1
|
Huang J, Wang P, Wen H. The safety and efficacy of hypothermia combining mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke: A systematic meta-analysis. Clinics (Sao Paulo) 2023; 78:100218. [PMID: 37269787 DOI: 10.1016/j.clinsp.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Stroke is a major global public health problem, affecting 13.7 million people worldwide. Previous studies have found a neuroprotective effect of hypothermia therapy and the efficacy and safety of combined hypothermia and mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke have also attracted attention. OBJECTIVE In the present research, the authors conducted a meta-analysis to comprehensively assess the safety and efficacy of hypothermia combining mechanical thrombectomy or thrombolysis in the treatment of ischemic stroke. METHODS Articles published from January 2001 to May 2022 were searched from Google Scholar, Baidu Scholar and PubMed to evaluate the clinical significance of hypothermia treatment in ischemic stroke. Complications, short-term mortality, and the modified Rankin Scale (mRS) in the full text was extracted. RESULTS 89 publications were selected and 9 among them were included in this study with sample size of 643. All selected studies are in accordance with the inclusion criteria. Forest plot of clinical characteristics was as follows: complications (RR = 1.132, 95% CI 0.942‒1.361, p = 0.186, I2 = 37.2%), mortality within 3 months (RR = 1.076, 95% CI 0.694‒1.669, p = 0.744, I2 = 0.00%), mRS ≤ 1 at 3 months (RR = 1.138, 95% CI 0.829‒1.563, p = 0.423, I2 = 26.0%), mRS ≤ 2 at 3 months (RR = 1.672, 95% CI 1.236‒2.263, p = 0.001, I2=49.6%) and mRS ≤ 3 at 3 months (RR = 1.518, 95% CI 1.128‒2.043, p = 0.006, I2 = 0.00%). The funnel plot suggested that there was no significant publication bias in the meta-analysis on complications, mortality within 3 months, mRS ≤ 1 at 3 months and mRS ≤ 2 at 3 months. CONCLUSION In summary, the results showed that hypothermia treatment was correlated with mRS ≤ 2 at 3 months, but not linked with complications and mortality within 3 months.
Collapse
Affiliation(s)
- Jiankang Huang
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China
| | - Peng Wang
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China
| | - Hongbo Wen
- Department of Neurology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangshu 211200, China.
| |
Collapse
|
2
|
Liu Q, Sorooshyari SK. Quantitative and Correlational Analysis of Brain and Spleen Immune Cellular Responses Following Cerebral Ischemia. Front Immunol 2021; 12:617032. [PMID: 34194419 PMCID: PMC8238006 DOI: 10.3389/fimmu.2021.617032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Stroke is a multiphasic process, and the initial ischemic phase of neuronal damage is followed by secondary innate and adaptive responses that unfold over days after stroke, offer a longer time frame of intervention, and represent a novel therapeutic target. Therefore, revealing the distinct functions of immune cells in both brain and periphery is important for identification of immunotherapeutic targets for stroke to extend the treatment time window. In this paper an examination of the cellular dynamics of the immune response in the central nervous system (CNS) and periphery provoked by cerebral ischemia is provided. New data is presented for the number of immune cells in brain and spleen of mice during the 7 days following middle cerebral artery occlusion (MCAO). A novel analysis of the correlation among various cell types in the brain and spleen following stroke is presented. It is found that the infiltrated macrophages in the ischemic hemisphere positively correlate with neutrophils which implies their synergic effect in migrating into the brain after stroke onset. It is noted that during infiltration of adaptive immune cells, the number of neutrophils correlate positively with T cells, which suggests neutrophils contribute to T cell infiltration in the stroked brain. Furthermore, the correlation among neurological deficit and various immune cells suggests that microglia and splenic adaptive immune cells (T and B cells) are protective while infiltrating peripheral myeloid cells (macrophage and neutrophils) worsen stroke outcome. Comprehension of such immune responses post cerebral ischemia is crucial for differentiating the drivers of outcomes and also predicting the stroke outcome.
Collapse
Affiliation(s)
- Qingkun Liu
- Department of Neurology, School of Medicine, Stanford, CA, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Siamak K. Sorooshyari
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Burkhanova G, Chernova K, Khazipov R, Sheroziya M. Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex. Front Syst Neurosci 2020; 14:52. [PMID: 32848644 PMCID: PMC7417609 DOI: 10.3389/fnsys.2020.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Moderate cortical cooling is known to suppress slow oscillations and to evoke persistent cortical activity. However, the cooling-induced changes in electrical activity across cortical layers remain largely unknown. Here, we performed multi-channel local field potential (LFP) and multi-unit activity (MUA) recordings with linear silicone probes through the layers of single cortical barrel columns in urethane-anesthetized rats under normothermia (38°C) and during local cortical surface cooling (30°C). During cortically generated slow oscillations, moderate cortical cooling decreased delta wave amplitude, delta-wave occurrence, the duration of silent states, and delta wave-locked MUA synchronization. Moderate cortical cooling increased total time spent in the active state and decreased total time spent in the silent state. Cooling-evoked changes in the MUA firing rate in cortical layer 5 (L5) varied from increase to decrease across animals, and the polarity of changes in L5 MUA correlated with changes in total time spent in the active state. The decrease in temperature reduced MUA firing rates in all other cortical layers. Sensory-evoked MUA responses also decreased during cooling through all cortical layers. The cooling-dependent slowdown was detected at the fast time-scale with a decreased frequency of sensory-evoked high-frequency oscillations (HFO). Thus, moderate cortical cooling suppresses slow oscillations and desynchronizes neuronal activity through all cortical layers, and is associated with reduced firing across all cortical layers except L5, where cooling induces variable and non-consistent changes in neuronal firing, which are common features of the transition from slow-wave synchronization to desynchronized activity in the barrel cortex.
Collapse
Affiliation(s)
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix Marseille University, INSERM, INMED, Marseille, France
| | - Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
4
|
Corey S, Abraham DI, Kaneko Y, Lee JY, Borlongan CV. Selective endovascular cooling for stroke entails brain-derived neurotrophic factor and splenic IL-10 modulation. Brain Res 2019; 1722:146380. [PMID: 31415765 DOI: 10.1016/j.brainres.2019.146380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
Stroke poses a serious health and economic burden, and the lack of treatment options necessitates a viable therapy. Hypothermia represents a promising stroke therapy, yet side effects of full-body cooling, such as pneumonia, limit its clinical application. Selective endovascular cooling (SEC), via infusion of cold saline through the intraarterial artery, represents an attractive alternative by locally cooling the brain while preserving body temperature. However, the mechanisms underlying SEC are poorly understood. Brain-derived neurotrophic factor (BDNF) is a widely recognized promotor of neuroplasticity and biomarker of stroke outcomes, as well as its association with inflammation, such as IL-10. Stroke-induced neuroinflammation exacerbates damage and stems from peripheral organs, namely the spleen. The spleen has emerged as a therapeutic target for stroke, yet the effect of SEC on the splenic inflammatory response is unknown. Here, we aimed to elucidate the local and peripheral mechanisms driving SEC as a neuroprotective stroke therapy by examining brain BDNF and splenic IL-10 expression. Animals that received SEC prior to stroke displayed elevated brain BDNF expression ipsilaterally and contralaterally across the cortex, striatum, and hippocampus. SEC also upregulated splenic IL-10, suggesting alteration of the peripheral inflammatory response. The oxygen-glucose deprivation in vitro model of stroke further demonstrated that "cold" rat splenocytes protected rat primary neurons by upregulating BDNF and IL-10. Altogether these data support BDNF- and IL-10-based mechanisms underlying the neuroprotective potential of SEC therapy for stroke, and further advance the concept of exploiting the pathological link between brain and spleen as therapeutic targets.
