1
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
2
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
3
|
Lucchetta M, Pellegrini M. Drug repositioning by merging active subnetworks validated in cancer and COVID-19. Sci Rep 2021; 11:19839. [PMID: 34615934 PMCID: PMC8494853 DOI: 10.1038/s41598-021-99399-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
Computational drug repositioning aims at ranking and selecting existing drugs for novel diseases or novel use in old diseases. In silico drug screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs and diseases in the context of a large gene co-expression network. Experiments with four benchmark diseases demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Application of DrugMerge to COVID-19 found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge can mimic human expert judgment.
Collapse
Affiliation(s)
- Marta Lucchetta
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy.
| |
Collapse
|
4
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|
5
|
Tran L, Tam DNH, Elshafay A, Dang T, Hirayama K, Huy NT. Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Med Res Methodol 2021; 21:101. [PMID: 33964880 PMCID: PMC8106836 DOI: 10.1186/s12874-021-01295-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systematic reviews (SRs) and meta-analyses (MAs) are commonly conducted to evaluate and summarize medical literature. This is especially useful in assessing in vitro studies for consistency. Our study aims to systematically review all available quality assessment (QA) tools employed on in vitro SRs/MAs. METHOD A search on four databases, including PubMed, Scopus, Virtual Health Library and Web of Science, was conducted from 2006 to 2020. The available SRs/MAs of in vitro studies were evaluated. DARE tool was applied to assess the risk of bias of included articles. Our protocol was developed and uploaded to ResearchGate in June 2016. RESULTS Our findings reported an increasing trend in publication of in vitro SRs/MAs from 2007 to 2020. Among the 244 included SRs/MAs, 126 articles (51.6%) had conducted the QA procedure. Overall, 51 QA tools were identified; 26 of them (51%) were developed by the authors specifically, whereas 25 (49%) were pre-constructed tools. SRs/MAs in dentistry frequently had their own QA tool developed by the authors, while SRs/MAs in other topics applied various QA tools. Many pre-structured tools in these in vitro SRs/MAs were modified from QA tools of in vivo or clinical trials, therefore, they had various criteria. CONCLUSION Many different QA tools currently exist in the literature; however, none cover all critical aspects of in vitro SRs/MAs. There is a need for a comprehensive guideline to ensure the quality of SR/MA due to their precise nature.
Collapse
Affiliation(s)
- Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Dao Ngoc Hien Tam
- Asia Shine Trading & Service CO. LTD., Ho Chi Minh City, Vietnam
- Online Research Club, Nagasaki, Japan
| | - Abdelrahman Elshafay
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Thao Dang
- Online Research Club, Nagasaki, Japan
- Department of Internal Medicine, Texas Tech University Health Science Center at the Permian Basin, Odessa, TX, USA
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
6
|
Population-Based COVID-19 Screening in Mexico: Assessment of Symptoms and Their Weighting in Predicting SARS-CoV-2 Infection. ACTA ACUST UNITED AC 2021; 57:medicina57040363. [PMID: 33917858 PMCID: PMC8068236 DOI: 10.3390/medicina57040363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Background and Objectives: Sentinel surveillance in the early stage of the COVID-19 pandemic in Mexico represented a significant cost reduction and was useful in estimating the population infected with SARS-CoV-2. However, it also implied that many patients were not screened and therefore had no accurate diagnosis. In this study, we carried out a population-based SARS-CoV-2 screening in Mexico to evaluate the COVID-19-related symptoms and their weighting in predicting SARS-CoV-2 infection. We also discuss this data in the context of the operational definition of suspected cases of COVID-19 established by the Mexican Health Authority’s consensus. Materials and Methods: One thousand two hundred seventy-nine subjects were included. They were screened for SARS-CoV-2 using RT-PCR. The weighting of COVID-19 symptoms in predicting SARS-CoV-2 infection was evaluated statistically. Results: Three hundred and twenty-five patients were positive for SARS-CoV-2 and 954 were negative. Fever, asthenia, dysgeusia, and oxygen saturation predicted SARS-CoV-2 infection (odds ratios ranged from 1.74 to 4.98; p < 0.05). The percentage of asymptomatic COVID-19 patients was 36% and only 38.15% met the Mexican operational definition. Cq-values for the gene N of SARS-CoV-2 were significantly higher in asymptomatic subjects than in the groups of COVID-19 patients with neurological, respiratory, and/or musculoskeletal manifestations (p < 0.05). Conclusions: Dysgeusia, fever, and asthenia increased the odds of a positive result for COVID-19 1.74–4.98-fold among the study population. Patients with neurological, respiratory, and/or musculoskeletal manifestations had higher viral loads at COVID-19 diagnosis than those observed in asymptomatic patients. A high percentage of the participants in the study (61.85%) did not meet the operational definition for a suspected case of COVID-19 established by the Mexican Health Authority’s consensus, representing a high percentage of the population that could have remained without a COVID-19 diagnosis, so becoming a potential source of virus spread.
Collapse
|