1
|
Senthil Kumar KJ, Gokila Vani M, Dakpa G, Wang SY. Dietary limonene promotes gastrointestinal barrier function via upregulating tight/adherens junction proteins through cannabinoid receptor type-1 antagonistic mechanism and alters cellular metabolism in intestinal epithelial cells. Biofactors 2025; 51:e2106. [PMID: 39143845 DOI: 10.1002/biof.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/25/2024] [Indexed: 08/16/2024]
Abstract
Limonene, a dietary monocyclic monoterpene commonly found in citrus fruits and various aromatic plants, has garnered increasing interest as a gastrointestinal protectant. This study aimed to assess the effects of limonene on intestinal epithelial barrier function and investigate the involvement of cannabinoid receptor type-1 (CB1R) in vitro. Additionally, the study focused on examining the metabolomic changes induced by limonene in the intestinal epithelial cells (Caco-2). Initial analysis of transepithelial electrical resistance (TEER) revealed that both l-limonene and d-limonene, isomers of limonene, led to a dose- and time-dependent increase in TEER in normal cells and those inflamed by pro-inflammatory cytokines mixture (CytoMix). Furthermore, both types of limonene reduced CytoMix-induced paracellular permeability, as demonstrated by a decrease in Lucifer yellow flux. Moreover, d-limonene and l-limonene treatment increased the expression of tight junction molecules (TJs) such as occludin, claudin-1, and ZO-1, at both the transcriptional and translational levels. d-Limonene upregulates E-cadherin, a molecule involved in adherens junctions (AJs). Mechanistic investigations demonstrated that d-limonene and l-limonene treatment significantly inhibited CB1R at the protein, while the mRNA level remained unchanged. Notably, the inhibitory effect of d-limonene on CB1R was remarkably similar to that of pharmacological CB1R antagonists, such as rimonabant and ORG27569. d-limonene also alters Caco-2 cell metabolites. A substantial reduction in β-glucose and 2-succinamate was detected, suggesting limonene may impact intestinal epithelial cells' glucose uptake and glutamate metabolism. These findings suggest that d-limonene's CB1R antagonistic property could effectively aid in the recovery of intestinal barrier damage, marking it a promising gastrointestinal protectant.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Asal AA, Ayoub DR, Mazen ME, El Makawi SM. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence. Int J Psychiatry Med 2025; 60:44-56. [PMID: 38282460 DOI: 10.1177/00912174241230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
OBJECTIVE There are inconsistent reports regarding the relationship between cannabis use and male sexual function with almost no data about synthetic cannabinoids (SC) and their effect on male sexual functions. This study investigated psychological concerns related to male sexual functions among cannabis and SC users. The research assessed different sexual functions and aspects of sexual psychopathology in cannabis and SCs dependent men compared to controls. METHOD Thirty male patients with cannabis dependence, thirty male patients with SCs dependence, and thirty matched controls from the outpatient clinic at Kasr Al Ainy hospital, Egypt, were assessed using the Structured Clinical Interview for DSM-IV TR Axis I Disorders (SCID-I), International Index of Erectile Function (IIEF), and Sexuality scale. RESULTS The means of IIEF questionnaire in the cannabis and SC group were significant lower (worse) than the means of the control group (P < .001) except the orgasmic function in cannabis group (P = .052). In the SCs group, sexual depression was higher and preoccupation lower than in the cannabis group (P < .020; P < .003, respectively) and control groups (P < .001; P < .001, respectively). The duration and dose of cannabis and SCs correlated significantly with sexual esteem, sexual preoccupation and all domains of IIEF. CONCLUSION Cannabis and SC dependence were associated with lower erectile function, sexual desire, intercourse satisfaction and overall satisfaction, and lower orgasmic functions in the SC group than controls. Both groups showed higher sexual depression, lower sexual esteem and sexual preoccupation than controls. SC has a higher negative impact on male sexual functions and psychopathology than does cannabis.