Collapse
Affiliation(s)
- Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Diego Incontri Abraham
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
Eskla KL, Porosk R, Reimets R, Visnapuu T, Vasar E, Hundahl CA, Luuk H. Hypothermia augments stress response in mammalian cells. Free Radic Biol Med 2018; 121:157-168. [PMID: 29704622 DOI: 10.1016/j.freeradbiomed.2018.04.571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022]
Abstract
Mild hypothermia (32 °C) is routinely used in medical practice to alleviate hypoxic ischemic damage, however, the mechanisms that underlie its protective effects remain uncertain. Using a systems approach based on genome-wide expression screens, reporter assays and biochemical studies, we find that cellular hypothermia response is associated with the augmentation of major stress-inducible transcription factors Nrf2 and HIF1Α affecting the antioxidant system and hypoxia response pathways, respectively. At the same time, NF-κB, a transcription factor involved in the control of immune and inflammatory responses, was not induced by hypothermia. Furthermore, mild hypothermia did not trigger unfolded protein response. Lower temperatures (27 °C and 22 °C) did not activate Nrf2 and HIF1A pathways as efficiently as mild hypothermia. Current findings are discussed in the context of the thermodynamic hypothesis of therapeutic hypothermia. We argue that the therapeutic effects are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component). We argue that systems coping with cellular stressors are plausible targets of therapeutic hypothermia and deserve more attention in clinical hypothermia research.
Collapse
Affiliation(s)
- Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia.
| | - Rando Porosk
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, Tartu, Estonia
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Ansgar Hundahl
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
8
|
Chen C, Ma TZ, Wang LN, Wang JJ, Tu Y, Zhao ML, Zhang S, Sun HT, Li XH. Mild hypothermia facilitates the long-term survival of newborn cells in the dentate gyrus after traumatic brain injury by diminishing a pro-apoptotic microenvironment. Neuroscience 2016; 335:114-21. [DOI: 10.1016/j.neuroscience.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
|
9
|
Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature. Behav Brain Res 2016; 340:23-28. [PMID: 27235716 DOI: 10.1016/j.bbr.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.
Collapse
|
10
|
Kong Q, Hafeez A, Yu W, Ren C, Geng X, Xiao Y, Liu S, Zhang Y, Mao R, Zhou J, Ding Y, Ji X. Acute recanalization of carotid stenosis is not proper: an experimental ischaemic stroke study. Neurol Res 2015; 37:397-402. [DOI: 10.1179/1743132815y.0000000022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Chen J, Fredrickson V, Ding Y, Jiang L, Luo Y, Ji X. The effect of a microcatheter-based selective intra-arterial hypothermia on hemodynamic changes following transient cerebral ischemia. Neurol Res 2014; 37:263-8. [PMID: 25310355 DOI: 10.1179/1743132814y.0000000451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES We investigated the effect of a microcatheter-based selectively induced intra-arterial hypothermia on hemodynamic changes following transient cerebral ischemia in rats. METHODS Stroke was induced in male Sprague-Dawley rats by a two-hour middle cerebral artery occlusion (MCAO) using a microcatheter. After the two-hour MCAO, 0·9% cold saline (0°C) was selectively infused through a microcatheter. Cerebral blood flow (CBF) in the ischemic brain region was continuously monitored by Laser-Doppler flowmetry (LDF) during the procedure. Following ischemia/reperfusion, serial functional neurologic testing was performed, and cerebral infarct volume was evaluated after 48 hours. RESULTS The local cold saline infusion, via a microcatheter, achieved a rapid induction of brain hypothermia (cerebral cortex from 37·1 ± 0·3 to 30·7 ± 0·4°C; striatum from 37·5 ± 0·3 to 30·9 ± 0·5°C). When compared to the non-treatment group, the local cold saline infusion treatment reduced both post-ischemic hyperperfusion (about 40%, P < 0·01) and delayed post-ischemic hypoperfusion (P < 0·01), improved functional neurological testing (P < 0·01), and reduced both cerebral infarction volume (40·6 ± 5·3 vs. 61·7 ± 8·6%, P < 0·01) and cerebral edema (7·8 ± 2·6 vs.15·4 ± 3·2%, P < 0·01). CONCLUSION Cold saline, when infused directly into the ischemic brain region, can confer robust neuroprotection by reducing immediate post-ischemic hyperperfusion and delayed post-ischemic hypoperfusion.
Collapse
|
12
|
Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F. Drug-induced hypothermia in stroke models: does it always protect? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:371-80. [PMID: 23469851 DOI: 10.2174/1871527311312030010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Current preclinical studies on neuroinflammation and changes in blood-brain barrier integrity by MDMA and methamphetamine. Neuropharmacology 2014; 87:125-34. [PMID: 24594477 DOI: 10.1016/j.neuropharm.2014.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
Abstract
The blood-brain barrier (BBB) is essential in the maintenance of brain homeostasis both by preserving normal brain functioning and also by protecting the brain from exposure to a range of potentially harmful substances. This review presents some of the evidence of BBB disruption following exposure to the substituted amphetamines 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and methamphetamine (METH), two drugs of abuse which are widely consumed recreationally by younger sectors of the population. Both MDMA and METH have been shown to produce disruption of the BBB as reflected by IgG extravasation and Evans Blue leakage. In particular, METH decreases the expression of basal lamina proteins associated with an increase in matrix metalloproteinase activity. These changes in BBB integrity appear to be related to MDMA-induced activation of the mitogen-activated protein kinase (MAPK) JNK1/2. The consequences of the disruption in the BBB by these two drugs remain to be established, but there is evidence in the literature that, at least in the case of METH, increased matrix metalloproteinase (MMP) activity may be related to increased behavioural sensitization and reward perhaps because of the modification of the passage of the drug into the CNS. In addition, the high incidence of AIDS-related neurologic disease in METH users may also be related to increased entry into the brain of virally derived neurotoxic products. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
14
|
Ilmjärv S, Hundahl CA, Reimets R, Niitsoo M, Kolde R, Vilo J, Vasar E, Luuk H. Estimating differential expression from multiple indicators. Nucleic Acids Res 2014; 42:e72. [PMID: 24586062 PMCID: PMC4005682 DOI: 10.1093/nar/gku158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR.
