologie de l'Œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Radhouane Gdoura
- Research Laboratory of Environmental Toxicology Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Zhang X, Liu X, Wang L. Evaluating Community Capability to Prevent and Control COVID-19 Pandemic in Shenyang, China: An Empirical Study Based on a Modified Framework of Community Readiness Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3996. [PMID: 36901006 PMCID: PMC10002099 DOI: 10.3390/ijerph20053996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Community plays a crucial role in the successful prevention and control of the COVID-19 pandemic in China. However, evaluation of community capability to fight against COVID-19 is rarely reported. The present study provides a first attempt to assess community capability to combat COVID-19 in Shenyang, the capital city of Liaoning province in Northeast China, based on a modified framework of a community readiness model. We conducted semi-structured interviews with ninety key informants from fifteen randomly selected urban communities to collect the data. The empirical results indicate that the overall level of community capability for epidemic prevention and control in Shenyang was at the stage of preparation. The specific levels of the fifteen communities ranged from the stages of preplanning to preparation to initiation. Concerning the level of each dimension, community knowledge about the issue, leadership, and community attachment exhibited significant disparities between communities, while there were slight differences among communities on community efforts, community knowledge of efforts, and community resources. In addition, leadership demonstrated the highest overall level among all the six dimensions, followed by community attachment and community knowledge of efforts. Community resources displayed the lowest level, followed by community efforts. This study not only extends the application of the modified community readiness model to evaluate community capability of epidemic prevention in the Chinese community context, but also offers practical implications for enhancing Chinese communities' capabilities to deal with various future public health emergencies.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Public Administration, School of Humanities & Law, Northeastern University, Shenyang 110169, China
| | - Xiaoyu Liu
- Department of Public Administration, School of Humanities & Law, Northeastern University, Shenyang 110169, China
| | - Lili Wang
- Party School of Weihai Municipal Committee of Communist Party of China, Weihai 264213, China
| |
Collapse
|