1
|
Camacho-Téllez V, Castro MN, Wainsztein AE, Goldberg X, De Pino G, Costanzo EY, Cardoner N, Menchón JM, Soriano-Mas C, Guinjoan SM, Villarreal MF. Childhood adversity modulates structural brain changes in borderline personality but not in major depression disorder. Psychiatry Res Neuroimaging 2024; 340:111803. [PMID: 38460393 DOI: 10.1016/j.pscychresns.2024.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Vicente Camacho-Téllez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Ximena Goldberg
- Mental Health Department, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Elsa Y Costanzo
- Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Menchón
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, and Oxley College, Tulsa University, Tulsa, Oklahoma, USA
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| |
Collapse
|
2
|
Cui F, Li H, Cao Y, Wang W, Zhang D. The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure. Nutrients 2024; 16:1284. [PMID: 38732531 PMCID: PMC11085529 DOI: 10.3390/nu16091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Few studies have examined dietary protein intake and sources, in combination with longitudinal changes in brain structure markers. Our study aimed to examine the association between dietary protein intake and different sources of dietary protein, with the longitudinal rate of change in brain structural markers. A total of 2723 and 2679 participants from the UK Biobank were separately included in the analysis. The relative and absolute amounts of dietary protein intake were calculated using a 24 h dietary recall questionnaire. The longitudinal change rates of brain structural biomarkers were computed using two waves of brain imaging data. The average interval between the assessments was three years. We utilized multiple linear regression to examine the association between dietary protein and different sources and the longitudinal changes in brain structural biomarkers. Restrictive cubic splines were used to explore nonlinear relationships, and stratified and sensitivity analyses were conducted. Increasing the proportion of animal protein in dietary protein intake was associated with a slower reduction in the total hippocampus volume (THV, β: 0.02524, p < 0.05), left hippocampus volume (LHV, β: 0.02435, p < 0.01) and right hippocampus volume (RHV, β: 0.02544, p < 0.05). A higher intake of animal protein relative to plant protein was linked to a lower atrophy rate in the THV (β: 0.01249, p < 0.05) and LHV (β: 0.01173, p < 0.05) and RHV (β: 0.01193, p < 0.05). Individuals with a higher intake of seafood exhibited a higher longitudinal rate of change in the HV compared to those that did not consume seafood (THV, β: 0.004514; p < 0.05; RHV, β: 0.005527, p < 0.05). In the subgroup and sensitivity analyses, there were no significant alterations. A moderate increase in an individual's intake and the proportion of animal protein in their diet, especially from seafood, is associated with a lower atrophy rate in the hippocampus volume.
Collapse
Affiliation(s)
- Fusheng Cui
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Huihui Li
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Yi Cao
- Biomedical Center, Qingdao University, Qingdao 266021, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| |
Collapse
|
3
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
4
|
Srivastava S, Arenkiel BR, Salas R. Habenular molecular targets for depression, impulsivity, and addiction. Expert Opin Ther Targets 2023; 27:757-761. [PMID: 37705488 PMCID: PMC10591939 DOI: 10.1080/14728222.2023.2257390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Institute, Texas Children’s Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Institute, Texas Children’s Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- The Menninger Clinic, Houston TX, USA
- Department of Neurosciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Knaust T, Siebler MBD, Tarnogorski D, Skiberowski P, Höllmer H, Moritz C, Schulz H. Cross-sectional field study comparing hippocampal subfields in patients with post-traumatic stress disorder, major depressive disorder, post-traumatic stress disorder with comorbid major depressive disorder, and adjustment disorder using routine clinical data. Front Psychol 2023; 14:1123079. [PMID: 37384185 PMCID: PMC10299169 DOI: 10.3389/fpsyg.2023.1123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023] Open
Abstract