Collapse
Affiliation(s)
- Sten Ilmjärv
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia, Quretec Ltd, Tartu, Estonia, Centre for Excellence in Translational Medicine, University of Tartu, Tartu, Estonia, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark and Department of Computer Science, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu L, Xu L, Xu X, Fan X, Xie Y, Yang L, Lan W, Zhu J, Xu G, Dai J, Jiang Y, Liu X. Keep warm and get success: The role of postischemic temperature in the mouse middle cerebral artery occlusion model. Brain Res Bull 2014; 101:12-7. [DOI: 10.1016/j.brainresbull.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022]
|
16
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
17
|
Taniguchi T, Morikawa E, Mori T, Matsui T. Neuroprotective efficacy of selective brain hypothermia induced by a novel external cooling device on permanent cerebral ischemia in rats. Neurol Res 2013; 27:613-9. [PMID: 16157011 DOI: 10.1179/016164105x22110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES This study was aimed at examining whether hypothermia is neuroprotective against permanent cerebral ischemia in rats. METHODS A total of 32 male Sprague--Dawley rats were subjected to a middle cerebral artery occlusion. In the hypothermic group, rats (n=10) underwent selective brain hypothermia for 5 hours with the use of a novel surface coil with coolant circulating inside. In the control (n=13) and sham groups (n=9), the rats were maintained at normothermia. After a period of 168 hours ischemia, animals were killed to measure the infarction volume of the brain stained with hematoxylin-eosin. RESULTS There were no significant differences in physiological parameters except for the temperature. The present style of hypothermia significantly reduced infarction volume in the cortex and caudoputamen. DISCUSSION The present results endorse the neuroprotective effect of our method of hypothermia in permanent focal cerebral ischemia at an endpoint of 1 week under the following two conditions: (1) reduction of muscle and caudoputamen temperature to 29 and 31 degrees C, respectively; (2) maintenance of the mean arterial blood pressure above 90 mmHg during hypothermia.
Collapse
Affiliation(s)
- Tamiki Taniguchi
- Department of Neurosurgery, Saitama Medical Center/School, 1981 Kamoda, Kawagoe, Saitama, Japan.
| | | | | | | |
Collapse
|
18
|
de Ridder IR, de Jong FJ, den Hertog HM, Lingsma HF, van Gemert HMA, Schreuder AHCMLT, Ruitenberg A, Maasland EL, Saxena R, Oomes P, van Tuijl J, Koudstaal PJ, Kappelle LJ, Algra A, van der Worp HB, Dippel DWJ. Paracetamol (Acetaminophen) in stroke 2 (PAIS 2): protocol for a randomized, placebo-controlled, double-blind clinical trial to assess the effect of high-dose paracetamol on functional outcome in patients with acute stroke and a body temperature of 36.5 °C or above. Int J Stroke 2013; 10:457-62. [PMID: 23692587 DOI: 10.1111/ijs.12053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Abstract
RATIONALE In the first hours after stroke onset, subfebrile temperatures and fever have been associated with poor functional outcome. In the first Paracetamol (Acetaminophen) in Stroke trial, a randomized clinical trial of 1400 patients with acute stroke, patients who were treated with high-dose paracetamol showed more improvement on the modified Rankin Scale at three-months than patients treated with placebo, but this difference was not statistically significant. In the 661 patients with a baseline body temperature of 37.0 °C or above, treatment with paracetamol increased the odds of functional improvement (odds ratio 1.43; 95% confidence interval: 1.02-1.97). This relation was also found in the patients with a body temperature of 36.5 °C or higher (odds ratio 1.31; 95% confidence interval 1.01-1.68). These findings need confirmation. AIM The study aims to assess the effect of high-dose paracetamol in patients with acute stroke and a body temperature of 36.5 °C or above on functional outcome. DESIGN The Paracetamol (Acetaminophen) In Stroke 2 trial is a multicenter, randomized, double-blind, placebo-controlled clinical trial. We use a power of 85% to detect a significant difference in the scores on the modified Rankin Scale of the paracetamol group compared with the placebo group at a level of significance of 0.05 and assume a treatment effect of 7%. Fifteen-hundred patients with acute ischemic stroke or intracerebral hemorrhage and a body temperature of 36.5 °C or above will be included within 12 h of symptom onset. Patients will be treated with paracetamol in a daily dose of six-grams or matching placebo for three consecutive days. The Paracetamol (Acetaminophen) In Stroke 2 trial has been registered as NTR2365 in The Netherlands Trial Register. STUDY OUTCOMES The primary outcome will be improvement on the modified Rankin Scale at three-months as analyzed by ordinal logistic regression. DISCUSSION If high-dose paracetamol will be proven effective, a simple, safe, and extremely cheap therapy will be available for many patients with acute stroke worldwide.