Collapse
Affiliation(s)
- Abdelrahman A Asal
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa R Ayoub
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed E Mazen
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shirin M El Makawi
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Kadriya A, Forbes-Robertson S, Falah M. The Anticancer Activity of Cannabinol (CBN) and Cannabigerol (CBG) on Acute Myeloid Leukemia Cells. Molecules 2024; 29:5970. [PMID: 39770061 PMCID: PMC11676644 DOI: 10.3390/molecules29245970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions. In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects. The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS). However, the exact molecular mechanisms are still poorly understood. In addition, their effects on leukemia have scarcely been investigated. The current work aimed to assess the antileukemic effects of CBN and CBG on an acute monocytic leukemia cell line, the THP-1. THP-1 cell viability, morphology and cell cycle analyses were performed to determine potential cytotoxic, antiproliferative, and apoptotic effects of CBN and CBG. Western blotting was carried out to measure the expression of the proapoptotic p53. Both CBN and CBG inhibited cell growth and induced THP-1 cell apoptosis and cell cycle arrest in a dose- and time-dependent manner. CBN and CBG illustrated different dosage effects on THP-1 cells in the MTT assay (CBN > 40 μΜ, CBG > 1 μM) and flow cytometry (CBN > 5 μM, CBG > 40 μM), highlighting the cannabinoids' antileukemic activity. Our study hints at a direct correlation between p53 expression and CBG or CBN doses exceeding 50 μM, suggesting potential activation of p53-associated signaling pathways underlying these effects. Taken together, CBG and CBN exhibited suppressive, cell death-inducing effects on leukemia cells. However, further in-depth research will be needed to explore the molecular mechanisms driving the anticancer effects of CBN and CBG in the leukemia setting.
Collapse
Affiliation(s)
- Ahmad Kadriya
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | | | - Mizied Falah
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
Köse S, Varan C, Önen S, Nemutlu E, Bilensoy E, Korkusuz P. 2-AG-loaded and bone marrow-targeted PCL nanoparticles as nanoplatforms for hematopoietic cell line mobilization. Stem Cell Res Ther 2024; 15:341. [PMID: 39354544 PMCID: PMC11446023 DOI: 10.1186/s13287-024-03902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated. METHODS PCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay. RESULTS The 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 µM 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 µM 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 µM dose and 8 h time window via a specific CBR agonism. CONCLUSION The newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Akdeniz University, Antalya, 07070, Turkey.
- Faculty of Medicine, Department of Medical Biology, Atilim University, Ankara, 06830, Turkey.
| | - Cem Varan
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06532, Turkey
| | | | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
5
|
Camilleri M, Zheng T. Cannabinoids and the Gastrointestinal Tract. Clin Gastroenterol Hepatol 2023; 21:3217-3229. [PMID: 37678488 PMCID: PMC10872845 DOI: 10.1016/j.cgh.2023.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
The synthesis and degradation of endocannabinoids, location of cannabinoid (CB) receptors, and cannabinoid mechanisms of action on immune/inflammatory, neuromuscular, and sensory functions in digestive organs are well documented. CB2 mechanisms are particularly relevant in immune and sensory functions. Increasing use of cannabinoids in the United States is impacted by social determinants of health including racial discrimination, which is associated with tobacco and cannabis co-use, and combined use disorders. Several conditions associated with emesis are related to cannabinoid use, including cannabinoid hyperemesis or withdrawal, cyclic vomiting syndrome, and nausea and vomiting of pregnancy. Cannabinoids generally inhibit gastrointestinal motor function; yet they relieve symptoms in patients with gastroparesis and diverse nausea syndromes. Cannabinoid effects on inflammatory mechanisms have shown promise in relatively small placebo-controlled studies in reducing disease activity and abdominal pain in patients with inflammatory bowel disease. Cannabinoids have been studied in disorders of motility, pain, and disorders of gut-brain interaction. The CB2-receptor agonist, cannabidiol, reduced the total Gastroparesis Cardinal Symptom