Background The hippocampus is a central brain structure involved in stress processing. Previous studies have linked stress-related mental disorders, such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD), with changes in hippocampus volume. As PTSD and MDD have similar symptoms, clinical diagnosis relies solely on patients reporting their cognitive and emotional experiences, leading to an interest in utilizing imaging-based data to improve accuracy. Our field study aimed to determine whether there are hippocampal subfield volume differences between stress-related mental disorders (PTSD, MDD, adjustment disorders, and AdjD) using routine clinical data from a military hospital. Methods Participants comprised soldiers (N = 185) with PTSD (n = 50), MDD (n = 70), PTSD with comorbid MDD (n = 38), and AdjD (n = 27). The hippocampus was segmented and volumetrized into subfields automatically using FreeSurfer. We used ANCOVA models with estimated total intracranial volume as a covariate to determine whether there were volume differences in the hippocampal subfields cornu ammonis 1 (CA1), cornu ammonis 2/3 (CA2/3), and dentate gyrus (DG) among patients with PTSD, MDD, PTSD with comorbid MDD, and AdjD. Furthermore, we added self-reported symptom duration and previous psychopharmacological and psychotherapy treatment as further covariates to examine whether there were associations with CA1, CA2/3, and DG. Results No significant volume differences in hippocampal subfields between stress-related mental disorders were found. No significant associations were detected between symptom duration, psychopharmacological treatment, psychotherapy, and the hippocampal subfields. Conclusion Hippocampal subfields may distinguish stress-related mental disorders; however, we did not observe any subfield differences. We provide several explanations for the non-results and thereby inform future field studies.
Collapse
Affiliation(s)
- Thiemo Knaust
- Center for Mental Health, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | | | | | | | - Helge Höllmer
- Center for Mental Health, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Christian Moritz
- Department of Radiology, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Holger Schulz
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Aloi MS, Poblete GF, Oldham J, Patriquin MA, Nielsen DA, Kosten TR, Salas R. miR-124-3p target genes identify globus pallidus role in suicide ideation recovery in borderline personality disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:8. [PMID: 37712050 PMCID: PMC10500603 DOI: 10.1038/s44184-023-00027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/11/2023] [Indexed: 09/16/2023]
Abstract
Borderline personality disorder (BPD) is characterized by patterns of unstable affect, unstable interpersonal relationships, and chronic suicidal tendencies. Research on the genetics, epigenetics, and brain function of BPD is lacking. MicroRNA-124-3p (miR-124-3p) was recently identified in a Genome-Wide Association Study as likely associated with BPD. Here, we identified the anatomical brain expression of genes likely modulated by miR-124-3p and compared morphometry in those brain regions in BPD inpatients vs. controls matched for psychiatric comorbidities. We isolated lists of targets likely modulated by miR-124-3p from TargetScan (v 8.0) by their preferentially conserved targeting (Aggregate PCT > 0.99, see Supplementary Table 1). We applied Process Genes List (PGL) to identify regions of interest associated with the co-expression of miR-124-3p target genes. We compared the gray matter volume of the top region of interest co-expressing those genes between BPD inpatients (n = 111, 46% female) and psychiatric controls (n = 111, 54% female) at The Menninger Clinic in Houston, Texas. We then correlated personality measures, suicidal ideation intensity, and recovery from suicidal ideation with volumetrics. Gene targets of miR-124-3p were significantly co-expressed in the left Globus Pallidus (GP), which was smaller in BPD than in psychiatric controls. Smaller GP volume was negatively correlated with agreeableness and with recovery from suicidal ideation post-treatment. In BPD, GP volume may be reduced through miR-124-3p regulation and suppression of its target genes. Importantly, we identified that a reduction of the GP in BPD could serve as a potential biomarker for recovery from suicidal ideation.