Collapse
Affiliation(s)
- Inger R de Ridder
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New Perspectives on How to Discover Drugs from Herbal Medicines: CAM's Outstanding Contribution to Modern Therapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:627375. [PMID: 23634172 PMCID: PMC3619623 DOI: 10.1155/2013/627375] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/29/2013] [Indexed: 01/19/2023]
Abstract
With tens of thousands of plant species on earth, we are endowed with an enormous wealth of medicinal remedies from Mother Nature. Natural products and their derivatives represent more than 50% of all the drugs in modern therapeutics. Because of the low success rate and huge capital investment need, the research and development of conventional drugs are very costly and difficult. Over the past few decades, researchers have focused on drug discovery from herbal medicines or botanical sources, an important group of complementary and alternative medicine (CAM) therapy. With a long history of herbal usage for the clinical management of a variety of diseases in indigenous cultures, the success rate of developing a new drug from herbal medicinal preparations should, in theory, be higher than that from chemical synthesis. While the endeavor for drug discovery from herbal medicines is "experience driven," the search for a therapeutically useful synthetic drug, like "looking for a needle in a haystack," is a daunting task. In this paper, we first illustrated various approaches of drug discovery from herbal medicines. Typical examples of successful drug discovery from botanical sources were given. In addition, problems in drug discovery from herbal medicines were described and possible solutions were proposed. The prospect of drug discovery from herbal medicines in the postgenomic era was made with the provision of future directions in this area of drug development.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shu-Feng Zhou
- College of Pharmacy,University of South Florida, Tampa, FL 33612, USA
| | - Si-Hua Gao
- School of basic medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shuo-Feng Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Min-Ke Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian-Ning Sun
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yi-Fan Han
- Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hong Kong
| | - Wang-Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong
| |
Collapse
|
20
|
Park YH, Lee YM, Kim DS, Park J, Suk K, Kim JK, Han HS. Hypothermia enhances induction of protective protein metallothionein under ischemia. J Neuroinflammation 2013; 10:21. [PMID: 23374901 PMCID: PMC3607999 DOI: 10.1186/1742-2094-10-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypothermic protection against ischemic stroke has been reported by many studies. Hypothermia is supposed to mitigate the effects of deleterious genes and proteins and promote the activity of protective genes and proteins in the ischemic brain. Metallothionein (MT)-1/2 is thought to be a crucial factor for metal homeostasis, immune function, and apoptosis. This protein was found to exert protective effects in models of brain injury as well. In the present study, we investigated the effect of hypothermia on MT expression and the underlying mechanisms. METHODS Cultured bEnd.3 brain endothelial cells were exposed to oxygen glucose deprivation and reperfusion (OGD+R). Reverse transcription PCR and western blot analyses were performed to measure the expression of MT, transcription factors, and methylation regulating factors. Transcription factor binding assays were also performed. Methylation profiles of the promoter area were obtained with pyrosequencing. RESULTS Hypothermia protected bEnd.3 cells from OGD+R. When the cells were exposed to OGD+R, MT expression was induced. Hypothermia augmented MT levels. While OGD+R-induced MT expression was mainly associated with metal regulatory transcription factor 1 (MTF-1), MT expression promoted by hypothermia was primarily mediated by the signal transducer and activator of transcription 3 (STAT3). Significantly increased STAT3 phosphorylation at Ser727 was observed with hypothermia, and JSI-124, a STAT-3 inhibitor, suppressed MT expression. The DNA demethylating drug 5-aza-2'-deoxycytidine (5-Aza) enhanced MT expression. Some of the CpG sites in the promoter MT=> it should be "the CpG sites in the MT promoter" showed different methylation profiles and some methylation regulating factors had different expressional profiles in the presence of OGD+R and hypothermia. CONCLUSIONS We demonstrated that hypothermia is a potent inducer of MT gene transcription in brain endothelial cells, and enhanced MT expression might contribute to protection against ischemia. MT gene expression is induced by hypothermia mainly through the STAT3 pathway. DNA methylation may contribute to MT gene regulation under ischemic or hypothermic conditions.
Collapse
Affiliation(s)
- Youn Hee Park
- Department of Physiology, Kyungpook National University School of Medicine, 101 Dongin 2 Ga, Jung Gu, Daegu 700-422, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012; 2012:989487. [PMID: 23326261 PMCID: PMC3541556 DOI: 10.1155/2012/989487] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 12/12/2012] [Indexed: 12/02/2022] Open
Abstract
The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.
Collapse
|
22
|
Abstract
OPINION STATEMENT Therapeutic hypothermia has proven neuroprotective effects in global cerebral ischemia. Indications for hypothermia induction include cardiac arrest and neonatal asphyxia. The two general methods of induced hypothermia are either surface cooling or endovascular cooling. Hypothermia should be induced as early as possible to achieve maximum neuroprotection and edema blocking effect. Endovascular cooling has the benefit of shorter time to reach target temperature but catheter insertion requires expertise and training, which may be a barrier to widespread availability. The optimum method of cooling is yet to be determined but a multimodal approach is necessary to address three phases of cooling: induction, maintentance, and rewarm. Specifying core practitioners who are well-versed in established guidelines can help integrate the multidisciplinary team that is needed to successfully implement cooling protocols. Reducing shivering to make heat exchange more efficient with tighter temperature control enables quicker time to target temperature and avoids rewarming which can lead to inadvertent increase in intracranial pressure and cerebral edema. Promising applications but yet to be determined is whether hypothermia treatment can improve outcomes in acute ischemic stroke or traumatic brain injury.
Collapse
Affiliation(s)
- Shlee S Song
- Department of Neurology, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite E-240, Los Angeles, CA, 90048, USA
| | | |
Collapse
|
23
|
Seo M, Kim JH, Cho YE, Baek MC, Suk K. Hypothermic regulation of astrocyte proteome profile in experimental stroke. Electrophoresis 2012; 33:3835-48. [DOI: 10.1002/elps.201200331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/24/2012] [Accepted: 09/16/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Minchul Seo
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Korea
| | - Jong-Heon Kim
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Korea
| | - Young-Eun Cho
- Department of Molecular Medicine; Cell & Matrix Biology Research Institute; Kyungpook National University School of Medicine; Daegu; Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine; Cell & Matrix Biology Research Institute; Kyungpook National University School of Medicine; Daegu; Korea
| | - Kyoungho Suk
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Korea
| |
Collapse
|
24
|
Raida Z, Hundahl CA, Kelsen J, Nyengaard JR, Hay-Schmidt A. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:15. [PMID: 22901501 PMCID: PMC3487987 DOI: 10.1186/2040-7378-4-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. METHODS Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri's Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. RESULTS Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. CONCLUSIONS Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury.
Collapse
Affiliation(s)
- Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ansgar Hundahl
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Biochemistry, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Jesper Kelsen
- Department of Neurosurgery, University Hospital Copenhagen (Rigshospitalet), Copenhagen, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Research Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Panum Institute; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
25
|
Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, Yu SP. A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J 2012; 26:2799-810. [PMID: 22459147 DOI: 10.1096/fj.11-201822] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Compelling evidence from preclinical and clinical studies has shown that mild to moderate hypothermia is neuroprotective against ischemic stroke. Clinical applications of hypothermia therapy, however, have been hindered by current methods of physical cooling, which is generally inefficient and impractical in clinical situations. In this report, we demonstrate the potential of pharmacologically induced hypothermia (PIH) by the novel neurotensin receptor 1 (NTR1) agonist ABS-201 in a focal ischemic model of adult mice. ABS-201 (1.5-2.5 mg/kg, i.p.) reduces body and brain temperature by 2-5°C in 15-30 min in a dose-dependent manner without causing shivering or altering physiological parameters. Infarct volumes at 24 h after stroke are reduced by ∼30-40% when PIH therapy is initiated either immediately after stroke induction or after 30-60 min delay. ABS-201 treatment increases bcl-2 expression, decreases caspase-3 activation, and TUNEL-positive cells in the peri-infarct region, and suppresses autophagic cell death compared to stroke controls. The PIH therapy using ABS-201 improves recovery of sensorimotor function as tested 21 d after stroke. These results suggest that PIH induced by neurotensin analogs represented by ABS-201 are promising candidates for treatment of ischemic stroke and possibly for other ischemic or traumatic injuries.