Index and increases the ability to tolerate a meal in patients with gastroparesis appraised over 4 weeks of treatment. In contrast, predominant-pain end points in functional dyspepsia with normal gastric emptying were not improved significantly with cannabidiol. The CB2 agonist, olorinab, reduced abdominal pain in inflammatory bowel disease in an open-label trial and in constipation-predominant irritable bowel syndrome in a placebo-controlled trial. Cannabinoid mechanisms alter inflammation in pancreatic and liver diseases. In conclusion, cannabinoids, particularly agents affecting CB2 mechanisms, have potential for inflammatory, gastroparesis, and pain disorders; however, the trials require replication and further understanding of risk-benefit to enhance use of cannabinoids in gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Ting Zheng
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Gustavsen S, Olsson A, Oturai AB, Linnet K, Thomsen R, Rasmussen BS, Jørgensen CF, Langkilde AR, Sorensen PS, Sellebjerg F, Søndergaard HB. The peripheral endocannabinoid system and its association with biomarkers of inflammation in untreated patients with multiple sclerosis. Eur J Neurol 2023; 30:3212-3220. [PMID: 37337838 DOI: 10.1111/ene.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system (ECS) has been found altered in patients with multiple sclerosis (MS). However, whether the ECS alteration is present in the early stage of MS remains unknown. First, we aimed to compare the ECS profile between newly diagnosed MS patients and healthy controls (HCs). Next, we explored the association of the ECS, biomarkers of inflammation, and clinical parameters in newly diagnosed MS patients. METHODS Whole blood gene expression of ECS components and levels of endocannabinoids in plasma were measured by real-time quantitative polymerase chain reaction and ultra-high-pressure liquid chromatography-mass spectrometry, respectively, in 66 untreated MS patients and 46 HCs. RESULTS No differences were found in the gene expression or plasma levels of the selected ECS components between newly diagnosed MS patients and HCs. Interferon-γ, encoded by the gene IFNG, correlated positively (ρ = 0.60) with the expression of G protein-coupled receptor 55 (GPR55), and interleukin1β (IL1B) correlated negatively (ρ = -0.50) with cannabinoid receptor 2 (CNR2) in HCs. CONCLUSIONS We found no alteration in the peripheral ECS between untreated patients with MS and HC. Furthermore, our results indicate that the ECS has a minor overall involvement in the early stage of MS on inflammatory markers and clinical parameters when compared with HCs.
Collapse
Affiliation(s)
- Stefan Gustavsen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Anna Olsson
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Annette B Oturai
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Kristian Linnet
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ragnar Thomsen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian S Rasmussen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian F Jørgensen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annika R Langkilde
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Per S Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle B Søndergaard
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
7
|
Gambacorta N, Ciriaco F, Amoroso N, Altomare CD, Bajorath J, Nicolotti O. CIRCE: Web-Based Platform for the Prediction of Cannabinoid Receptor Ligands Using Explainable Machine Learning. J Chem Inf Model 2023; 63:5916-5926. [PMID: 37675493 DOI: 10.1021/acs.jcim.3c00914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The endocannabinoid system, which includes cannabinoid receptor 1 and 2 subtypes (CB1R and CB2R, respectively), is responsible for the onset of various pathologies including neurodegeneration, cancer, neuropathic and inflammatory pain, obesity, and inflammatory bowel disease. Given the high similarity of CB1R and CB2R, generating subtype-selective ligands is still an open challenge. In this work, the Cannabinoid Iterative Revaluation for Classification and Explanation (CIRCE) compound prediction platform has been generated based on explainable machine learning to support the design of selective CB1R and CB2R ligands. Multilayer classifiers were combined with Shapley value analysis to facilitate explainable predictions. In test calculations, CIRCE predictions reached ∼80% accuracy and structural features determining ligand predictions were rationalized. CIRCE was designed as a web-based prediction platform that is made freely available as a part of our study.
