1
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Small J, Joblin-Mills A, Carbone K, Kost-Alimova M, Ayukawa K, Khodier C, Dancik V, Clemons PA, Munkacsi AB, Wagner BK. Phenotypic Screening for Small Molecules that Protect β-Cells from Glucolipotoxicity. ACS Chem Biol 2022; 17:1131-1142. [PMID: 35439415 PMCID: PMC9127801 DOI: 10.1021/acschembio.2c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Type 2 diabetes is marked by progressive β-cell failure, leading to loss of β-cell mass. Increased levels of circulating glucose and free fatty acids associated with obesity lead to β-cell glucolipotoxicity. There are currently no therapeutic options to address this facet of β-cell loss in obese type 2 diabetes patients. To identify small molecules capable of protecting β-cells, we performed a high-throughput screen of 20,876 compounds in the rat insulinoma cell line INS-1E in the presence of elevated glucose and palmitate. We found 312 glucolipotoxicity-protective small molecules (1.49% hit rate) capable of restoring INS-1E viability, and we focused on 17 with known biological targets. 16 of the 17 compounds were kinase inhibitors with activity against specific families including but not limited to cyclin-dependent kinases (CDK), PI-3 kinase (PI3K), Janus kinase (JAK), and Rho-associated kinase 2 (ROCK2). 7 of the 16 kinase inhibitors were PI3K inhibitors. Validation studies in dissociated human islets identified 10 of the 17 compounds, namely, KD025, ETP-45658, BMS-536924, AT-9283, PF-03814735, torin-2, AZD5438, CP-640186, ETP-46464, and GSK2126458 that reduced glucolipotoxicity-induced β-cell death. These 10 compounds decreased markers of glucolipotoxicity including caspase activation, mitochondrial depolarization, and increased calcium flux. Together, these results provide a path forward toward identifying novel treatments to preserve β-cell viability in the face of glucolipotoxicity.
Collapse
Affiliation(s)
- Jonnell
C. Small
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Chemistry
Biology Program, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aidan Joblin-Mills
- School
of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Kaycee Carbone
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Maria Kost-Alimova
- Center
for the Development of Therapeutics, Broad
Institute, Cambridge, Massachusetts 02142, United States
| | - Kumiko Ayukawa
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- JT
Pharmaceuticals Inc., Takatsuki 569-1125, Osaka, Japan
| | - Carol Khodier
- Center
for the Development of Therapeutics, Broad
Institute, Cambridge, Massachusetts 02142, United States
| | - Vlado Dancik
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Paul A. Clemons
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Andrew B. Munkacsi
- School
of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bridget K. Wagner
- Chemical
Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Potjewyd FM, Annor‐Gyamfi JK, Aubé J, Chu S, Conlon IL, Frankowski KJ, Guduru SKR, Hardy BP, Hopkins MD, Kinoshita C, Kireev DB, Mason ER, Moerk CT, Nwogbo F, Pearce KH, Richardson TI, Rogers DA, Soni DM, Stashko M, Wang X, Wells C, Willson TM, Frye SV, Young JE, Axtman AD. AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12246. [PMID: 35475262 PMCID: PMC9019904 DOI: 10.1002/trc2.12246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Introduction The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.
Collapse
Affiliation(s)
- Frances M. Potjewyd
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Joel K. Annor‐Gyamfi
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Jeffrey Aubé
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shaoyou Chu
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ivie L. Conlon
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kevin J. Frankowski
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shiva K. R. Guduru
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Brian P. Hardy
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Megan D. Hopkins
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Dmitri B. Kireev
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Emily R. Mason
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Charles T. Moerk
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Felix Nwogbo
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kenneth H. Pearce
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Timothy I. Richardson
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David A. Rogers
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Disha M. Soni
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Stashko
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Xiaodong Wang
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Carrow Wells
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Timothy M. Willson
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Stephen V. Frye
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Alison D. Axtman
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| |
Collapse
|
4
|
Yu P, Ericksen S, Gitter A, Newton MA. Bayes optimal informer sets for early-stage drug discovery. Biometrics 2022. [PMID: 35165892 DOI: 10.1111/biom.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
An important experimental design problem in early-stage drug discovery is how to prioritize available compounds for testing when very little is known about the target protein. Informer based ranking (IBR) methods address the prioritization problem when the compounds have provided bioactivity data on other potentially relevant targets. An IBR method selects an informer set of compounds, and then prioritizes the remaining compounds on the basis of new bioactivity experiments performed with the informer set on the target. We formalize the problem as a two-stage decision problem and introduce the Bayes Optimal Informer SEt (BOISE) method for its solution. BOISE leverages a flexible model of the initial bioactivity data, a relevant loss function, and effective computational schemes to resolve the two-step design problem. We evaluate BOISE and compare it to other IBR strategies in two retrospective studies, one on protein-kinase inhibition and the other on anti-cancer drug sensitivity. In both empirical settings BOISE exhibits better predictive performance than available methods. It also behaves well with missing data, where methods that use matrix completion show worse predictive performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peng Yu
- University of Wisconsin-Madison
| | | | - Anthony Gitter
- University of Wisconsin-Madison.,Morgridge Institute for Research
| | | |
Collapse
|