Collapse
Affiliation(s)
- Ko-Eun Choi
- Department of Anesthesiology, Emory University School ofMedicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Cerebroprotective effects of TAK-937, a cannabinoid receptor agonist, on ischemic brain damage in middle cerebral artery occluded rats and non-human primates. Brain Res 2012; 1430:93-100. [DOI: 10.1016/j.brainres.2011.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/13/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
|
27
|
Faridar A, Bershad EM, Emiru T, Iaizzo PA, Suarez JI, Divani AA. Therapeutic hypothermia in stroke and traumatic brain injury. Front Neurol 2011; 2:80. [PMID: 22207862 PMCID: PMC3246360 DOI: 10.3389/fneur.2011.00080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
Therapeutic hypothermia (TH) is considered to improve survival with favorable neurological outcome in the case of global cerebral ischemia after cardiac arrest and perinatal asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS) and traumatic brain injury (TBI), however, is not well studied. Induction of TH typically requires a multimodal approach, including the use of both pharmacological agents and physical techniques. To date, clinical outcomes for patients with either AIS or TBI who received TH have yielded conflicting results; thus, no adequate therapeutic consensus has been reached. Nevertheless, it seems that by determining optimal TH parameters and also appropriate applications, cooling therapy still has the potential to become a valuable neuroprotective intervention. Among the various methods for hypothermia induction, intravascular cooling (IVC) may have the most promise in the awake patient in terms of clinical outcomes. Currently, the IVC method has the capability of more rapid target temperature attainment and more precise control of temperature. However, this technique requires expertise in endovascular surgery that can preclude its application in the field and/or in most emergency settings. It is very likely that combining neuroprotective strategies will yield better outcomes than utilizing a single approach.
Collapse
Affiliation(s)
- Alireza Faridar
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yokobori S, Frantzen J, Bullock R, Gajavelli S, Burks S, Bramlett H, Dietrich WD. The Use of Hypothermia Therapy in Traumatic Ischemic / Reperfusional Brain Injury: Review of the Literatures. Ther Hypothermia Temp Manag 2011; 1:185-192. [PMID: 23439678 PMCID: PMC3579497 DOI: 10.1089/ther.2011.0012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic mild hypothermia has been used widely in brain injury. It has evaluated in numerous clinical trials, and there is strong evidence for the use of hypothermia in treating patients with several types of ischemic / reperfusional (I/R) injuries, examples being cardiac arrest and neonatal hypoxic-ischemic encephalopathy.In spite of many basic research projects demonstrating effectiveness, therapeutic hypothermia has not been proven effective for the heterogeneous group of traumatic brain injury patients in multicenter clinical trials. In the latest clinical trial, however, researchers were able to demonstrate the significant beneficial effects of hypothermia in one specific group; patients with mass evacuated lesions. This suggested that mild therapeutic hypothermia might be effective for I/R related traumatic brain injury.In this article we have reviewed much of the previous literature concerning the mechanisms of I/R injury to the protective effects of mild therapeutic hypothermia.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Neurosurgery, The Miami Project to Cure Paralysis University of Miami Miller school of Medicine, Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
29
|
Choi Y, Kim SK, Choi IY, Ju C, Nam KW, Hwang S, Kim BW, Yoon MJ, Won MH, Park YK, Kim WK. Amelioration of cerebral infarction and improvement of neurological deficit by a Korean herbal medicine, modified Bo-Yang-Hwan-O-Tang. ACTA ACUST UNITED AC 2011; 63:695-706. [PMID: 21492172 DOI: 10.1111/j.2042-7158.2011.01254.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Modified Bo-Yang-Hwan-O-Tang (mBHT) is an improved herbal formula of BHT, which has been widely used to treat ischaemic stroke in East Asia, by the addition of five herbs having anti-ischaemic properties. In this study, we investigated whether mBHT would reduce cerebral ischaemic injury in rats. METHODS Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) and subsequent 22-h reperfusion. mBHT was administered either intraperitoneally twice 15 min before and 15 min after, or orally once 30 min or 120 min after the onset of MCAO (50 or 200 mg/kg each). KEY FINDINGS Intraperitoneal administration of mBHT markedly reduced the cerebral infarct size and neurological deficit caused by MCAO/reperfusion. mBHT treatment also significantly improved long-term survival rate after cerebral ischaemic injury. Oral administration of mBHT 30 min after ischaemia also markedly reduced the infarct size after cerebral ischaemia. The anti-ischaemic effect of mBHT was significantly, but not fully, reduced when mBHT-induced hypothermia was abolished. In cultured cortical neurons, we further found that mBHT decreased oxygen-glucose deprivation/re-oxygenation-evoked neuronal injury by inhibiting production of reactive oxygen species, decrease in mitochondrial transmembrane potential, and activation of caspase-3. However, mBHT did not inhibit N-Methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. CONCLUSIONS Taken together, our data suggest that mBHT has multiple anti-ischaemic properties and would be a good therapeutic herbal prescription for the treatment of cerebral ischaemic stroke.
Collapse
Affiliation(s)
- Yookeum Choi
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kallmünzer B, Kollmar R. Temperature Management in Stroke – an Unsolved, but Important Topic. Cerebrovasc Dis 2011; 31:532-43. [DOI: 10.1159/000324621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
|
31
|
Shintani Y, Terao Y, Ohta H. Molecular mechanisms underlying hypothermia-induced neuroprotection. Stroke Res Treat 2010; 2011:809874. [PMID: 21151700 PMCID: PMC2995905 DOI: 10.4061/2011/809874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/12/2010] [Indexed: 01/25/2023] Open
Abstract
Stroke is a dynamic event in the brain involving heterogeneous cells. There is now compelling clinical evidence that prolonged, moderate cerebral hypothermia initiated within a few hours after severe ischemia can reduce subsequent neuronal death and improve behavioral recovery. The neuroprotective role of hypothermia is also well established in experimental animals. However, the mechanism of hypothermic neuroprotection remains unclear, although, presumably involves the ability of hypothermia to suppress a broad range of injurious factors. In this paper, we addressed this issue by utilizing comprehensive gene and protein expression analyses of ischemic rat brains. To predict precise target molecules, we took advantage of the therapeutic time window and duration of hypothermia necessary to exert neuroprotective effects. We proposed that hypothermia contributes to protect neuroinflammation, and identified candidate molecules such as MIP-3α and Hsp70 that warrant further investigation as targets for therapeutic drugs acting as “hypothermia-like neuroprotectants.”