Collapse
Affiliation(s)
- Macarena S. Aloi
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- These authors contributed equally: Macarena S. Aloi, Guillermo F. Poblete
| | - Guillermo F. Poblete
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- These authors contributed equally: Macarena S. Aloi, Guillermo F. Poblete
| | - John Oldham
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
| | - Michelle A. Patriquin
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - David A. Nielsen
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Thomas R. Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
7
|
Holmes SE, Abdallah C, Esterlis I. Imaging synaptic density in depression. Neuropsychopharmacology 2023; 48:186-190. [PMID: 35768568 PMCID: PMC9700860 DOI: 10.1038/s41386-022-01368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Major depressive disorder is a prevalent and heterogeneous disorder with treatment resistance in at least 50% of individuals. Most of the initial studies focused on the monoamine system; however, recently other mechanisms have come under investigation. Specific to the current issue, studies show synaptic involvement in depression. Other articles in this issue report on reductions in synaptic density, dendritic spines, boutons and glia associated with stress and depression. Importantly, it appears that some drugs (e.g., ketamine) may lead to rapid synaptic restoration or synaptogenesis. Direct evidence for this comes from preclinical work. However, neuroimaging studies, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have become useful in assessing these changes in vivo. Here, we describe the use of neuroimaging techniques in the evaluation of synaptic alterations associated with depression in humans, as well as measurement of synaptic restoration after administration of ketamine. Although more research is desired, use of these techniques widen our understanding of depression and move us further along the path to targeted and effective treatment for depression.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chadi Abdallah
- Baylor College of Medicine, Houston, TX, USA
- National Center for PTSD, Houston, TX, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- National Center for PTSD, Houston, TX, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Carcone D, Gardhouse K, Goghari VM, Lee ACH, Ruocco AC. The transdiagnostic relationship of cumulative lifetime stress with memory, the hippocampus, and personality psychopathology. J Psychiatr Res 2022; 155:483-492. [PMID: 36183602 DOI: 10.1016/j.jpsychires.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Stress has a detrimental impact on memory, the hippocampus, and psychological health. Psychopathology research on stress has centered mainly on psychiatric diagnoses rather than symptom dimensions, and less attention has been given to the neurobiological factors through which stress might be translated into psychopathology. The present work investigates the transdiagnostic relationship of cumulative stress with episodic memory and the hippocampus (both structure and function) and explores the extent to which stress mediates the relationship between personality psychopathology and hippocampal size and activation. Cumulative lifetime stress was assessed in a sample of females recruited to vary in stress exposure and severity of personality psychopathology. Fifty-six participants completed subjective and objective tests of episodic memory, a T2-weighted high-resolution magnetic resonance imaging (MRI) scan of the medial-temporal lobe, and functional MRI (fMRI) scanning during a learning and recognition memory task. Higher cumulative stress was significantly related to memory complaints (but not episodic memory performance), lower bilateral hippocampal volume, and greater encoding-related hippocampal activation during the presentation of novel stimuli. Furthermore, cumulative stress significantly mediated the relationship between personality psychopathology and both hippocampal volume and activation, whereas alternative mediation models were not supported. The findings suggest that structural and functional activation differences in the hippocampus observed in case-control studies of psychiatric diagnoses may share cumulative stress as a common factor, which may mediate broadly reported relationships between psychopathology and hippocampal structure and function.
Collapse
Affiliation(s)
- Dean Carcone
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Katherine Gardhouse
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Centre for Addiction and Mental Health (CAMH), 60 White Squirrel Way, Toronto, Ontario, M6J 1H4, Canada
| | - Vina M Goghari
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Andy C H Lee
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Rotman Research Institute, Baycrest Hospital, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Anthony C Ruocco
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
9
|
Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221092734. [PMID: 35434443 PMCID: PMC9008809 DOI: 10.1177/24705470221092734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Background Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.
Collapse
Affiliation(s)
- Lynnette A. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Prerana Purohit
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Anastasia Coppoli
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Christopher L. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Jeremy Roscoe
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Benjamin Kelmendi
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, School of Public Health, Yale University School of
Medicine, New Haven, CT, USA
| | - Gerard Sanacora
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Douglas L. Rothman
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Graeme F. Mason
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Chadi G. Abdallah
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX, USA,Chadi G. Abdallah, Menninger Department of
Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, E4187, Houston, TX
77030, USA.