Collapse
Affiliation(s)
- Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Jürgen Bajorath
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| |
Collapse
|
8
|
Gioé-Gallo C, Ortigueira S, Brea J, Raïch I, Azuaje J, Paleo MR, Majellaro M, Loza MI, Salas CO, García-Mera X, Navarro G, Sotelo E. Pharmacological insights emerging from the characterization of a large collection of synthetic cannabinoid receptor agonists designer drugs. Biomed Pharmacother 2023; 164:114934. [PMID: 37236027 DOI: 10.1016/j.biopha.2023.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) constitute the largest and most defiant group of abuse designer drugs. These new psychoactive substances (NPS), developed as unregulated alternatives to cannabis, have potent cannabimimetic effects and their use is usually associated with episodes of psychosis, seizures, dependence, organ toxicity and death. Due to their ever-changing structure, very limited or nil structural, pharmacological, and toxicological information is available to the scientific community and the law enforcement offices. Here we report the synthesis and pharmacological evaluation (binding and functional) of the largest and most diverse collection of enantiopure SCRAs published to date. Our results revealed novel SCRAs that could be (or may currently be) used as illegal psychoactive substances. We also report, for the first time, the cannabimimetic data of 32 novel SCRAs containing an (R) configuration at the stereogenic center. The systematic pharmacological profiling of the library enabled the identification of emerging Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) trends, the detection of ligands exhibiting incipient cannabinoid receptor type 2 (CB2R) subtype selectivity and highlights the significant neurotoxicity of representative SCRAs on mouse primary neuronal cells. Several of the new emerging SCRAs are currently expected to have a rather limited potential for harm, as the evaluation of their pharmacological profiles revealed lower potencies and/or efficacies. Conceived as a resource to foster collaborative investigation of the physiological effects of SCRAs, the library obtained can contribute to addressing the challenge posed by recreational designer drugs.
Collapse
Affiliation(s)
- Claudia Gioé-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sandra Ortigueira
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - M Rita Paleo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian O Salas
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain.
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
9
|
Robinson EA, Gleeson J, Arun AH, Clemente A, Gaillard A, Rossetti MG, Brambilla P, Bellani M, Crisanti C, Curran HV, Lorenzetti V. Measuring white matter microstructure in 1,457 cannabis users and 1,441 controls: A systematic review of diffusion-weighted MRI studies. FRONTIERS IN NEUROIMAGING 2023; 2:1129587. [PMID: 37554654 PMCID: PMC10406316 DOI: 10.3389/fnimg.2023.1129587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Cannabis is the most widely used regulated substance by youth and adults. Cannabis use has been associated with psychosocial problems, which have been partly ascribed to neurobiological changes. Emerging evidence to date from diffusion-MRI studies shows that cannabis users compared to controls show poorer integrity of white matter fibre tracts, which structurally connect distinct brain regions to facilitate neural communication. However, the most recent evidence from diffusion-MRI studies thus far has yet to be integrated. Therefore, it is unclear if white matter differences in cannabis users are evident consistently in selected locations, in specific diffusion-MRI metrics, and whether these differences in metrics are associated with cannabis exposure levels. METHODS We systematically reviewed the results from diffusion-MRI imaging studies that compared white matter differences between cannabis users and controls. We also examined the associations between cannabis exposure and other behavioral variables due to changes in white matter. Our review was pre-registered in PROSPERO (ID: 258250; https://www.crd.york.ac.uk/prospero/). RESULTS We identified 30 diffusion-MRI studies including 1,457 cannabis users and 1,441 controls aged 16-to-45 years. All but 6 studies reported group differences in white matter integrity. The most consistent differences between cannabis users and controls were lower fractional anisotropy within the arcuate/superior longitudinal fasciculus (7 studies), and lower fractional anisotropy of the corpus callosum (6 studies) as well as higher mean diffusivity and trace (4 studies). Differences in fractional anisotropy were associated with cannabis use onset (4 studies), especially in the corpus callosum (3 studies). DISCUSSION The mechanisms underscoring white matter differences are unclear, and they may include effects of cannabis use onset during youth, neurotoxic effects or neuro adaptations from regular exposure to tetrahydrocannabinol (THC), which exerts its effects by binding to brain receptors, or a neurobiological vulnerability predating the onset of cannabis use. Future multimodal neuroimaging studies, including recently developed advanced diffusion-MRI metrics, can be used to track cannabis users over time and to define with precision when and which region of the brain the white matter changes commence in youth cannabis users, and whether cessation of use recovers white matter differences. SYSTEMATIC REVIEW REGISTRATION www.crd.york.ac.uk/prospero/, identifier: 258250.