Collapse
Affiliation(s)
- Yasushi Shintani
- Pharmacology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan
| | | | | |
Collapse
|
32
|
Effect of mild and moderate hypothermia on hypoxic injury in nearly pure neuronal culture. J Anesth 2010; 24:726-32. [PMID: 20683733 DOI: 10.1007/s00540-010-0999-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The effects of mild and moderate hypothermic therapy on cerebral injury are still controversial. Our hypothesis is that mild and moderate hypothermia should have some effects on neurons themselves if they really have protective effects. By using a nearly pure neuronal culture, we evaluated the effects and mechanism of hypothermia against hypoxic insult. METHODS A nearly pure neuronal culture from cortices of 18-day-old Wister rats was used. The neurons were exposed to below 1% oxygen at 3 different temperatures (30, 33 and 37°C). First, cell viability was measured by assessing viable neurons with trypan blue. Second, to evaluate the mechanism, the extracellular glutamate concentration was measured by high-performance liquid chromatography after hypoxia; cell viability after exposure to extrinsic glutamate was also evaluated. Next, mitochondrial membrane potential was estimated, by monitoring aggregation of MitoCapture™, and the percentage of apoptotic cells was evaluated by staining with Hoechst 33342 and propidium iodide. RESULTS After 24-h hypoxic insult, cell viability at 30 and 33°C was significantly higher than at 37°C. There was no significant difference between extracellular concentrations of glutamate after hypoxia or cell viability after glutamate exposure among the 3 temperature groups. In moderate hypothermia, the number of neurons with mitochondrial injury and the percentage of apoptotic cells were significantly reduced. CONCLUSION Mild and moderate hypothermia inhibited hypoxic neuronal cell death. The mechanism of this effect may be related to protection of mitochondrial function, presumably followed by inhibition of apoptosis, at least in moderate hypothermia.
Collapse
|
33
|
Sahin S, Alkan T, Temel SG, Tureyen K, Tolunay S, Korfali E. Effects of citicoline used alone and in combination with mild hypothermia on apoptosis induced by focal cerebral ischemia in rats. J Clin Neurosci 2009; 17:227-31. [PMID: 20036128 DOI: 10.1016/j.jocn.2009.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 11/19/2022]
Abstract
The effects of citicoline used either alone or in combination with hypothermia on the suppression of apoptotic processes after transient focal cerebral ischemia were investigated. Middle cerebral artery occlusion (MCAo) was performed for 2 hours on Sprague-Dawley (SD) rats using intraluminal thread insertion. The treatment groups were as follows: Group 1, sham-operated; Group 2, saline; Group 3, citicoline (400mg/kg intraperitoneal.); Group 4, hypothermia (34+/-1 degrees C); Group 5, citicoline+hypothermia. All rats were reperfused for 24 hours, and after sacrifice and transcardiac perfusion, immunohistochemical studies were performed for markers of apoptosis. In Group 2, the Bcl-2 immunostaining score (mean+/-standard deviation, 0.71+/-0.75) was lower compared to Groups 3, 4 and 5 (2.33+/-0.81; 3.00+/-0.00; 2.20+/-0.83; p<0.05). There was higher expression of caspase-3 proteins in Group 2 (2.28+/-0.95) compared to Group 5 (1.50+/-0.83; p<0.05). Bax proteins were also increased in Group 2 (1.85+/-1.06) compared to Group 5 (0.40+/-0.54) and in Group 4 (2.00+/-0.00) compared to Group 5 (0.40+/-0.54; p<0.05). Significant differences in caspase-9 immunostaining scores were found in Group 2 (2.29+/-0.96) compared to Group 5 (0.20+/-0.44) (p<0.05); Group 3 (1.00+/-0.70) compared to Group 5 (0.20+/-0.44; p<0.05); and Group 4 (3.00+/-0.00; p<0.05) compared to Group 5 (0.40+/-0.54; p<0.05). Thus by suppressing apoptotic processes citicoline with hypothermia is more effective than either used alone in ameliorating cerebral damage after transient focal ischemia.
Collapse
Affiliation(s)
- S Sahin
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 2009; 64:75-82. [DOI: 10.1016/j.neures.2009.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/28/2008] [Accepted: 01/26/2009] [Indexed: 11/23/2022]
|
36
|
When hypothermia meets hypotension and hyperglycemia: the diverse effects of adenosine 5'-monophosphate on cerebral ischemia in rats. J Cereb Blood Flow Metab 2009; 29:1022-34. [PMID: 19319149 PMCID: PMC2726621 DOI: 10.1038/jcbfm.2009.28] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mild hypothermia renders potent neuroprotection against acute brain injury. Recent reports show that adenosine 5'-monophosphate (AMP) plays a role in thermoregulation and induces hypothermia in mice. Therefore, this study sought to determine whether AMP induces hypothermia in rats and to study its collective effects on cerebral ischemia induced by 2-h middle cerebral artery occlusion. An intraperitoneal injection of AMP induced hypothermia dose-dependently. At the dose of 4 mmol/kg, AMP induced promising mild hypothermia for 2.5 h. Unexpectedly, the AMP-induced hypothermia failed to reduce infarct volume after brain ischemia; instead, it exaggerated the ischemic damage, indicated by an increased infarct volume, as well as increased incidences of hemorrhagic transformation, seizure, and animal death. Physiologic parameter monitoring revealed that AMP causes profound hypotension, leading to cerebral hypoperfusion. Furthermore, AMP administration resulted in severe hyperglycemia, metabolic acidosis, and hypocalcemia. In addition, western blots showed early dephosphorylation and degradation of AMP-activated kinase in the ischemic cortex in AMP-treated rats. Taken together, our findings suggest that AMP induces hypothermia in rats, probably by limiting cellular access to glucose. However, the potential neuroprotection of AMP-mediated hypothermia against ischemia was overwhelmed by the detrimental effects of hypotension and hyperglycemia, thus making AMP an unlikely agent for inducing hypothermia to protect the brain against ischemic injury.
Collapse
|
37
|
Kollmar R, Schwab S. Hypothermia in Focal Ischemia: Implications of Experiments and Experience. J Neurotrauma 2009; 26:377-86. [DOI: 10.1089/neu.2008.0564] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rainer Kollmar
- Department of Neurology, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, University of Erlangen-Nurnberg, Erlangen, Germany
| |
Collapse
|
38
|
Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). ACTA ACUST UNITED AC 2009; 2:2-27. [PMID: 20369026 DOI: 10.6030/1939-067x-2.2.2] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Translational stroke research is a challenging task that needs long term team work of the stroke research community. Highly reproducible stroke models with excellent outcome consistence are essential for obtaining useful data from preclinical stroke trials as well as for improving inter-lab comparability. However, our review of literature shows that the infarct variation coefficient of commonly performed stroke models ranges from 5% to 200%. An overall improvement of the commonly used stroke models will further improve the quality for experimental stroke research as well as inter-lab comparability. Many factors play a significant role in causing outcome variation; however, they have not yet been adequately addressed in the Stroke Therapy Academic Industry Roundtable (STAIR) recommendations and the Good Laboratory Practice (GLP). These critical factors include selection of anesthetics, maintenance of animal physiological environment, stroke outcome observation, and model specific factors that affect success rate and variation. The authors have reviewed these major factors that have been reported to influence stroke model outcome, herewith, provide the first edition of stroke model guidelines so to initiate active discussion on this topic. We hope to reach a general agreement among stroke researchers in the near future with its successive updated versions.