| |
Collapse
|
10
|
Bolin PK, Gosnell SN, Brandel-Ankrapp K, Srinivasan N, Castellanos A, Salas R. Decreased Brain Ventricular Volume in Psychiatric Inpatients with Serotonin Reuptake Inhibitor Treatment. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221111092. [PMID: 35859799 PMCID: PMC9290100 DOI: 10.1177/24705470221111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Background Brain ventricles have been reported to be enlarged in several neuropsychiatric disorders and in aging. Whether human cerebral ventricular volume can decrease over time with psychiatric treatment is not well-studied. The aim of this study was to examine whether inpatients taking serotonin reuptake inhibitors (SRI) exhibited reductions in cerebral ventricular volume. Methods Psychiatric inpatients, diagnosed mainly with depression, substance use, anxiety, and personality disorders, underwent two imaging sessions (Time 1 and Time 2, approximately 4 weeks apart). FreeSurfer was used to quantify volumetric features of the brain, and ANOVA was used to analyze ventricular volume differences between Time 1 and Time 2. Inpatients' brain ventricle volumes were normalized by dividing by estimated total intracranial volume (eTIV). Clinical features such as depression and anxiety levels were collected at Time 1, Time 1.5 (approximately 2 weeks apart), and Time 2. Results Inpatients consistently taking SRIs (SRI + , n = 44) showed statistically significant reductions of brain ventricular volumes particularly for their left and right lateral ventricular volumes. Reductions in their third ventricular volume were close to significance (p = .068). The inpatients that did not take SRIs (SRI-, n = 25) showed no statistically significant changes in brain ventricular volumes. The SRI + group also exhibited similar brain structural features to the healthy control group based on the 90% confidence interval comparsions on brain ventricular volume parameters, whereas the SRI- group still exhibited relatively enlarged brain ventricular volumes after treatment. Conclusions SRI treatment was associated with decreased brain ventricle volume over treatment.
Collapse
Affiliation(s)
- PK Bolin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery (CDD), Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - SN Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - K Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - A Castellanos
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - R Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
11
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harrewijn A, Cardinale EM, Groenewold NA, Bas-Hoogendam JM, Aghajani M, Hilbert K, Cardoner N, Porta-Casteràs D, Gosnell S, Salas R, Jackowski AP, Pan PM, Salum GA, Blair KS, Blair JR, Hammoud MZ, Milad MR, Burkhouse KL, Phan KL, Schroeder HK, Strawn JR, Beesdo-Baum K, Jahanshad N, Thomopoulos SI, Buckner R, Nielsen JA, Smoller JW, Soares JC, Mwangi B, Wu MJ, Zunta-Soares GB, Assaf M, Diefenbach GJ, Brambilla P, Maggioni E, Hofmann D, Straube T, Andreescu C, Berta R, Tamburo E, Price RB, Manfro GG, Agosta F, Canu E, Cividini C, Filippi M, Kostić M, Munjiza Jovanovic A, Alberton BAV, Benson B, Freitag GF, Filippi CA, Gold AL, Leibenluft E, Ringlein GV, Werwath KE, Zwiebel H, Zugman A, Grabe HJ, Van der Auwera S, Wittfeld K, Völzke H, Bülow R, Balderston NL, Ernst M, Grillon C, Mujica-Parodi LR, van Nieuwenhuizen H, Critchley HD, Makovac E, Mancini M, Meeten F, Ottaviani C, Ball TM, Fonzo GA, Paulus MP, Stein MB, Gur RE, Gur RC, Kaczkurkin AN, Larsen B, Satterthwaite TD, Harper J, Myers M, Perino MT, Sylvester CM, Yu Q, Lueken U, Veltman DJ, Thompson PM, Stein DJ, Van der Wee NJA, Winkler AM, Pine DS. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl Psychiatry 2021; 11:502. [PMID: 34599145 PMCID: PMC8486763 DOI: 10.1038/s41398-021-01622-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5-90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology.