Collapse
Affiliation(s)
- Emily Anne Robinson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - John Gleeson
- Digital Innovation in Mental Health and Well-Being Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Arush Honnedevasthana Arun
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Camilla Crisanti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - H. Valerie Curran
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Anajirih N, O'Sullivan SE, Alexander SP. Endocannabinoid hydrolases differentially distribute in platelets and red blood cells and are differentially released by thrombin. Prostaglandins Other Lipid Mediat 2023; 164:106692. [PMID: 36372184 DOI: 10.1016/j.prostaglandins.2022.106692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Plasma levels of the major endocannabinoids 2-arachidonoylgycerol (2AG) and anandamide (N-arachidonoylethanolamine, AEA) have been identified to vary independently with particular pathological conditions. The levels of these endocannabinoids are tightly regulated by two hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. OBJECTIVES In this study, we have quantified these enzyme activities in the major blood fractions. PATIENTS/METHODS In blood fractions from human volunteers, radiometric assays were used to quantify monoacylglycerol lipase and fatty acid amide hydrolase. Tagging with fluorophosphonate-rhodamine allowed quantification of platelet serine hydrolase activities. RESULTS Fatty acid amide hydrolase activity was highest in platelets, while MAGL activity was most abundant in erythrocytes. Sampling the blood of donors on two further occasions 15 days apart showed no significant change in platelet FAAH or erythrocyte MAGL activities. Activities were not different when comparing female donors with males. Storage of these blood fractions at - 80 °C was associated with a rapid loss in enzyme activities, which could largely by avoided by storage in liquid nitrogen. Incubation of platelets and erythrocytes in the presence of thrombin lead to release of measurable FAAH, but not MAGL, activity. Tagging of serine hydrolase activities with fluorophosphonate-rhodamine allowed confirmation of MAGL activity in platelet preparations, as well as multiple other enzymes. CONCLUSIONS These investigations suggest a potential role for FAAH in regulation of coagulation, while the role of MAGL in blood requires further investigation.
Collapse
Affiliation(s)
- Nuha Anajirih
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK.