Collapse
Affiliation(s)
- Shimin Liu
- Department of Neurology, Stroke Center, Mount Sinai School of Medicine of NYU, New York, NY, USA
| | | | | | | | | |
Collapse
|
39
|
Florian B, Vintilescu R, Balseanu AT, Buga AM, Grisk O, Walker LC, Kessler C, Popa-Wagner A. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett 2008; 438:180-5. [DOI: 10.1016/j.neulet.2008.04.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/14/2008] [Accepted: 04/01/2008] [Indexed: 12/01/2022]
|
40
|
Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, Martinez-Torres FJ, Wagner S. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat—Effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008; 1188:198-206. [DOI: 10.1016/j.brainres.2007.10.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/10/2007] [Accepted: 10/13/2007] [Indexed: 11/15/2022]
|
41
|
Kurasako T, Zhao L, Pulsinelli WA, Nowak TS. Transient cooling during early reperfusion attenuates delayed edema and infarct progression in the Spontaneously Hypertensive Rat. Distribution and time course of regional brain temperature change in a model of postischemic hypothermic protection. J Cereb Blood Flow Metab 2007; 27:1919-30. [PMID: 17429346 DOI: 10.1038/sj.jcbfm.9600492] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The temperature threshold for protection by brief postischemic cooling was evaluated in a model of transient focal ischemia in the Spontaneously Hypertensive Rat, using an array of epidural probes to monitor regional brain temperatures. Rats were subjected to 90 mins tandem occlusion of the right middle cerebral artery (MCA) and common carotid artery. Systemic cooling to 32 degrees C was initiated 5 mins before recirculation, with simultaneous brain cooling to temperatures ranging from 28 degrees C to 32 degrees C within the MCA territory by means of a temperature-controlled saline drip. Rewarming was initiated at 2 h recirculation and was complete within 30 mins. Tissue damage and edema volume showed clear temperature-dependent reductions when evaluated at 3 days survival, with no protection evident in the group at 32 degrees C but progressive effects on both parameters after deeper cooling. A particularly striking effect was the essentially complete elimination of edema progression between 1 and 3 days. Temperature at distal sites within the MCA territory better predicted reductions in lesion volume, indicating that protection required effective cooling of the penumbral regions destined to be spared. These results show that even brief cooling can be highly protective when initiated at the time of recirculation after focal ischemia, but indicate a substantially lower temperature threshold for hypothermic protection than has been reported for other strains, occlusion methods, and cooling durations.
Collapse
Affiliation(s)
- Toshiaki Kurasako
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
42
|
Han HS, Yenari MA. Effect on gene expression of therapeutic hypothermia in cerebral ischemia. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia has gained considerable interest, given that it appears to improve neurological outcomes in patients who have suffered cardiac arrest. In spite of its remarkable beneficial effect, the mechanism of protection by brain cooling is still unclear. Hypothermia is known to alter gene expression; thus, gene profiling may help to identify relevant mechanisms of neuroprotection. Recent studies have demonstrated that brain ischemia-induced gene expression is modulated by hypothermia, but the mechanism of hypothermic gene regulation is quite diverse. Hypothermia can alter transcription factors, leading to changes in gene and protein expression. Enhanced or reduced mRNA stability can also influence gene transcription. This review will summarize reports of altered gene expression following hypothermic treatment in brain ischemia.
Collapse
Affiliation(s)
- Hyung Soo Han
- Assistant Professor Kyungpook National University School of Medicine, Department of Physiology, 101 Dongin 2 Ga, Jung Gu, Daegu, 700–422, Korea
| | - Midori A Yenari
- Associate Professor University of California, San Francisco, Department of Neurology, Neurology (127) VAMC 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|
43
|
Abstract
Neuronal cell death is a major feature of various diseases, including brain ischemia, neuronal degenerative diseases, and traumatic injury, suggesting the importance of investigating the mechanisms that mediate neuronal cell death. Although the various factors that contribute to brain ischemia have been defined and the mechanism through which each factor causes neuronal cell death has been investigated, definite strategies have not been established. In this brief review, we focus on two important mechanisms that contribute to the pathogenesis of brain ischemia. First, we discuss the glutamate theory, a proposed mechanism for the understanding of ischemia-induced neuronal cell death. Second, an accumulation of recent molecular neurobiology evidence regarding the dysfunction of a cellular organelle, the endoplasmic reticulum (ER), suggests that it plays a major role in the pathogenesis of neuronal cell death. Whereas the former theory reflects the role of neuron-specific factors in the induction of cell death, the stress response of the ER for maintenance of its function is regarded as a defense mechanism. Because hypoxia, another major factor in ischemia, results in further dysfunction of the ER, studies on the malfunction of this cellular organelle may facilitate the development of novel strategies to block ischemia-induced cell death.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Department of Neuroanatomy, Kanazawa University Medical School, Takara-machi, Kanazawa City, Ishikawa, Japan.
| | | | | |
Collapse
|
44
|
Kiyatkin EA. Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol 2007; 101:3-17. [PMID: 17429680 DOI: 10.1007/s00421-007-0450-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2007] [Indexed: 12/15/2022]
Abstract
This review discusses brain temperature as a physiological parameter, which is determined primarily by neural metabolism, regulated by cerebral blood flow, and affected by various environmental factors and drugs. First, we consider normal fluctuations in brain temperature that are induced by salient environmental stimuli and occur during motivated behavior at stable normothermic conditions. Second, we analyze changes in brain temperature induced by various drugs that affect brain and body metabolism and heat dissipation. Third, we consider how these physiological and drug-induced changes in brain temperature are modulated by environmental conditions that diminish heat dissipation. Our focus is psychomotor stimulant drugs and brain hyperthermia as a factor inducing or potentiating neurotoxicity. Finally, we discuss how brain temperature is regulated, what changes in brain temperature reflect, and how these changes may affect neural functions under normal and pathological conditions. Although most discussed data were obtained in animals and several important aspects of brain temperature regulation in humans remain unknown, our focus is on the relevance of these data for human physiology and pathology.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA.
| |
Collapse
|
45
|
Ohta H, Terao Y, Shintani Y, Kiyota Y. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 2007; 57:424-33. [PMID: 17212971 DOI: 10.1016/j.neures.2006.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/28/2006] [Accepted: 12/03/2006] [Indexed: 01/08/2023]
Abstract
Hypothermia is the only neuroprotective therapy proven to be clinically effective. Identifying the molecules that play important roles in the efficacy of hypothermia, we developed a multi-channel computer-controlled system, in which the brain temperatures of freely moving rats were telemetrically monitored and maintained below 35 degrees C, and examined the time window necessary to exert its significant neuroprotective effects. Eight-week-old SD rats were subjected to a 2h middle cerebral artery occlusion (MCAO) with an intraluminal filament, and post-ischemic hypothermia was introduced at 0, 2, 4, or 6h after reperfusion until the rats were killed 2 days after MCAO. Since a significant protection was observed when hypothermia was started within 4h after reperfusion, it was concluded that the therapeutic time window of mild hypothermia lasts for 4h after reperfusion in our model. On the basis of the window, comprehensive gene expression analyses using oligonucleotide microarrays were conducted and identified potential genes related to the efficacy of hypothermia, which included inflammatory genes like osteopontin, early growth response-1, or macrophage inflammatory protein-3alpha. Therefore, the neuroprotective effects of post-ischemic mild hypothermia were strongly suggested to be mainly associated with the reduction of neuronal inflammation.