Collapse
Affiliation(s)
- Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Elise M Cardinale
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Nynke A Groenewold
- Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Janna Marie Bas-Hoogendam
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Department of Research & Innovation, GGZ InGeest, Amsterdam, The Netherlands
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Narcis Cardoner
- Department of Mental Health, University Hospital Parc Taulí-I3PT, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Daniel Porta-Casteràs
- Department of Mental Health, University Hospital Parc Taulí-I3PT, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Savannah Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Andrea P Jackowski
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro M Pan
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Giovanni A Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - James R Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mira Z Hammoud
- Department of Psychiatry, NYU School of Medicine, New York University, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU School of Medicine, New York University, New York, NY, USA
| | - Katie L Burkhouse
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Heidi K Schroeder
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Katja Beesdo-Baum
- Behavioral Epidemiology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Randy Buckner
- Center for Brain Science & Department of Psychology, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jared A Nielsen
- Center for Brain Science & Department of Psychology, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychology Department & Neuroscience Center, Brigham Young University, Provo, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jair C Soares
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benson Mwangi
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mon-Ju Wu
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gretchen J Diefenbach
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Anxiety Disorders Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel Berta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica Tamburo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca B Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gisele G Manfro
- Anxiety Disorder Program, Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milutin Kostić
- Institute of Mental Health, University of Belgrade, Belgrade, Serbia
- Department of Psychiatry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Bianca A V Alberton
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Puerto Rico, Brazil
| | - Brenda Benson
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Gabrielle F Freitag
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Grace V Ringlein
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Kathryn E Werwath
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Hannah Zwiebel
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - André Zugman
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Elena Makovac
- Centre for Neuroimaging Science, Kings College London, London, UK
| | - Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Frances Meeten
- School of Psychology, University of Sussex, Brighton, UK
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Tali M Ball
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Murray B Stein
- Department of Psychiatry, School of Medicine and Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennifer Harper
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Michael Myers
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Michael T Perino
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Qiongru Yu
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dan J Stein
- South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nic J A Van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Tomasi D, Wiers CE, Manza P, Shokri-Kojori E, Michele-Vera Y, Zhang R, Kroll D, Feldman D, McPherson K, Biesecker C, Schwandt M, Diazgranados N, Koob GF, Wang GJ, Volkow ND. Accelerated Aging of the Amygdala in Alcohol Use Disorders: Relevance to the Dark Side of Addiction. Cereb Cortex 2021; 31:3254-3265. [PMID: 33629726 DOI: 10.1093/cercor/bhab006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Here we assessed changes in subcortical volumes in alcohol use disorder (AUD). A simple morphometry-based classifier (MC) was developed to identify subcortical volumes that distinguished 32 healthy controls (HCs) from 33 AUD patients, who were scanned twice, during early and later withdrawal, to assess the effect of abstinence on MC-features (Discovery cohort). We validated the novel classifier in an independent Validation cohort (19 AUD patients and 20 HCs). MC-accuracy reached 80% (Discovery) and 72% (Validation). MC features included the hippocampus, amygdala, cerebellum, putamen, corpus callosum, and brain stem, which were smaller and showed stronger age-related decreases in AUD than HCs, and the ventricles and cerebrospinal fluid, which were larger in AUD and older participants. The volume of the amygdala showed a positive association with anxiety and negative urgency in AUD. Repeated imaging during the third week of detoxification revealed slightly larger subcortical volumes in AUD patients, consistent with partial recovery during abstinence. The steeper age-associated volumetric reductions in stress- and reward-related subcortical regions in AUD are consistent with accelerated aging, whereas the amygdalar associations with negative urgency and anxiety in AUD patients support its involvement in the "dark side of addiction".