| | - Stephen Ph Alexander
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| |
Collapse
|
11
|
Bagues A, López-Tofiño Y, Llorente-Berzal Á, Abalo R. Cannabinoid drugs against chemotherapy-induced adverse effects: focus on nausea/vomiting, peripheral neuropathy and chemofog in animal models. Behav Pharmacol 2022; 33:105-129. [PMID: 35045012 DOI: 10.1097/fbp.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although new drugs are being developed for cancer treatment, classical chemotherapeutic agents are still front-line therapies, despite their frequent association with severe side effects that can hamper their use. Cannabinoids may prevent or palliate some of these side effects. The aim of the present study is to review the basic research which has been conducted evaluating the effects of cannabinoid drugs in the treatment of three important side effects induced by classical chemotherapeutic agents: nausea and vomiting, neuropathic pain and cognitive impairment. Several published studies have demonstrated that cannabinoids are useful in preventing and reducing the nausea, vomits and neuropathy induced by different chemotherapy regimens, though other side effects can occur, such as a reduction of gastrointestinal motility, along with psychotropic effects when using centrally-acting cannabinoids. Thus, peripherally-acting cannabinoids and new pharmacological options are being investigated, such as allosteric or biased agonists. Additionally, due to the increase in the survival of cancer patients, there are emerging data that demonstrate an important cognitive deterioration due to chemotherapy, and because the cannabinoid drugs have a neuroprotective effect, they could be useful in preventing chemotherapy-induced cognitive impairment (as demonstrated through studies in other neurological disorders), but this has not yet been tested. Thus, although cannabinoids seem a promising therapeutic approach in the treatment of different side effects induced by chemotherapeutic agents, future research will be necessary to find pharmacological options with a safer profile. Moreover, a new line of research awaits to be opened to elucidate their possible usefulness in preventing cognitive impairment.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC)
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
12
|
Vago R, Fiorio F, Trevisani F, Salonia A, Montorsi F, Bettiga A. The Mediterranean Diet as a Source of Bioactive Molecules with Cannabinomimetic Activity in Prevention and Therapy Strategy. Nutrients 2022; 14:468. [PMID: 35276827 PMCID: PMC8839035 DOI: 10.3390/nu14030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid system is a complex lipid signaling network that has evolved to be a key regulator of pro-homeostatic pathways for the organism. Its involvement in numerous processes has rendered it a very suitable target for pharmacological studies regarding metabolic syndrome, obesity and other lifestyle-related diseases. Cannabinomimetic molecules have been found in a large variety of foods, most of which are normally present in the Mediterranean diet. The majority of these compounds belong to the terpene and polyphenol classes. While it is known that they do not necessarily act directly on the cannabinoid receptors CB1 and CB2, their ability to regulate their expression levels has already been shown in some disease-related models, as well as their ability to modulate the activity of other components of the system. In this review, evidence was gathered to support the idea that phytocannabinoid dietary intake may indeed be a viable strategy for disease prevention and may be helpful in maintaining the health status. In an era where personalized nutrition is becoming more and more a reality, having new therapeutic targets could become an important resource.
Collapse
Affiliation(s)
- Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Fiorio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Francesco Trevisani
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Arianna Bettiga
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| |
Collapse
|
13
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
14
|
Rabies: Presentation, case management and therapy. J Neurol Sci 2021; 424:117413. [PMID: 33812240 DOI: 10.1016/j.jns.2021.117413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Several Lyssaviruses are known to be a causative agent of rabies and rabies like syndrome. There are no proven effective treatment strategies for symptomatic rabies patient. Risk of infection from dog variant of rabies virus is highest with deep bite reaching muscular layer and much higher when compared to scratch. Failure of viral eradication at the central nervous system (CNS) is partly due to inadequate immune response. Favipiravir selectively inhibit viral RNA polymerase and has been shown to reduce rabies replication in neuronal cell and mouse model system. Endocannabinoid system has emerged as an important regulator for CNS integrity, cell fate and may serve as an important novel neuroprotective agent. Cannabinoid may be able to regulate the impaired homeostasis induced by rabies virus by promoting infected cell survival and promote complete autophagy in infected cell.