Collapse
Affiliation(s)
- Hiroyuki Ohta
- Pharmacology Research Laboratories III, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-Chome, Osaka, Japan
| | | | | | | |
Collapse
|
46
|
den Hertog H, van der Worp B, van Gemert M, Dippel D. Therapeutic hypothermia in acute ischemic stroke. Expert Rev Neurother 2007; 7:155-64. [PMID: 17286549 DOI: 10.1586/14737175.7.2.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased body temperatures are common in the acute phase of stroke. Experimental and clinical studies have suggested that increased body temperatures are related to poor outcome. In animal studies of focal cerebral ischemia, early hypothermia consistently reduced infarct volume. Based on these findings, several Phase II clinical trials have been performed to study physical methods to reduce body temperature in patients with acute stroke. The feasibility and safety of these methods have not yet been established with sufficient certainty. Pharmacological lowering of body temperature may be an attractive alternative approach. In guidelines for the treatment of acute stroke, antipyretics are generally recommended to reduce fever, although their effect on functional outcome is unknown. There is currently no evidence from randomized trials to support routine use of physical or pharmacological cooling in acute stroke. Large randomized clinical trials are needed to study the effect of both physical and medical cooling on functional outcome after stroke.
Collapse
Affiliation(s)
- Heleen den Hertog
- Deparment of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Abstract
While brain temperature is usually considered a stable, tightly regulated parameter, recent animal research revealed relatively large and rapid brain temperature fluctuations (approximately 3 degrees C) during various forms of naturally occurring physiological and behavioral activities. This work demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production, and discusses its possible mechanisms and functional consequences. This work also shows that brain hyperthermia may also be induced by various drugs of abuse. While each individual drug (i.e., heroin, cocaine, meth-amphetamine, MDMA) has its own, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by the individual's activity state and environmental conditions, showing dramatic alterations during the development of drug-taking behavior. While brain temperatures may also increase due to environmental overheating and diminished heat dissipation from the brain, adverse environmental conditions and physiological activation strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in dangerous brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes. We argue that brain temperature is an important physiological parameter, affecting various neural functions, and show the potential of brain temperature monitoring for studying alterations in metabolic neural activity under physiological and pathological conditions. Finally, we discuss brain temperature as a factor affecting various neuronal and neurochemical evaluations made in different animal preparations (in vitro slices, general anesthesia, awake, freely moving conditions) and consider a possible contribution of temperature fluctuations to behavior-related and drug-induced alterations in neuronal and neurochemical parameters.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA.
| |
Collapse
|
48
|
Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. ACTA ACUST UNITED AC 2006; 50:27-56. [PMID: 15890410 DOI: 10.1016/j.brainresrev.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/04/2005] [Accepted: 04/05/2005] [Indexed: 12/18/2022]
Abstract
Although brain metabolism consumes high amounts of energy and is accompanied by intense heat production, brain temperature is usually considered a stable, tightly "regulated" homeostatic parameter. Current research, however, revealed relatively large and rapid brain temperature fluctuations (3-4 degrees C) in animals during various normal, physiological, and behavioral activities at stable ambient temperatures. This review discusses these data and demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production. Therefore, brain temperature is an important physiological parameter that both reflects alterations in metabolic neural activity and affects various neural functions. This work also shows that brain hyperthermia may be induced by various drugs of abuse that cause metabolic brain activation and impair heat dissipation. While individual drugs (i.e., heroin, cocaine, methamphetamine, MDMA) have specific, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by an individual's activity state and environmental conditions, and change dramatically during the development of drug self-administration. Thus, brain thermorecording may provide new information on the central effects of various addictive drugs, drug-activity-environment interactions in mediating drugs' adverse effects, and alterations in metabolic neural activity associated with the development of drug-seeking and drug-taking behavior. While ambient temperatures and impairment of heat dissipation may also affect brain temperature, these environmental conditions strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in pathological brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under activated conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock, Baltimore, MD 21224, USA.
| |
Collapse
|
49
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab 2005; 25:1119-29. [PMID: 15789032 DOI: 10.1038/sj.jcbfm.9600111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA
| | | | | | | | | |
Collapse
|
50
|
van Breda EJ, van der Worp HB, van Gemert HMA, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DWJ. PAIS: paracetamol (acetaminophen) in stroke; protocol for a randomized, double blind clinical trial [ISCRTN 74418480]. BMC Cardiovasc Disord 2005; 5:24. [PMID: 16109181 PMCID: PMC1208871 DOI: 10.1186/1471-2261-5-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 08/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In patients with acute stroke, increased body temperature is associated with large lesion volumes, high case fatality, and poor functional outcome. A 1 degrees C increase in body temperature may double the odds of poor outcome. Two randomized double-blind clinical trials in patients with acute ischemic stroke have shown that treatment with a daily dose of 6 g acetaminophen (paracetamol) results in a small but rapid and potentially worthwhile reduction of 0.3 degrees C (95% CI: 0.1-0.5) in body temperature. We set out to test the hypothesis that early antipyretic therapy reduces the risk of death or dependency in patients with acute stroke, even if they are normothermic. METHODS/DESIGN Paracetamol (Acetaminophen) In Stroke (PAIS) is a randomized, double-blind clinical trial, comparing high-dose acetaminophen with placebo in 2500 patients. Inclusion criteria are a clinical diagnosis of hemorrhagic or ischemic stroke and the possibility to start treatment within 12 hours from onset of symptoms. The study will have a power of 86% to detect an absolute difference of 6% in the risk of death or dependency at three months, and a power of 72% to detect an absolute difference of 5%, at a 5% significance level. DISCUSSION This is a simple trial, with a drug that only has a small effect on body temperature in normothermic patients. However, when lowering body temperature with acetaminophen does have the expected effectiveness, 20 patients will have to be treated to prevent dependency or death in one.
Collapse
Affiliation(s)
| | | | | | - Ale Algra
- University Medical Center Utrecht, the Netherlands
| | | | - Jan van Gijn
- University Medical Center Utrecht, the Netherlands
| | | | | | | |
Collapse
|