1
|
Tonelli A, Mangia V, Candiani A, Pasquali F, Mangiaracina TJ, Grazioli A, Sozzi M, Gorni D, Bussolati S, Cucinotta A, Basini G, Selleri S. Sensing Optimum in the Raw: Leveraging the Raw-Data Imaging Capabilities of Raspberry Pi for Diagnostics Applications. SENSORS 2021; 21:s21103552. [PMID: 34065190 PMCID: PMC8160707 DOI: 10.3390/s21103552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
Single-board computers (SBCs) and microcontroller boards (MCBs) are extensively used nowadays as prototyping platforms to accomplish innovative tasks. Very recently, implementations of these devices for diagnostics applications are rapidly gaining ground for research and educational purposes. Among the available solutions, Raspberry Pi represents one of the most used SBCs. In the present work, two setups based on Raspberry Pi and its CMOS-based camera (a 3D-printed device and an adaptation of a commercial product named We-Lab) were investigated as diagnostic instruments. Different camera elaboration processes were investigated, showing how direct access to the 10-bit raw data acquired from the sensor before downstream imaging processes could be beneficial for photometric applications. The developed solution was successfully applied to the evaluation of the oxidative stress using two commercial kits (d-ROM Fast; PAT). We suggest the analysis of raw data applied to SBC and MCB platforms in order to improve results.
Collapse
Affiliation(s)
- Alessandro Tonelli
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Veronica Mangia
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Alessandro Candiani
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Francesco Pasquali
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Tiziana Jessica Mangiaracina
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Alessandro Grazioli
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Michele Sozzi
- DNAPhone S.R.L., Viale Mentana 150, 43121 Parma, Italy; (A.T.); (V.M.); (A.C.); (F.P.); (T.J.M.); (A.G.); (M.S.)
| | - Davide Gorni
- H&D S.R.L., Strada Langhirano 264/1a, 43124 Parma, Italy;
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Via del Taglio 10, 43126 Parma, Italy; (S.B.); (G.B.)
| | - Annamaria Cucinotta
- Dipartimento di Ingegneria e Architettura, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy;
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Via del Taglio 10, 43126 Parma, Italy; (S.B.); (G.B.)
| | - Stefano Selleri
- Dipartimento di Ingegneria e Architettura, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-052-190-5763
| |
Collapse
|
2
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
3
|
Baillargeon P, Coss-Flores K, Singhera F, Shumate J, Williams H, DeLuca L, Spicer TP, Scampavia L. Design of Microplate-Compatible Illumination Panels for a Semiautomated Benchtop Pipetting System. SLAS Technol 2019; 24:399-407. [PMID: 30698997 DOI: 10.1177/2472630318822476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplates are an essential tool used in laboratories for storing research materials and performing assays. Many types of laboratory automation exist that greatly reduce the effort needed to utilize microplates; however, there are cases where the use of such automation is not feasible or practical. In these instances, researchers must work in an environment where liquid handling operations are performed manually with handheld pipetting devices. This type of work is tedious and error-prone as it relies on researchers to manually track a significant amount of metadata, including transfer volumes, plate barcodes, well contents, and well locations. To address this challenge, we have developed an open-source, semiautomated benchtop system that facilitates manual pipetting using visual indicators. This device streamlines the process of identifying the location of wells so that the researcher can perform manual transfers in a more efficient, reliable, and accurate manner. This system utilizes a graphical user interface that allows the user to load worklists and then issues commands to illuminate wells of interest, providing a visual indicator for users to follow in real time. The software and hardware tools utilized for development, along with the implementation techniques used to produce this system, are described within.
Collapse
Affiliation(s)
- Pierre Baillargeon
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Kervin Coss-Flores
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Fakhar Singhera
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Justin Shumate
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Hannah Williams
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Lina DeLuca
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Timothy P Spicer
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| | - Louis Scampavia
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, Florida, USA
| |
Collapse
|
4
|
|