Collapse
|
15
|
Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as Key Regulators of Inflammasome Signaling: A Current Perspective. Front Immunol 2021; 11:613613. [PMID: 33584697 PMCID: PMC7876066 DOI: 10.3389/fimmu.2020.613613] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect microbial materials, sterile inflammatory insults, and certain host-derived elements. Inflammasomes, once activated, promote caspase-1–mediated maturation and secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18, leading to pyroptosis. Current advances in inflammasome research support their involvement in the development of chronic inflammatory disorders in contrast to their role in regulating innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis sativa plant, and pharmacologically active ingredients of the plant are referred to as cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-inflammatory potential of cannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain unclear. Several attempts have been made to decipher the role of cannabinoids in modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In this review, we discuss recently published evidence on the effect of cannabinoids on inflammasome signaling. We also discuss the contribution of various cannabinoids in human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome activation to the pathophysiology of COVID-19 suggesting overall, the importance of cannabinoids as possible drugs to target inflammasome activation in or to support the treatment of a variety of human disorders including COVID-19.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
16
|
Effects of Cannabinoid Agonists and Antagonists on Sleep in Laboratory Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:97-109. [PMID: 33537939 DOI: 10.1007/978-3-030-61663-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cannabinoids are a family of chemical compounds that can be either synthesized or naturally derived. These compounds have been shown to modulate a wide variety of biological processes. In this chapter, the studies detailing the effects of cannabinoids on sleep in laboratory animals are reviewed. Both exogenous and endogenous cannabinoids generally appear to decrease wakefulness and alter rapid eye movement (REM) and non-REM sleep in animal models. In addition, cannabinoids potentiate the effects of sedative-hypnotic drugs. However, the individual contributions of each cannabinoid on sleep processes is more nuanced and may depend on the site of action in the central nervous system. Many studies investigating the mechanism of cannabinoid effects on sleep suggest that the effects of cannabinoids on sleep are mediated via cannabinoid receptors; however, some evidence suggests that some sleep effects may be elicited via non-cannabinoid receptor-dependent mechanisms. More research is necessary to fully elucidate the role of each compound in modulating sleep processes.
Collapse
|
17
|
Ahmad H, Rauf K, Zada W, McCarthy M, Abbas G, Anwar F, Shah AJ. Kaempferol Facilitated Extinction Learning in Contextual Fear Conditioned Rats via Inhibition of Fatty-Acid Amide Hydrolase. Molecules 2020; 25:molecules25204683. [PMID: 33066366 PMCID: PMC7587337 DOI: 10.3390/molecules25204683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Fear, stress, and anxiety-like behaviors originate from traumatic events in life. Stress response is managed by endocannabinoids in the body by limiting the uncontrolled retrieval of aversive memories. Pharmacotherapy-modulating endocannabinoids, especially anandamide, presents a promising tool for treating anxiety disorders. Here, we investigated the effect of kaempferol, a flavonoid, in the extinction of fear related memories and associated anxiety-like behavior. Methods: The ability of kaempferol to inhibit fatty-acid amide hydrolase (FAAH, the enzyme that catabolizes anandamide) was assessed in vitro using an enzyme-linked immunosorbent assay (ELISA) kit. For animal studies (in vivo), the extinction learning was evaluated using contextual fear conditioning (CFC, a behavioral paradigm based on ability to learn and remember aversive stimuli). Furthermore, an elevated plus-maze (EPM) model was used for measuring anxiety-like behavior, while serum corticosterone served as a biochemical indicator of anxiety. Lastly, the interaction of kaempferol with FAAH enzyme was also assessed in silico (computational study). Results: Our data showed that kaempferol inhibited the FAAH enzyme with an IC50 value of 1 µM. In CFC, it reduced freezing behavior in rats. EPM data demonstrated anxiolytic activity as exhibited by enhanced number of entries and time spent in the open arm. No change in blood corticosterone levels was noted. Our computational study showed that Kaempferol interacted with the catalytic amino acids (SER241, PHE192, PHE381, and THR377) of FAAH enzyme Conclusion: Our study demonstrate that kaempferol facilitated the extinction of aversive memories along with a reduction of anxiety. The effect is mediated through the augmentation of endocannabinoids via the inhibition of FAAH enzyme.