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | - Yonga Michele-Vera
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Danielle Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dana Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | | | - Melanie Schwandt
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Drug Abuse, Bethesda, MD 21224, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Chenji S, Cox E, Jaworska N, Swansburg RM, MacMaster FP. Body mass index and variability in hippocampal volume in youth with major depressive disorder. J Affect Disord 2021; 282:415-425. [PMID: 33422817 DOI: 10.1016/j.jad.2020.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/31/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The hippocampus has been implicated in major depressive disorder (MDD), in both adults and youth. However, possible sources of variability for the hippocampus have not been well delineated. Here, we explored the relationship between body mass index (BMI) and hippocampal volume in youth with MDD. METHODS Twenty-two controls (9 male, 13 female, 12-24 years), 24 youth with MDD and normal BMI (12 male, 12 female, 14-24 years), and 20 youth with MDD and high BMI (14 male, 6 female, 13-22 years) underwent magnetic resonance (MR) imaging and spectroscopy (1H-MRS). Hippocampal volume was determined through manual tracing of high-resolution anatomical T1 scans, and LCModel quantified neurochemical concentrations. Intracranial volume was used as a covariate in analysis to control for effects of brain volume on hippocampus. RESULTS In youth with MDD and normal BMI, right hippocampal volume was reduced (p = 0.006, Bonferroni) and a trend for reduced left hippocampal volume was noted when compared to healthy controls (p = 0.054, Bonferroni). Left hippocampal volumes were negatively associated with BMI in youth with MDD and high BMI group (r = -0.593, p = 0.006). No associations were found between the right hippocampus and BMI and there were no group differences for metabolite concentrations. LIMITATIONS Larger sample sizes would enable researchers to explore overweight vs obese groups and effect of sex in MDD-BMI groups. CONCLUSIONS BMI may account for some of the variability observed in previous studies of hippocampal volume in MDD, and therefore BMI impacts should be considered in future analyses.
Collapse
Affiliation(s)
- Sneha Chenji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emily Cox
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, Ontario, Canada
| | - Rose M Swansburg
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada; Addictions and Mental Health Strategic Clinical Network, Alberta, Canada.
| |
Collapse
|
15
|
Abdallah CG. Brain Networks Associated With COVID-19 Risk: Data From 3662 Participants. CHRONIC STRESS 2021; 5:24705470211066770. [PMID: 34993375 PMCID: PMC8725219 DOI: 10.1177/24705470211066770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
Background Our behavioral traits, and subsequent actions, could affect the risk of exposure to the
coronavirus disease of 2019 (COVID-19). The current study aimed to determine whether
unique brain networks are associated with the COVID-19 infection risk. Methods This research was conducted using the UK Biobank Resource. Functional magnetic
resonance imaging scans in a cohort of general population (n = 3662) were used to
compute the whole-brain functional connectomes. A network-informed machine learning
approach was used to identify connectome and nodal fingerprints that are associated with
positive COVID-19 status during the pandemic up to February fourth, 2021. Results The predictive models successfully identified 6 fingerprints that were associated with
COVID-19 positive, compared to negative status (all p values <
0.005). Overall, lower integration across the brain modules and increased segregation,
as reflected by internal within module connectivity, were associated with higher
infection rates. More specifically, COVID-19 positive status was associated with 1)
reduced connectivity between the central executive and ventral salience, as well as
between the dorsal salience and default mode networks; 2) increased internal
connectivity within the default mode, ventral salience, subcortical and sensorimotor
networks; and 3) increased connectivity between the ventral salience, subcortical and
sensorimotor networks. Conclusion Individuals are at increased risk of COVID-19 infections if their brain connectome is
consistent with reduced connectivity in the top-down attention and executive networks,
along with increased internal connectivity in the introspective and instinctive
networks. These identified risk networks could be investigated as target for treatment
of illnesses with impulse control deficits.
Collapse
Affiliation(s)
- Chadi G. Abdallah
- VA Medical Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
- Chadi G. Abdallah, Menninger Department of
Psychiatry, Baylor College of Medicine; 1977 Butler Blvd, E4187, Houston, TX, 77030 USA.