Collapse
Affiliation(s)
- Hammad Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Margaret McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi 75000, Pakistan;
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
- Correspondence: ; Tel.: +(92)992-383591-6
| |
Collapse
|
18
|
Cannabinoids affect the mouse visual acuity via the cannabinoid receptor type 2. Sci Rep 2020; 10:15819. [PMID: 32978469 PMCID: PMC7519129 DOI: 10.1038/s41598-020-72553-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, there have been increasing indications that the endocannabinoid (eCB) system is involved in vision. Multiple research teams studied the cannabinoid receptor type 2 (CB2R) expression and function in the mouse retina. Here, we examined the consequence of CB2R modulation on visual acuity using genetic and pharmacologic tools. We found that Cnr2 knockout mice show an enhanced visual acuity, CB2R activation decreased visual acuity while CB2R blockade with the inverse agonist AM630 increased it. The inhibition of 2-arachidonylglycerol (2-AG) synthesis and degradation also greatly increased and decreased visual acuity, respectively. No differences were seen when the cannabinoid receptor type 1 (CB1R) was deleted, blocked or activated implying that CB2R exclusively mediates cannabinoid modulation of the visual acuity. We also investigated the role of cannabinoids in retinal function using electroretinography (ERG). We found that modulating 2-AG levels affected many ERG components, such as the a-wave and oscillatory potentials (OPs), suggesting an impact on cones and amacrine cells. Taken together, these results reveal that CB2R modulates visual acuity and that eCBs such as 2-AG can modulate both visual acuity and retinal sensitivity. Finally, these findings establish that CB2R is present in visual areas and regulates vision-related functions.
Collapse
|
19
|
Gotfried J, Naftali T, Schey R. Role of Cannabis and Its Derivatives in Gastrointestinal and Hepatic Disease. Gastroenterology 2020; 159:62-80. [PMID: 32333910 DOI: 10.1053/j.gastro.2020.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Medical and recreational cannabis use has increased dramatically over the last decade, resulting from mainstream cultural acceptance and legalization in several countries worldwide. Cannabis and its derivatives affect many gastrointestinal processes via the endocannabinoid system (ECS). The ECS influences gastrointestinal homeostasis through anti-inflammatory, anti-nociceptive, and anti-secretory effects. Some gastrointestinal disorders might therefore be treated with cannabinoids. Despite numerous studies in cell lines and animals, few human studies have evaluated the therapeutic effects of cannabinoids. Cannabis' schedule 1 drug status has limited its availability in research; cannabis has been legalized only recently, in some states, for medicinal and/or recreational use. Cannabinoids can alleviate chemotherapy-induced nausea and emesis and chronic pain. Studies have demonstrated the important roles of the ECS in metabolism, obesity, and nonalcoholic fatty liver disease and the anti-inflammatory effects of cannabis have been investigated in patients with inflammatory bowel diseases. Despite its potential benefits, undesired or even detrimental effects of cannabis can limit its use. Side effects such as cannabinoid hyperemesis syndrome affect some users. We review the ECS and the effects of cannabis and its derivatives on gastrointestinal and hepatic function in health and disease.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Timna Naftali
- Division of Gastroenterology and Hepatology, Meir Medical Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Schey
- Division of Gastroenterology/Hepatology Department of Internal Medicine, University of Florida College of Medicine, Jacksonville, Florida.
| |
Collapse
|
20
|
Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol 2020; 50:359-382. [PMID: 32530350 DOI: 10.1080/10408444.2020.1762539] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The word "cannabinoid" refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2", synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as "not for human consumption" to circumvent legislation, their legal status varies by country with many government institutions currently pushing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxications in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than natural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially leading to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
21
|
Tkachenko V, Farafonov V, Tokarev V, Tkachenko I. Study of the effectiveness of various cannabinoid receptor 1 (CB1) agonists using molecular docking and molecular dynamics modeling. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2020. [DOI: 10.17721/fujcv8i1p76-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The binding of a series of small organic molecules, acting as agonists of the cannabinoid receptor CB1, was investigated by means of three methods of computational chemistry. Binding modes were predicted by means of molecular docking, and binding free energy was estimated via docking, molecular-mechanics Poisson-Boltzmann surface area method, and multistate Bennett acceptance ratio. No evident correlation was observed for the molecules between the experimental characteristics of affinity and three computed binding free energy estimates. The reasons for the discrepancy were discussed.
Collapse
|