| |
Collapse
|
16
|
Oh H, Gosnell S, Nguyen T, Tran T, Kosten TR, Salas R. Cingulate Cortex Structural Alterations in Substance Use Disorder Psychiatric Inpatients. Am J Addict 2020; 30:72-79. [PMID: 33232571 DOI: 10.1111/ajad.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Substance use disorder (SUD) includes maladaptive patterns of substance use despite negative consequences. Previous structural neuroimaging studies showed some structural alterations in SUD, but it remains unknown whether these alterations are specifically associated with SUD or common comorbidities. This study attempts to validate the findings of structural differences between SUD, healthy controls (HC), and psychiatric controls (PC). METHODS We used HC (N = 86) matched for demographics, and PC (N = 86) matched for demographics and psychiatric diagnoses to a group of SUD patients (N = 86). We assessed the group differences of subcortical volumes, cortical volumes, thickness, and surface areas between SUD and HC. We then analyzed the group differences between SUD and PC within regions showing differences between SUD and HC. RESULTS SUD had smaller left nucleus accumbens, right thalamus, right hippocampus, left caudal anterior cingulate cortex (ACC) volume, and larger right caudal ACC volume, and right caudal ACC, right caudal middle frontal gyrus (MFG), and right posterior cingulate cortex (PCC) surface than HC. Increased right caudal ACC volume and right PCC surface in SUD were the only findings when compared with PC. Several areas showed thickness alterations between SUD and HC, but none survived multiple comparisons vs PC. DISCUSSION AND CONCLUSIONS Our findings suggest that cingulate structures may be altered in SUD compared with both HC and PC. SCIENTIFIC SIGNIFICANCE These results are among the first to indicate that some structural alterations may be SUD-specific, and highlight a cautionary note about using HC in psychiatric biomarker research. (Am J Addict 2021;30:72-79).
Collapse
Affiliation(s)
- Hyuntaek Oh
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,The Menninger Clinic, Houston, Texas
| | - Savannah Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey VA Medical Center, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | | | | | - Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey VA Medical Center, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,The Menninger Clinic, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Rice University, Houston, Texas.,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas
| |
Collapse
|
17
|
Subcortical brain morphometry of avoidant personality disorder. J Affect Disord 2020; 274:1057-1061. [PMID: 32663932 DOI: 10.1016/j.jad.2020.05.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/25/2020] [Accepted: 05/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Avoidant personality disorder (AvPD) is a condition typified by social inhibition, feelings of inadequacy, and hypersensitivity to negative evaluation. AvPD has a high comorbidity rate with other personality disorders and other psychological diagnostic categories. There is very little research investigating subcortical volumetry in AvPD. We studied subcortical brain morphometry in AvPD as compared to both healthy controls and comorbidity-matched psychiatric controls (patients in the same clinic matched for age, sex and all psychiatric diagnoses except for AvPD). METHODS We compared volumetric measures of 9 bilateral subcortical brain regions between AvPD patients, healthy controls, and psychiatric controls (n = 100 each group). The Bonferroni correction was used to control for multiple comparisons across regions (p < 0.0028). RESULTS Compared to healthy controls, AvPD patients had lower volume of the left accumbens and left thalamus. However, no significant results were found when comparing AvPD patients and psychiatric controls. An exploratory study of cortical regions showed similar results: statistically significant differences between HC and AvPD (left lateral occipital, left and right pericalcarine smaller in AvPD) but no differences between AvPD and PC. LIMITATIONS MRI and neuroimaging provides correlational information, and no causal claims can be made. CONCLUSIONS These results suggest there may be no overt subcortical volumetric differences specific to AvPD, and provide strong cautionary advice when comparing patients to healthy controls, a common practice in psychiatry biomarker research.
Collapse
|
18
|
Beaudreau SA, Schneider L. Commentary on "The Association Between Biomarkers and Neuropsychiatric Symptoms Across the Alzheimer's Disease Spectrum". Am J Geriatr Psychiatry 2020; 28:745-747. [PMID: 32376081 DOI: 10.1016/j.jagp.2020.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Sherry A Beaudreau
- Sierra Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA; School of Psychology, University of Queensland, Brisbane, QLD, Australia.
| | - Logan Schneider
- Sierra Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
19
|
Ketamine and rapid acting antidepressants: Are we ready to cure, rather than treat depression? Behav Brain Res 2020; 390:112628. [PMID: 32407817 DOI: 10.1016/j.bbr.2020.112628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability, with often chronic course of illness and high treatment resistance in a large proportion of patients. In the current short perspective paper, we present evidence supporting the presence of synaptic-based chronic stress pathology (CSP) in depression and across a number of psychiatric disorders. We summarize the synaptic connectivity model of CSP, and briefly review related preclinical and clinical evidence, while providing appropriate references for more comprehensive reviews and alternative models. We then underscore some gaps in the literature and provide various tips for future directions.
Collapse
|